SELECTION OF A HETEROGENEOUS CATALYSTS WITH METALLIC SURFACE STATES

Information

  • Patent Application
  • 20230226536
  • Publication Number
    20230226536
  • Date Filed
    June 10, 2020
    4 years ago
  • Date Published
    July 20, 2023
    a year ago
Abstract
A method for controllably making catalysts with at least one metallic surface state, that includes: a) identifying all the topological insulators in the ICSD,b) calculating the Real Space Invariants of the valence bands for all these topological insulators in order toc) identify in all these topological insulators the Wyckoff Positions where the irreducible Wannier Charge Centers (WCCs) are localized, and thend) selecting as potentially catalytic active compound a topological insulator in which the position of WCCs is not occupied by any atom;e) synthesizing a crystal of the selected potentially catalytic active compound either so that it is grown in a predefined crystallographic direction (characterized by its Miller indices (h,k,l)) which exposes the metallic surface state; or cutting the crystal in a predefined crystallographic direction (characterized by its Miller indices (h,k,l)), so that the metallic surface state is exposedwhen
Description
BACKGROUND

Heterogeneous catalysis reactions like photocatalytic/electrochemical water splitting (HER/OER), ammonia synthesis, CO2 reduction, and oxygen reduction reaction (ORR) in fuel cells, are getting increasing attention because of their advantages in facing the energy crisis and environmental issues. With the aid of these technologies, hydrogen can be produced from water and then used directly in fuel cells without any emission of pollutants. CO2 and N2 can be transformed into specific carbon products or ammonia, which are important for industry and fertilizers. Unfortunately, all these reactions require that the corresponding catalysts lower the activation energy for scalable production. The design of and search for high-performance catalysts are strongly dependent on the understanding of the catalysis reaction details and the physical properties of the catalysts. At present, d-band theory (J. Nørskov, et al. PNAS, 2011, 108, 937; L. Pettersson, et al., Top. Catal. 2014, 57, 2) has had great success in explaining of the catalytic efficiency of a selected catalyst. Within the framework of d-band theory, the reaction kinetics is determined by the adsorption energy between the reaction intermediates and catalyst active sites. However, a fundamental and unanswered question is why the adsorption energy is different for different crystal surfaces of a same catalyst, and how one can identify the active sites for a selected catalyst.


Transition metal dichalcogenides such as MoS2 are potential alternatives to noble-metal based catalysts because of their high catalytic efficiency and stability. It is experimentally very well proven that the (001) basal plane of a MoS2 crystal is inert for the catalytic process of the photocatalytic/electrochemical water splitting reaction. It is the edges of the crystal which serve as active sites (see FIG. 1). Only if defects such as elemental vacancies are introduced into the basal plane, the basal plane can be activated for catalysis. The same phenomenon is observed in other materials such as PtSe2, PtTe2, and PdTe2. However, it is still not clear why the catalytic efficiency is markedly different at different crystal surfaces of the same catalyst and what the factor is that determines the adsorption energy. This is of great importance to the design of new high-performance catalysts.


PRIOR ART

US20140353166A1 discloses a method for scalable synthesis of molybdenum disulfide monolayer and few-layer films. When deposited on SiO2/Si substrates and used as electrocatalyst for hydrogen evolution, they exhibit high efficiency with large exchange current densities and low Tafel slopes. The reference states that the mono and few-layer films have more active sites than nanoparticles and bulk phase.


WO2018165449A1 discloses the formation of molybdenum disulfide nanosheets on a carbon fiber substrate. These nanosheets have a plurality of catalytically active edge sites along basal planes and show good activity towards hydrogen evolution.


JP2009252412A relates to the use of RuTe2 as an active ingredient for direct methanol fuel cells. The fuel cell with RuTe2 as a catalyst can be used for portable electrical products.


M. Asadi, K. Kim, C. Liu, A. V. Addepalli, P. Abbasi, P. Yasaei, P. Phillips, A. Behranginia, J. M. Cerrato, R. Haasch, P. Zapol, B. Kumar, R. F. Klie, J. Abiade, L. A. Curtiss, A. Salehi-Khojin (Science, 2016, 353, 467) report that nanostructured transition metal dichalcogenides such as MoS2, WS2, MoSe2, and WSe2 are excellent electrocatalysts for CO2 reduction. The authors found that the metallic edge sites of the nanoflakes are active centers because of the strong binding to CO molecules.


C. Tsai, K. Chan, F. Abild-Pedersen, J. K. Nørskov (Phys. Chem. Chem. Phys. 2014, 16, 13156); T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, Ib Chorkendorff (Science, 2007, 317, 100); R. Abinaya J. Archana, S. Harish, M. Navaneethan, S. Ponnusamy, C. Muthamizhchelvan, M. