The present invention relates to a selection manifold for a beverage dispenser, such as a post-mix carbonated beverage dispensing system.
A post-mix carbonated beverage dispensing system makes its own carbonated water from a supply of municipal or well water, and then distributes the carbonated water to a plurality of post-mix valves. Each post-mix valve mixes carbonated water with syrup and effects dispensing of a complete beverage. These dispensers are typically found in fast food retailers, theaters, convention centers, sports facilities and the like, and are most often used to fill cups with beverage.
Most all of these plural flavor post-mix dispensers have some type of structure to distribute carbonated water from a single source which may be single or plural carbonator to a plurality of dispensing valves. There typically will be a minimum of four dispensing valves, and it is common to see up to twelve dispensing valves being supplied from a single carbonator.
Recently, consumers have desired the option of purchasing non-carbonated beverages at locations served by post-mix carbonated beverage systems. As a result, manufactures of such beverage dispensing systems have started to provide one or more valves that are connected to a source of chilled but non-carbonated water. These valves then mix a syrup with the non-carbonated water to provide a non-carbonated drink, such as lemonade.
While this additional consumer choice is good for the establishment selling the beverages, it causes problems for the equipment manufacturers and suppliers. Heretofore, the equipment has been built with a fixed number and position of valves that that are supplied with non-carbonated water. The problem is that consumer preferences change, or are unknown at the time equipment has to be purchased and installed. Thus, a beverage dispenser may be installed at a location with only one valve configured to dispense a non-carbonated beverage. However, in actual use, it may be determined that consumers would rather have other types of non-carbonated beverages than the type of carbonated beverage being dispensed. If a user wanted a different selection, so that more valves can dispense non-carbonated beverages, or wants to move the position of the dispenser valves from which non-carbonated beverages are dispensed, the beverage dispensing equipment would have to be modified. While this is difficult and expensive at best, it may be impossible in some systems because the systems are built so that the water (carbonated or non-carbonated) lines are insulated right up to the point where they attach onto the dispensing valves. Therefore, any change would require a complete tearing apart of the equipment.
To add flexibility to beverage dispensers, valve systems have been developed that allow a single dispensing valve to serve either carbonated or non-carbonated beverages. For example, post-mix valves are disclosed in U.S. Pat. No. 5,984,142 to Castaldi and U.S. Pat. No. 5,931,348 to Guadalupi. These systems are switchable, such that either carbonated or non-carbonated water will be delivered by a given dispensing valve. While these post-mix valves provide dispensing valves that can be adjusted at a customer site, neither system enables the valves to be secured in position so as to prevent unintentional switching from one type of water to the other. Further, neither system allows an inspector to easily determine whether a given valve is positioned to deliver carbonated or non-carbonated water.
Thus, there is a need for an improved beverage dispensing equipment that is more versatile, so that an equipment user can more easily change the configuration of the equipment so that different types of beverages can be dispensed as consumer preferences are learned or change.
A selection manifold has been invented for use with a beverage dispenser that allows the user to easily change the dispenser's configuration. In the preferred embodiment, any dispensing valve on a dispenser can be converted from dispensing a carbonated beverage to a non-carbonated beverage. Additionally, the preferred selection manifold is preferably constructed to enable a selection mechanism to be locked into position to prevent inadvertent switching to a non-selected supply line. Also, the selection manifold is preferably configured to permit ready determination of the status of each selection mechanism in the manifold.
In one embodiment of the invention a selection manifold for use with a beverage dispenser includes a manifold block containing at least one cell, each cell having an outlet opening and at least first and second inlet openings. A selector mechanism is associated with each cell, and the selector mechanism is actionable between a first position in which fluid entering the cell from the first inlet opening may pass to the outlet opening and fluid from the second inlet is prevented from entering the cell, and a second position in which fluid entering the cell from the second inlet opening may pass to the outlet opening and fluid from the first inlet opening is prevented from entering the cell. A lock prevents unintentional change of the selector mechanism between the first and second positions.
In another embodiment of the invention, a selection manifold for use with a beverage dispenser includes a manifold block containing at least one cell, each cell having an outlet opening and at least first and second inlet openings. A selector mechanism is associated with each cell, where the selector mechanism includes a cap with a channel. The selector mechanism is actionable between a first position in which fluid entering the cell from the first inlet opening may pass to the outlet opening and fluid from the second inlet is prevented from entering the cell, and a second position in which fluid entering the cell from the second inlet opening may pass to the outlet opening and fluid from the first inlet opening is prevented from entering the cell.
In yet another embodiment of the invention, a selection manifold for use with a beverage dispenser includes a manifold block containing at least one cell, each cell having an outlet opening positioned intermediate to first and second inlet openings. A selector mechanism is associated with each cell and the selector mechanism includes a plunger valve having a seal. The seal of the selector mechanism is transversely actionable with respect to the outlet opening between a first position in which fluid entering the cell from the first inlet opening may pass to the outlet opening and fluid from the second inlet is prevented from entering the cell, and a second position in which fluid entering the cell from the second inlet opening may pass to the outlet opening and fluid from the first inlet opening is prevented from entering the cell.
In still another embodiment of the invention, a beverage selection manifold includes a manifold block containing one outlet opening and two or more inlet openings. A selector mechanism controls fluid communication between the outlet opening and any one of the inlet openings and includes a lock to prevent an unintentional change in selection state.
In a further embodiment of the invention, a selection manifold for use with a beverage dispenser includes a manifold block containing a chamber. The chamber has an outlet opening and a first inlet opening opposite a second inlet opening. A rod protrudes into the chamber through one of the first and second inlet openings. A fluid seal is mounted to an end of the rod, the fluid seal having a first side opposite a second side. The rod is actionable between a first position, in which the first side of the fluid seal isolates the first opening from the chamber and the second opening remains in communication with the chamber, and a second position, in which the second side of the fluid seal isolates the second opening from the chamber and the first opening remains in communication with the chamber.
In a still further embodiment of the invention, a beverage selection manifold includes a manifold block containing an outlet opening positioned intermediate to first and second opposed inlet openings. A fluid seal having a first seating surface opposite a second seating surface is moveable to a first position, in which the first seating surface seals the first inlet opening and the second inlet opening remains open, and to a second position, in which the second seating surface seals the second inlet opening and the first inlet opening remains open.
In another embodiment of the invention, a beverage selection manifold includes a cell within a manifold body, the cell including an outlet opening and first and second inlet openings. A removable cap includes a channel therein that is positionable adjacent to the cell in a first cap position and in a second cap position. The channel allows fluid communication between the outlet opening and the first inlet opening in the first position, and between the outlet opening and the second inlet opening in the second position.
In yet another embodiment of the invention, in a method of switching a supply line to a dispensing valve, a user selects the fluid supply to a beverage valve by activating a fluid seal between a first position, in which a first side of the fluid seal closes a first fluid supply line, while allowing fluid to flow through a second fluid supply line, and a second position in which a second side of the fluid seal closes the second fluid supply line, while allowing fluid to flow through the first fluid supply line.
In still another embodiment of the invention, in a method of switching a supply line to a dispensing valve, a user selects the fluid supply to a beverage valve by positioning a cap in a first position, in which a first side of the cap closes a first fluid supply line, while allowing fluid to flow through a second fluid supply line, and a second position, in which a second side of the cap closes a second fluid supply line, while allowing fluid to flow through the first fluid supply line.
In a further embodiment of the invention, a selection manifold for use with a beverage dispenser includes a valve body containing multiple cells, each cell having an outlet opening and first and second inlet openings. A rotatable shuttle valve is associated with each cell, the rotatable shuttle valve including first and second O-rings separated by a reduced diameter section. The shuttle valve is actionable between a first position, in which fluid entering the cell from the first inlet opening may pass to the outlet opening and fluid from the second inlet is prevented from entering the cell by the second O-rings, and a second position, in which fluid entering the cell from the second inlet opening may pass to the outlet opening and fluid from the first inlet opening is prevented from entering the cell by the fist O-rings. A retaining boss resides on the shuttle valve intermediate to first and second locking grooves and a locking plate is positioned on the valve body. The shuttle valve can be rotated, such that the retaining boss abuts the locking plate and the locking plate engages one of the first and second locking grooves to prevent unintentional change of the selector mechanism between the first and second positions.
In a still further embodiment of the invention, a selection manifold for use with a beverage dispenser includes a manifold block containing at least one cell, each cell having an outlet opening and at least first and second inlet openings. A selector mechanism is associated with each cell, the selector mechanism being actionable between a first position, in which fluid entering the cell from the first inlet opening may pass to the outlet opening and fluid from the second inlet is prevented from entering the cell, and a second position, in which fluid entering the cell from the second inlet opening may pass to the outlet opening and fluid from the first inlet opening is prevented from entering the cell. The selector mechanism includes a portion that extends past an outer edge of the manifold block enabling a viewer to determine the position of the selector mechanism associated with each cell.
In another embodiment of the invention, a beverage selection manifold includes a manifold body. A plurality of sections within the manifold body each include first and second outlet orifices and first and second inlet orifices. A plurality of removable caps that each include a channel therein. The caps are positionable adjacent to one of the sections in a first cap position and a second cap position. The channel provides a fluid outlet for the first outlet orifice in the first position and a fluid outlet for the second outlet orifice in the second position.
In yet another embodiment of the invention, in a beverage selection manifold for controlling fluid flow therein of carbonated and non-carbonated water for mixing with a syrup to form a beverage, the manifold includes a rectangular manifold body including multiple cells. Each cell has first and second inlet orifices and first and second outlet orifices. The first and second inlet orifices are connected to respective first and second elongated channels positioned in the rectangular manifold body. At least one detachable body is configured to stop fluid flow from a first outlet orifice in a first position and from a second outlet orifice in a second position.
In still another embodiment of the invention, a beverage selection manifold includes a section within a manifold body. The section includes first and second outlet openings and first and second inlet openings. A positionable body including a fluid path therein is positionable adjacent to the section in a first body position and a second body position. The fluid path provides a fluid outlet for the first outlet opening in the first position and a fluid outlet for the second outlet opening in the second position.
In a further embodiment of the invention, a method of switching a supply line to a mixing and dispensing valve includes providing a plurality of mixing and dispensing valves in fluid communication with a manifold block, the manifold block having a carbonated water channel and a noncarbonated water channel therethrough and a plurality of paired first and second outlet openings, each pair associated with one of the mixing and dispensing valves. A removable selector is provided for each of the plurality of mixing and dispensing valves. One of the removable selectors is connected to one of a carbonated water supply or a non-carbonated water supply to a selected one of the plurality of mixing and dispensing valves by positioning a first removable selector in a first position in which the removable selector closes the first paired outlet opening, while allowing carbonated water or non-carbonated water to flow through the second paired outlet opening. Thereafter switching the first removable selector body to select the other of a carbonated water supply or a non-carbonated water supply to the selected one of the plurality of mixing and dispensing valves by positioning the first removable selector body in a second position in which the first removable selector body closes the second paired outlet opening, while allowing carbonated water or noncarbonated water to flow through the first paired outlet opening.
In a still further embodiment of the invention a method of setting up a beverage dispenser includes providing the beverage dispenser with a beverage selection manifold including a manifold block having first and second inlet channels therethrough and at least five paired first and second outlet openings therein. A removable selector body is associated with each paired first and second outlet opening. One of the removable selector bodies is positioned in a first position in which carbonated water entering the manifold block through the first inlet channel passes through the first paired outlet opening and noncarbonated water from the second inlet channel is prevented from passing through the second outlet opening. Another of the removable selector bodies is positioned in a second position in which noncarbonated water entering the manifold block through the second inlet channel passes through the second paired outlet opening and carbonated water from the first inlet channel is prevented from passing through the first paired outlet opening.
In another embodiment of the invention, in a beverage selection manifold for controlling fluid flow therein of carbonated and non-carbonated water for mixing with a syrup to form a beverage, the manifold includes a manifold body including multiple cells, each cell having first and second inlet orifices and first and second outlet orifices. The first and second inlet orifices are connected to respective first and second elongated channels positioned in the manifold body. At least one detachable body is configured to stop fluid flow from a first outlet orifice in a first position and from a second outlet orifice in a second position. A retaining device prevents unintentional change of the at least one detachable body between the first and second position.
