This is a continuation application for patent entitled to a filing date and claiming the benefit of U.S. Pat. No. 11,095,315, issued Aug. 17, 2021, which is a continuation application of and claims priority from U.S. Pat. No. 10,432,233, issued Oct. 1, 2019, which is a continuation application of and claims priority from U.S. Pat. No. 10,284,232, issued May 7, 2019.
The field of the invention is data processing, or, more specifically, methods, apparatus, and products for dynamically adjusting an error correction effort level of a storage device.
Enterprise storage systems can provide large amounts of computer storage to modern enterprises. Such storage systems may include many storage devices organized in such a way that data stored on a first storage device can be reconstructed from data stored on other storage devices.
Methods, apparatuses, and products for dynamically adjusting an error correction effort level of a storage device, including: receiving, from a storage array controller, an error correction effort level to perform when attempting to read data from the storage device; identifying that an attempt to read the data resulted in an error; and determining whether an amount of error correction effort level required to attempt to correct the error exceeds the error correction effort level to perform when attempting to read data from the storage device.
The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular descriptions of example embodiments of the invention as illustrated in the accompanying drawings wherein like reference numbers generally represent like parts of example embodiments of the invention.
Example methods, apparatus, and products for dynamically adjusting an error correction effort level of a storage device in accordance with the present disclosure are described with reference to the accompanying drawings, beginning with
The computing devices (164, 166, 168, 170) in the example of
The local area network (160) of
The example storage arrays (102, 104) of
The storage devices of
Each storage array (102, 104) depicted in
Each storage array controller (106, 112) may be implemented in a variety of ways, including as a Field Programmable Gate Array (‘FPGA’), a Programmable Logic Chip (‘PLC’), an Application Specific Integrated Circuit (‘ASIC’), or computing device that includes discrete components such as a central processing unit, computer memory, and various adapters. Each storage array controller (106, 112) may include, for example, a data communications adapter configured to support communications via the SAN (158) and the LAN (160). Although only one of the storage array controllers (112) in the example of
The storage array controllers (106, 112) of
Each write buffer device (148, 152) depicted in
The arrangement of computing devices, storage arrays, networks, and other devices making up the example system illustrated in
Dynamically adjusting an error correction effort level of a storage device in accordance with embodiments of the present disclosure is generally implemented with computers. In the system of
The storage array controller (202) of
The storage array controller (202) of
Stored in RAM (214) is an operating system (246). Examples of operating systems useful in storage array controllers (202) configured for dynamically adjusting an error correction effort level of a storage device according to embodiments of the present disclosure include UNIX™, Linux™, Microsoft Windows™, and others as will occur to those of skill in the art. Also stored in RAM (236) is an effort level adjustment module (248), a module that includes computer program instructions useful in dynamically adjusting an error correction effort level of a storage device. The effort level adjustment module (248) may be configured for: identifying other resources that data on a particular storage device can be rebuilt from, determining the availability of the other resources that data on the particular storage device can be rebuilt from, determining the amount of time required to rebuild data on the particular storage device from the other resources, determining an error correction effort level in dependence upon one or more of the factors described above, sending the error correction effort level to a particular storage device, receiving an error message from the particular storage device indicating that data cannot be read or reconstructed in accordance with the error correction effort level, initiating one or more processes required to rebuild data from the other resources that data on the particular storage device can be rebuilt from, and so on, as will be described in greater detail below. Readers will appreciate that while the effort level adjustment module (248) and the operating system (246) in the example of
The storage array controller (202) of
The storage array controller (202) of
The storage array controller (202) of
The storage array controller (202) of
Readers will recognize that these components, protocols, adapters, and architectures are for illustration only, not limitation. Such a storage array controller may be implemented in a variety of different ways, each of which is well within the scope of the present disclosure.
For further explanation,
The example method depicted in
The example method depicted in
The example method depicted in
Readers will appreciate that in some instances, the amount of error correction effort level actually required to correct the error may not be known. For example, if the only corrective action to be taken in response to a failed attempt to read data is re-attempting to read the data, the storage device (314) may not be able to definitively determine that re-attempting to read the data will actually result in the data being read without error. Furthermore, the storage device (314) may not be able to definitively determine the number of additional attempts to read the data that will actually result in the data being read without error. As such, the previous paragraph can refer to the amount of error correction effort level required ‘to attempt’ to correct the error or an estimate of the effort level. Readers will further appreciate that in other instances, however, the amount of error correction effort level required to actually correct the error may be known. For example, if the only corrective action to be taken in response to an attempt to read data that resulted in a known number of errors is to attempt to rebuild the data using an ECC, the storage device (314) will be able to definitively determine that rebuilding the data using an ECC will actually produce the data that the storage device (314) was attempting to read. However, while the number of errors may be known, the time required for the ECC mechanism to correct that number of errors may not be known. Readers will appreciate that regardless of whether the outcome of an attempt to correct an error is known, the amount of error correction effort level required ‘to attempt’ to correct the error may be quantified, using estimation if necessary, and compared to the error correction effort level (306) to perform when attempting to read data from the storage device (314).
For further explanation,
The example method depicted in
Consider an example in which the storage array controller (304) issues, to the storage device (314), a request to read data from a particular address on the storage device (314). In such an example, assume that the storage device (314) attempts to read the data stored at the particular address on the storage device (314), and that such an attempt results in five errors. In such an example, if the error correction effort level (306) to perform when attempting to read data from the storage device (314) specifies that the storage device (314) may use error-correcting codes to correct read attempts that contain four or fewer errors, the storage device (314) may return (410) an error condition (402) to the storage array controller (304). In such an example, the storage array controller (304) may subsequently initiate processes to reconstruct the data stored at the particular address on the storage device (314) using redundant resources. For example, if the storage device (314) is included in a RAID array, the data stored at the particular address on the storage device (314) may be reconstructed using information from other storage devices in the RAID array.
Readers will appreciate that in the example method described above, the mere fact that the error correction effort level (306) to perform specifies that the storage device (314) may use error-correcting codes to correct read attempts that contain four or fewer errors, does not necessarily mean that the storage device (314) is not capable of using error-correcting codes to correct read attempts that contain more than four errors. In fact, the storage device (314) may have access to large error-correcting codes that may be utilized to correct read attempts that contain more than four errors. The process of utilizing such error-correcting codes to correct data that contain more than four errors, however, may be more time consuming than simply reconstruct the data stored at the particular address on the storage device (314) using redundant resources. As such, the storage array controller (304) may prefer to reconstruct the data stored at the particular address on the storage device (314) using redundant resources rather than having the storage device (314) utilize the large error-correcting code to correct data that contain more than four errors.
In the example method depicted in
For further explanation,
In the example method depicted in
The example method depicted in
In the example method depicted in
Consider an example in which the storage device (314) is included in a storage array that implements RAID 6. In such an example, assume that the storage device (314) is one of five storage devices used for storing stripes of data, while two additional storage devices are used for storing parity data, such that the system as a whole includes a total of seven storage devices. In such an example, data stored on the storage device (314) may be rebuilt so long as five of the seven storage devices are available. As such, the storage array controller (304) may be configured to determine the ability to rebuild the data from other sources by first determining how many of the seven storage devices in the storage array are available. In such an example, if the storage array controller (304) determines that all seven storage devices in the storage array are available, the storage array controller (304) set the error correction effort level (306) to a value such that the storage device (314) stops attempting to correct errors very quickly given that the data can reliably be reconstructed using the information contained on the other drives (including the drives that contain parity information) in the storage array. Alternatively, if the storage array controller (304) determines that only five of the seven storage devices in the storage array are available, the storage array controller (304) set the error correction effort level (306) to a value such that the storage device (314) only stops attempting to correct errors after the expiration of a relatively long period of time, given that the data cannot reliably be reconstructed using the information contained on the other drives (including the drives that contain parity information) in the storage array.
The storage array controller (304) described above with reference to
Example embodiments of the present disclosure are described largely in the context of a fully functional computer system for distributing management responsibilities for a storage system that includes a storage array controller and a plurality of storage devices. Readers of skill in the art will recognize, however, that the present disclosure also may be embodied in a computer program product disposed upon computer readable storage media for use with any suitable data processing system. Such computer readable storage media may be any storage medium for machine-readable information, including magnetic media, optical media, or other suitable media. Examples of such media include magnetic disks in hard drives or diskettes, compact disks for optical drives, magnetic tape, and others as will occur to those of skill in the art. Persons skilled in the art will immediately recognize that any computer system having suitable programming means will be capable of executing the steps of the method of the invention as embodied in a computer program product. Persons skilled in the art will recognize also that, although some of the example embodiments described in this specification are oriented to software installed and executing on computer hardware, nevertheless, alternative embodiments implemented as firmware or as hardware are well within the scope of the present disclosure.
Although the examples described above depict embodiments where various actions are described as occurring within a certain order, no particular ordering of the steps is required. In fact, it will be understood from the foregoing description that modifications and changes may be made in various embodiments of the present disclosure without departing from its true spirit. The descriptions in this specification are for purposes of illustration only and are not to be construed in a limiting sense. The scope of the present disclosure is limited only by the language of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5706210 | Kumano et al. | Jan 1998 | A |
5799200 | Brant et al. | Aug 1998 | A |
5933598 | Scales et al. | Aug 1999 | A |
6012032 | Donovan et al. | Jan 2000 | A |
6085333 | Dekoning et al. | Jul 2000 | A |
6643641 | Snyder | Nov 2003 | B1 |
6647514 | Umberger et al. | Nov 2003 | B1 |
6789162 | Talagala et al. | Sep 2004 | B1 |
7089272 | Garthwaite et al. | Aug 2006 | B1 |
7107389 | Inagaki et al. | Sep 2006 | B2 |
7146521 | Nguyen | Dec 2006 | B1 |
7334124 | Pham et al. | Feb 2008 | B2 |
7437530 | Rajan | Oct 2008 | B1 |
7493424 | Bali et al. | Feb 2009 | B1 |
7669029 | Mishra et al. | Feb 2010 | B1 |
7689609 | Lango et al. | Mar 2010 | B2 |
7743191 | Liao | Jun 2010 | B1 |
7899780 | Shmuylovich et al. | Mar 2011 | B1 |
8042163 | Karr et al. | Oct 2011 | B1 |
8082482 | Gower et al. | Dec 2011 | B2 |
8086585 | Brashers et al. | Dec 2011 | B1 |
8086936 | Gower et al. | Dec 2011 | B2 |
8156398 | Sommer | Apr 2012 | B2 |
8200887 | Bennett | Jun 2012 | B2 |
8271700 | Annem et al. | Sep 2012 | B1 |
8387136 | Lee et al. | Feb 2013 | B2 |
8437189 | Montierth et al. | May 2013 | B1 |
8465332 | Hogan et al. | Jun 2013 | B2 |
8484542 | d'Abreu et al. | Jul 2013 | B2 |
8527544 | Colgrove et al. | Sep 2013 | B1 |
8566546 | Marshak et al. | Oct 2013 | B1 |
8578442 | Banerjee | Nov 2013 | B1 |
8613066 | Brezinski et al. | Dec 2013 | B1 |
8620970 | English et al. | Dec 2013 | B2 |
8751463 | Chamness | Jun 2014 | B1 |
8762642 | Bates et al. | Jun 2014 | B2 |
8769622 | Chang et al. | Jul 2014 | B2 |
8775868 | Colgrove et al. | Jul 2014 | B2 |
8800009 | Beda et al. | Aug 2014 | B1 |
8812860 | Bray | Aug 2014 | B1 |
8850546 | Field et al. | Sep 2014 | B1 |
8898346 | Simmons | Nov 2014 | B1 |
8909854 | Yamagishi et al. | Dec 2014 | B2 |
8931041 | Banerjee | Jan 2015 | B1 |
8935595 | Zhong et al. | Jan 2015 | B2 |
8949863 | Coatney et al. | Feb 2015 | B1 |
8954822 | Frayer et al. | Feb 2015 | B2 |
8984602 | Bailey et al. | Mar 2015 | B1 |
8990905 | Bailey et al. | Mar 2015 | B1 |
9081713 | Bennett | Jul 2015 | B1 |
9124569 | Hussain et al. | Sep 2015 | B2 |
9128858 | Micheloni et al. | Sep 2015 | B1 |
9134922 | Rajagopal et al. | Sep 2015 | B2 |
9189334 | Bennett | Nov 2015 | B2 |
9209973 | Aikas et al. | Dec 2015 | B2 |
9241769 | Larkin et al. | Jan 2016 | B2 |
9250823 | Kamat et al. | Feb 2016 | B1 |
9300660 | Borowiec et al. | Mar 2016 | B1 |
9311182 | Bennett | Apr 2016 | B2 |
9348696 | Colgrove et al. | May 2016 | B2 |
RE46154 | Fasoli et al. | Sep 2016 | E |
9444822 | Borowiec et al. | Sep 2016 | B1 |
9448881 | Micheloni et al. | Sep 2016 | B1 |
9507532 | Colgrove et al. | Nov 2016 | B1 |
9594633 | Colgrove et al. | Mar 2017 | B2 |
9632870 | Bennett | Apr 2017 | B2 |
10284232 | Colgrove et al. | May 2019 | B2 |
10432233 | Colgrove et al. | Oct 2019 | B1 |
11095315 | Colgrove | Aug 2021 | B1 |
20020013802 | Mori et al. | Jan 2002 | A1 |
20030145172 | Galbraith et al. | Jul 2003 | A1 |
20030191783 | Wolczko et al. | Oct 2003 | A1 |
20030225961 | Chow et al. | Dec 2003 | A1 |
20040080985 | Chang et al. | Apr 2004 | A1 |
20040111573 | Garthwaite | Jun 2004 | A1 |
20040153844 | Ghose et al. | Aug 2004 | A1 |
20040193814 | Erickson et al. | Sep 2004 | A1 |
20040260967 | Guha et al. | Dec 2004 | A1 |
20050160416 | Jamison et al. | Jul 2005 | A1 |
20050188246 | Emberty et al. | Aug 2005 | A1 |
20050216800 | Bicknell et al. | Sep 2005 | A1 |
20060015771 | Van Gundy et al. | Jan 2006 | A1 |
20060129817 | Borneman et al. | Jun 2006 | A1 |
20060161726 | Lasser | Jul 2006 | A1 |
20060230245 | Gounares et al. | Oct 2006 | A1 |
20060239075 | Williams et al. | Oct 2006 | A1 |
20070022227 | Miki | Jan 2007 | A1 |
20070028068 | Golding et al. | Feb 2007 | A1 |
20070055702 | Fridella et al. | Mar 2007 | A1 |
20070109856 | Pellicone et al. | May 2007 | A1 |
20070150689 | Pandit et al. | Jun 2007 | A1 |
20070162826 | Major et al. | Jul 2007 | A1 |
20070168321 | Saito et al. | Jul 2007 | A1 |
20070220227 | Long | Sep 2007 | A1 |
20070260820 | Qureshi | Nov 2007 | A1 |
20070294563 | Bose | Dec 2007 | A1 |
20070294564 | Reddin et al. | Dec 2007 | A1 |
20080005587 | Ahlquist | Jan 2008 | A1 |
20080077825 | Bello et al. | Mar 2008 | A1 |
20080162674 | Dahiya | Jul 2008 | A1 |
