The present invention generally relates to selecting a reference voltage suitable to a functionality of a load. In particular, the present invention relates to an integrated circuit capable of detecting or generating a reference voltage suitable to a functionality of an electronic device.
Portable electronic devices require low power consumption to achieve longer battery life. To reduce power consumption without sacrificing performance and functionality, the portable electronic devices are conventionally controlled in two modes, including a standby mode and a normal mode. For example, when the electronic device is not in use, the device is placed in the standby mode to reduce power consumption. However, this conventional method fails to achieve reduced power consumption during the normal mode.
This patent specification describes a novel integrated circuit, capable of detecting or generating a reference voltage suitable to a functionality of an electronic device. The integrated circuit includes a plurality of reference voltage generating circuits, having characteristics different from one another, and a controller configured to select one of the plurality of reference voltage generating circuits according to the functionality of the electronic device.
For example, when the electronic device has a functionality preferring low power consumption, the controller selects the reference voltage generating circuit, having a low power consumption rate. When the electronic device has a functionality preferring constant voltage supply, the controller selects the reference voltage generating circuit, having a low temperature sensitivity and/or a high voltage accuracy.
A more complete appreciation of the disclosure and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
In describing preferred embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this patent specification is not intended to be limited to the specific terminology so selected and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner. Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, particularly to
The integrated circuit 100 functions as a reference voltage source circuit, capable of providing constant voltage supply to a load 10. Specifically, the integrated circuit 100 determines a reference voltage Vref suitable to a functionality of the load 10, generates an output voltage Vout based on the reference voltage Vref, and provides the output voltage Vout to the load 10.
The integrated circuit 100 may be incorporated in an electronic circuit of a portable electronic device, such as a personal digital assistant (PDA) device, portable telephone, and a portable audio device, for example.
As shown in
The reference voltage generating circuit 1, which generates a reference voltage Vref, is connected to the negative input terminal of the amplifier AMP. The output driver P1, the first resistor R1 and the second resistor R2 are connected in series between the power source Vdd and the ground GND. The junction of the output driver P1 and the first resistor R1 is connected to the output terminal OUT. The junction of the first resistor R1 and the second resistor R2 is connected to the positive input terminal of the amplifier AMP. The gate of the output driver P1 is connected to the output terminal of the amplifier AMP. Further, the load 10 is provided between the output terminal OUT and the ground GND.
In this circuit 100, the resistors R1 and R2 together function as a voltage divider, capable of dividing the output voltage Vout into a divided voltage Vd. The amplifier AMP, which may be referred to as a comparator of any kind, compares the divided voltage Vd with the reference voltage Vref. Based on this comparison, the output driver P1, which may be implemented as a P-channel MOS transistor, controls the divided voltage Vd to be substantially equal to the reference voltage Vref.
As shown in
The first voltage generating circuit 2 has one terminal connected to the ground GND, and the other terminal connected to the negative input terminal of the amplifier AMP via the first switch SW1. The second voltage generating circuit 3 has one terminal connected to the ground GND, and the other terminal connected to the negative input terminal of the amplifier AMP via the second switch SW2. The overlap circuit 5 connects the reference voltage generating circuit 1 with the outside system.
The first voltage generating circuit 2 and the second voltage generating circuit 3 have characteristics different from each other. Specifically, in this exemplary case, the power consumption rate of the first voltage generating circuit 2 is higher than that of the second voltage generating circuit 3. In addition, the temperature sensitivity of the first voltage generating circuit 2 is lower than that of the second voltage generating circuit 3. Further; the voltage accuracy of the first voltage generating circuit 2 is higher than that of the second voltage generating circuit 3.
In other words, the first voltage generating circuit 2 has an advantage over the second voltage generating circuit 3 of providing constant voltage supply. On the other hand, the second voltage generating circuit 3 has an advantage over the first voltage generating circuit 2 of consuming less power.
In operation, the overlap circuit 5 selects one of the first voltage generating circuit 2 and the second voltage generating circuit 3, by controlling the first switch SW1 and the second switch SW2. In this way, the reference voltage generating circuit 1 can generate a reference voltage Vref suitable to a functionality of the load 10.
Referring to
In Step S1, a switch control signal Sc1 is received from the outside, which indicates a functionality of the load 10. For example, the switch control signal Sc1 indicates whether the load 10 in operation prefers low power consumption or it requires constant voltage supply.
It is determined in Step S2 whether the switch control signal Sc1 requests low power consumption. If low power consumption is requested (step S2, YES), the process moves to Step S3. If constant voltage supply is requested (step S2, NO), the process moves to Step S4.
When low power consumption is requested, the overlap circuit 5 performs Steps S3, S5 and S7.
A second enable signal CE2 is generated in step S3, and output to the second switch SW2.
In Step S5, the enable signal CE2 turns on the second switch SW2 to connect the second voltage generating circuit 3 to the rest of the circuit 100. At this time, the first switch SW1 is turned off to disconnect the first voltage generating circuit 2 from the rest of the circuit 100. In this way, the power supply to the first voltage generating circuit 2 is stopped.
The overlap circuit 5 may use a method other than through use of switches, as long as the power supply is stopped.