In yet another embodiment of the invention, in a beverage selection manifold for controlling fluid flow therein of carbonated and non-carbonated water for mixing with a syrup to form a beverage, the manifold includes a rectangular manifold body including multiple cells, each cell having first and second inlet orifices and first and second outlet orifices. The first and second inlet orifices are connected to respective first and second elongated channels positioned in the rectangular manifold body. At least one detachable body is configured to stop fluid flow from a first outlet orifice in a first position and from a second outlet orifice in a second position. The at least one detachable body further includes a portion that extends past an outer edge of the rectangular manifold body, such that the portion can be grasped by a user for positioning the at least one detachable body in the first position or the second position.
The invention and its advantages will best be understood in view of the attached drawings.
Referring now to
A large curved merchandiser advertisement 21 appears at the top of the tower. The merchandiser is backlit and has a translucent front panel 23 on which a message appears.
A drain pan 25 below the valves catches overflows from the cups under the valves and ice which is spilled from overfilled cups. The drain pan 25 is mounted on top of the trim ring 11. Lifting up on the front 27 of the drain pan and pulling upward on the drain pan removes the drain pan from the top of the cabinet 3. Lifting or sliding the splash panel 29 upward allows the splash panel to be rocked away from the tower for cleaning. The drain pan 25 has a rectangular opening 31 in its front 27, through which the ice bin door 33 slides or rotates. After the drain pan has been removed, lifting the front edge of the sliding door upward 33 and tiling the door rearward enables the door to be removed from holders at the sides. In that manner, full access is supplied to the ice storage bin for cleaning the bin and the top of the cold plate, which is integral with the bin. The dispenser may be removed from the counter top by lifting upward on the supporting flanges, which are covered by the trim ring 11.
In the above mentioned respects, the beverage and ice dispenser of the present invention is like prior art beverage and ice dispensers, such as those disclosed in U.S. Pat. Nos. 5,397,032 and 4,641,763, which are hereby incorporated by reference. The beverage and ice dispenser 1 however includes a unique selection manifold 40 as shown in
The carbonator 42, carbonator pump 46 and dispensing valves 15 can be of any of several known configurations, and are therefore not described in any further detail.
The preferred selection manifold 40 is shown in detail in
In the back (
As shown in
For example, when shuttle valve member 64a is in the position shown in
To prevent the shuttle valve member 64 from being accidentally moved out of its desired position, either by an inadvertent force on the handle 71 of the shuttle valve member extending out of the valve body, or by differences in pressure between the two channels 60 and 61, a locking plate 72 (
As shown in
A second embodiment of a selection manifold 140 is shown in
Those skilled in the art will appreciate that the selector mechanisms described above utilize a sealed valve system. Accordingly, when switching from one supply line to another, there is no need to relieve the pressure in the supply lines prior to changing the valve position. By eliminating the need to depressurize supply lines, numerous time-consuming procedures, such as turning power supplies off and on and bleeding supply lines can be avoided. Further, spillage of water, which can damage counter tops and cabinets is also avoided.
A third embodiment of a selection manifold 210 is shown if
The selector cap 212 has an elongated channel 225 in one face. This channel does not open to any other face of the cap. The channel 225 extends from the center of the face off to one side by a distance equal to the distance between holes 232 and 234 (or holes 233 and 234) in the face of the manifold body 214.
A fourth embodiment of the selection manifold 310 of the present invention is shown in
A fifth embodiment of a selection manifold 410 is shown in
A sixth embodiment of a selection manifold 510 is shown in
A seventh embodiment of a selection manifold 610 is shown in
The present invention can be used with other types of beverage dispensing systems than the beverage and ice dispenser 1. Counter-electric and remote carbonation systems can also use the selection manifold of the present invention. In addition to switching between carbonated and non-carbonated water, the system could be designed to switch between two or more beverages such as sodas, beers and wines.
This application is a divisional application of U.S. Pat. Ser. No. 09/993,934, filed Nov. 5, 2001, which is a CIP of U.S. patent application Ser. No. 09/833,794, filed Apr. 11, 2001, which claims the benefit of the filing date under 35 U.S.C. § 119(e) of provisional U.S. patent application Ser. No. 60/197,535, filed Apr. 14, 2000, all of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60197535 | Apr 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10790957 | Mar 2004 | US |
Child | 11595767 | Nov 2006 | US |
Parent | 09993934 | Nov 2001 | US |
Child | 10790957 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09833794 | Apr 2001 | US |
Child | 09993934 | Nov 2001 | US |