20080195833 | Park | Aug 2008 | A1 |
20080270678 | Cornwell et al. | Oct 2008 | A1 |
20080282045 | Biswas et al. | Nov 2008 | A1 |
20090077340 | Johnson et al. | Mar 2009 | A1 |
20090100115 | Park et al. | Apr 2009 | A1 |
20090198889 | Ito et al. | Aug 2009 | A1 |
20100052625 | Cagno et al. | Mar 2010 | A1 |
20100211723 | Mukaida | Aug 2010 | A1 |
20100246266 | Park et al. | Sep 2010 | A1 |
20100257142 | Murphy et al. | Oct 2010 | A1 |
20100262764 | Liu et al. | Oct 2010 | A1 |
20100325345 | Ohno et al. | Dec 2010 | A1 |
20100332754 | Lai et al. | Dec 2010 | A1 |
20110072290 | Davis et al. | Mar 2011 | A1 |
20110125955 | Chen | May 2011 | A1 |
20110131231 | Haas et al. | Jun 2011 | A1 |
20110167221 | Pangal et al. | Jul 2011 | A1 |
20120023144 | Rub | Jan 2012 | A1 |
20120054264 | Haugh et al. | Mar 2012 | A1 |
20120079318 | Colgrove et al. | Mar 2012 | A1 |
20120084622 | D'Abreu et al. | Apr 2012 | A1 |
20120131253 | McKnight et al. | May 2012 | A1 |
20120290899 | Cideciyan et al. | Nov 2012 | A1 |
20120303919 | Hu et al. | Nov 2012 | A1 |
20120311000 | Post et al. | Dec 2012 | A1 |
20130007845 | Chang et al. | Jan 2013 | A1 |
20130031414 | Dhuse et al. | Jan 2013 | A1 |
20130036272 | Nelson | Feb 2013 | A1 |
20130071087 | Motiwala et al. | Mar 2013 | A1 |
20130111291 | Ma | May 2013 | A1 |
20130139032 | Tsern | May 2013 | A1 |
20130139035 | Zhong et al. | May 2013 | A1 |
20130145447 | Maron | Jun 2013 | A1 |
20130191555 | Liu | Jul 2013 | A1 |
20130198459 | Joshi et al. | Aug 2013 | A1 |
20130205173 | Yoneda | Aug 2013 | A1 |
20130219164 | Hamid | Aug 2013 | A1 |
20130227201 | Talagala et al. | Aug 2013 | A1 |
20130290607 | Chang et al. | Oct 2013 | A1 |
20130311434 | Jones | Nov 2013 | A1 |
20130311849 | Miyachi et al. | Nov 2013 | A1 |
20130318297 | Jibbe et al. | Nov 2013 | A1 |
20130332614 | Brunk et al. | Dec 2013 | A1 |
20140020083 | Fetik | Jan 2014 | A1 |
20140074850 | Noel et al. | Mar 2014 | A1 |
20140082715 | Grajek et al. | Mar 2014 | A1 |
20140086146 | Kim et al. | Mar 2014 | A1 |
20140090009 | Li et al. | Mar 2014 | A1 |
20140096220 | Pinto et al. | Apr 2014 | A1 |
20140101434 | Senthurpandi et al. | Apr 2014 | A1 |
20140149827 | Kim et al. | May 2014 | A1 |
20140164774 | Nord et al. | Jun 2014 | A1 |
20140173232 | Reohr et al. | Jun 2014 | A1 |
20140195636 | Karve et al. | Jul 2014 | A1 |
20140201512 | Seethaler et al. | Jul 2014 | A1 |
20140201541 | Paul et al. | Jul 2014 | A1 |
20140208155 | Pan | Jul 2014 | A1 |
20140215590 | Brand | Jul 2014 | A1 |
20140229654 | Goss et al. | Aug 2014 | A1 |
20140230017 | Saib | Aug 2014 | A1 |
20140258526 | Le Sant et al. | Sep 2014 | A1 |
20140282983 | Ju et al. | Sep 2014 | A1 |
20140285917 | Cudak et al. | Sep 2014 | A1 |
20140325262 | Cooper et al. | Oct 2014 | A1 |
20140351627 | Best et al. | Nov 2014 | A1 |
20140373104 | Gaddam et al. | Dec 2014 | A1 |
20140373126 | Hussain et al. | Dec 2014 | A1 |
20150026387 | Sheredy et al. | Jan 2015 | A1 |
20150074463 | Jacoby et al. | Mar 2015 | A1 |
20150089569 | Sondhi et al. | Mar 2015 | A1 |
20150095515 | Krithivas et al. | Apr 2015 | A1 |
20150113203 | Dancho et al. | Apr 2015 | A1 |
20150121137 | McKnight et al. | Apr 2015 | A1 |
20150128008 | Chatradhi | May 2015 | A1 |
20150134920 | Anderson et al. | May 2015 | A1 |
20150149822 | Coronado et al. | May 2015 | A1 |
20150193169 | Sundaram et al. | Jul 2015 | A1 |
20150378888 | Zhang et al. | Dec 2015 | A1 |
20160062830 | Cha | Mar 2016 | A1 |
20160098323 | Mutha et al. | Apr 2016 | A1 |
20160350009 | Cerreta et al. | Dec 2016 | A1 |
20160352720 | Hu et al. | Dec 2016 | A1 |
20160352830 | Borowiec et al. | Dec 2016 | A1 |
20160352834 | Borowiec et al. | Dec 2016 | A1 |
20170126255 | Colgrove et al. | May 2017 | A1 |
20180081562 | Vasudevan | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
108351819 | Jul 2018 | CN |
0725324 | Aug 1996 | EP |
3368983 | Sep 2018 | EP |
2012087648 | Jun 2012 | WO |
2013071087 | May 2013 | WO |
2014110137 | Jul 2014 | WO |
2016015008 | Jan 2016 | WO |
2016190938 | Dec 2016 | WO |
2016195759 | Dec 2016 | WO |
2016195958 | Dec 2016 | WO |
2016195961 | Dec 2016 | WO |
2017075075 | May 2017 | WO |
Entry |
---|
Bellamy-McIntyre et al., “OpenID and the Enterprise: A Model-based Analysis of Single Sign-On Authentication”, 15th IEEE International Enterprise Distributed Object Computing Conference (EDOC), Aug. 29, 2011, pp. 129-138, IEEE Computer Society, USA, DOI: 10.1109/EDOC.2011.26, ISBN: 978-1-4577-0362-1. |
ETSI, “Network Function Virtualisation (NFV); Resiliency Requirements”, ETSI GS NFCV-REL 001, V1.1.1, Jan. 2015, 82 pages, etsi.org (online), URL: www.etsi.org/deliver/etsi_gs/NFV-REL/001_099/001/01.01.01_60/gs_NFV-REL001v010101p.pdf. |
Faith, “dietzip file format”, GitHub.com (online), accessed Jul. 28, 2015, 1 page, URL: github.com/fidlej/idzip. |
Google Search of “storage array define” performed by the Examiner on Nov. 4, 2015 for U.S. Appl. No. 14/725,278, Results limited to entries dated before 2012,1 page. |
Hota et al., “Capability-based Cryptographic Data Access Control in Cloud Computing”, International Journal of Advanced Networking and Applications, col. 1, Issue 1, Aug. 2011, 10 pages, Eswar Publications, India. |
Hu et al., “Container Marking: Combining Data Placement, Garbage Collection and Wear Levelling for Flash”, 19th Annual IEEE International Symposium on Modelling, Analysis, and Simulation of Computer and Telecommunications Systems, Jul. 25-27, 2011, 11 pages, ISBN: 978-0-7695-4430-4, DOI: 10.1109/MASCOTS.2011.50. |
International Search Report and Written Opinion, PCT/US2016/015006, dated Apr. 29, 2016, 12 pages. |
International Search Report and Written Opinion, PCT/US2016/015008, dated May 4, 2016, 12 pages. |
International Search Report and Written Opinion, PCT/US2016/016333, dated Jun. 8, 2016, 12 pages. |
International Search Report and Written Opinion, PCT/US2016/020410, dated Jul. 8, 2016, 12 pages. |
International Search Report and Written Opinion, PCT/US2016/032052, dated Aug. 30, 2016, 17 pages. |
International Search Report and Written Opinion, PCT/US2016/032084, dated Jul. 18, 2016, 12 pages. |
International Search Report and Written Opinion, PCT/US2016/035492, dated Aug. 17, 2016, 10 pages. |
International Search Report and Written Opinion, PCT/US2016/036693, dated Aug. 29, 2016, 10 pages. |