In Step S7, the second voltage generating circuit 3 generates a second reference voltage Vr2, and outputs it to the amplifier AMP as a reference voltage Vref.
When constant voltage supply is requested, the overlap circuit 5 performs Steps S4, S6 and S8.
A first enable signal CE1 is generated in step S4, and output to the first switch SW1.
In Step S6, the enable signal CE1 turns on the first switch SW1 to connect the first voltage generating circuit 2 to the rest of the circuit 100. At this time, the second switch SW2 is turned off to disconnect the second voltage generating circuit 3 from the rest of the circuit 100. In this way, the power supply to the first voltage generating circuit 2 is stopped.
The overlap circuit 5 may use a method other than the use of switches, as long as the power supply is stopped.
In Step S8, the first voltage generating circuit 2 generates a first reference voltage Vr1, and outputs it to the amplifier AMP as a reference voltage Vref.
The overlap circuit 5 repeats the above-described method every time it receives the switch control signal Sc1. When the switch control signal Sc1 is changed during the operation, the overlap circuit 5 switches between the first voltage generating circuit 2 and the second voltage generating circuit 3. In switching operation, the first reference voltage Vr1 and the second reference voltage Vr2 are preferably overlapped in a predetermined time period, as shown in
The reference voltage generating circuit 1 of
Further, the reference voltage generating circuit 1 may include a wide variety of reference voltage generating circuits, including the ones shown in FIGS. 4 and 7, for example.
As shown in
The bandgap voltage generating circuit 2a includes a first amplifier AMP1, a first output driver P11, a first diode D11, a second diode D12, a first resistor R11, a second resistor R12, and a third resistor R13. The first switch SW1 shown in
The first output driver P11, the first switch SW1, the first resistor R11, and the first diode D11 are connected in series between the power source Vdd and the ground GND. The junction of the first switch SW1 and the first resistor R11 is connected to the second resistor R12. The third resistor R13, and the second diode D12 are connected in series between the second resistor R12 and the ground GND.
The positive input terminal of the first amplifier AMP1 is connected to the junction of the second resistor R12 and the third resistor R13. The negative input terminal of the first amplifier AMP1 is connected to the junction of the first resistor R11 and the first diode D11. The output terminal of the first amplifier AMP1 is connected to the gate of the first output driver Pl1. The junction of the first output driver P11 and the first switch SW1 is connected to the negative input terminal of the amplifier AMP of
As will be apparent to those skilled in the art, the bandgap voltage generating circuit generally has a high temperature sensitivity and a high voltage accuracy. For example, the bandgap voltage generating circuit 2a of
The FET voltage generating circuit 3a includes a second amplifier AMP2, a second output driver P12, a fourth resistor R14 which is trimmed, a fifth resistor R15, and a third reference voltage generator 15. The second switch SW2 shown in
The second output driver P12, the second switch SW2, the fourth resistor R14, and the fifth resistor R15 are connected in series between the power source Vdd and the ground GND. The negative input terminal of the second amplifier AMP2 is connected to the third reference voltage generator 15, which is connected to the ground GND. The positive input terminal of the second amplifier AMP2 is connected to the junction of the fourth resistor R14 and the fifth resistor R15. The output terminal of the second amplifier AMP2 is connected to the gate of the second output driver P12. The junction of the second output driver P12 and the second switch SW2 is connected to the negative input terminal of the amplifier AMP of
The third reference voltage generator 15 outputs a reference voltage Vs2 to the second amplifier AMP2. The third reference voltage generator 15 may employ any kind of the known field effect transistors, as shown in
Referring to
The first transistor D1 and the second transistor E1 are connected in series between the power source Vdd and the ground GND. The gate of the first transistor D1 and the gate of the second transistor E1 are connected with each other. The junction of the first transistor D1 and the second transistor E1 is connected to the source of the first transistor D1 at one end, and to the drain of the second transistor E1 at the other end. Through this junction, the third reference voltage generator 15 outputs the reference voltage Vs2. Further, the respective substrate gates of the first transistor D1 and the second transistor E1 are connected to the ground GND.
As will be apparent to those skilled in the art, the FET voltage generating circuit having a configuration similar to the one shown in
Further, the circuit configuration of the third reference voltage generator 15 is not limited to the above-described configuration shown in
The fourth reference voltage generator 21 may have a circuit configuration shown in
Further, the circuit configuration of the fourth reference voltage generator 21 is not limited to the above-described configuration shown in
Further, as will be apparent to those skilled in the art and as it is disclosed in U.S. Pat. Nos. 6,347,550 and 6,600,305, the FET voltage generating circuit having a configuration similar to the one shown in
Numerous additional modifications and variations are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the disclosure of this patent specification may be practiced otherwise than as specifically described herein.
For example, elements and/or features of different illustrative embodiments may be combined with each other and/or substituted for each other within the scope of this disclosure and appended claims.
Further, the reference voltage generating circuit of the present invention may be used in a circuit other than the reference voltage source circuit. For example, it may be used in a charge or discharge detection circuit provided to protect a battery from being excessively charged or discharged.
This patent specification is based on Japanese patent application No. JPAP2003-382835 filed on Nov. 12, 2003, in the Japanese Patent Office, the entire contents of which are incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
2003-382835 | Nov 2003 | JP | national |