International Search Report and Written Opinion, PCT/US2016/038758, dated Oct. 7, 2016, 10 pages. |
International Search Report and Written Opinion, PCT/US2016/040393, dated Sep. 22, 2016, 10 pages. |
International Search Report and Written Opinion, PCT/US2016/044020, dated Sep. 30, 2016, 11 pages. |
International Search Report and Written Opinion, PCT/US2016/044874, dated Oct. 7, 2016, 11 pages. |
International Search Report and Written Opinion, PCT/US2016/044875, dated Oct. 5, 2016, 13 pages. |
International Search Report and Written Opinion, PCT/US2016/044876, dated Oct. 21, 2016, 12 pages. |
International Search Report and Written Opinion, PCT/US2016/044877, dated Sep. 29, 2016, 13 pages. |
International Search Report and Written Opinion, PCT/US2016/058900, dated Jan. 30, 2017, 9 pages. |
Kong, “Using PCI Express As The Primary System Interconnect In Multiroot Compute, Storage, Communications And Embedded Systems”, White Paper, IDT.com (online), Aug. 28, 2008, 12 pages, URL: www.idt.com/document/whp/idt-pcie-multi-root-white-paper. |
Li et al., “Access Control for the Services Oriented Architecture”, Proceedings of the 2007 ACM Workshop on Secure Web Services (SWS '07), Nov. 2007, pp. 9-17, ACM New York, NY. |
Microsoft, “Hybrid for SharePoint Server 2013—Security Reference Architecture”, Microsoft (online), Oct. 2014, 53 pages, URL: hybrid.office.com/img/Security_Reference_Architecture.pdf. |
Microsoft, “Hybrid Identity Management”, Microsoft (online), Apr. 2014, 2 pages, URL: download.microsoft.com/download/E/A/E/EAE57CD1-A80B-423C-96BB-142FAAC630B9/Hybrid_Identity_Datasheet.pdf. |
Microsoft, “Hybrid Identity”, Microsoft (online), Apr. 2014, 36 pages, URL: www.aka.ms/HybridIdentityWp. |
PCMAG, “Storage Array Definition”, Published May 10, 2013, URL: http://web.archive.org/web/20130510121646/http://www.pcmag.com/encyclopedia/term/52091/storage-array, 2 pages. |
Storer et al., “Secure Data Deduplication”, Proceedings of the 4th ACM International Workshop on Storage Security And Survivability (StorageSS'08), Oct. 2008, 10 pages, ACM New York, NY. USA, DOI: 10.1145/1456469.1456471. |
Sweere, “Creating Storage Class Persistent Memory with NVDIMM”, Published in Aug. 2013, Flash Memory Summit 2013, URL: http://ww.flashmemorysummit.com/English/Collaterals/Proceedings/2013/20130814_T2_Sweere.pdf, 22 pages. |
Techopedia, “What is a disk array”, techopedia.com (online), Jan. 13, 2012, 1 page, URL: web.archive.org/web/20120113053358/http://www.techopedia.com/definition/1009/disk-array. |
Webopedia, “What is a disk array”, webopedia.com (online), May 26, 2011, 2 pages, URL: web/archive.org/web/20110526081214/http://www.webopedia.com/TERM/D/disk_array.html. |
Wikipedia, “Convergent Encryption”, Wikipedia.org (online), accessed Sep. 8, 2015, 2 pages, URL: en.wikipedia.org/wiki/Convergent_encryption. |
Number | Date | Country | |
---|---|---|---|
20210359709 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16527726 | Jul 2019 | US |
Child | 17388853 | US | |
Parent | 16028933 | Jul 2018 | US |
Child | 16527726 | US | |
Parent | 14925255 | Oct 2015 | US |
Child | 16028933 | US |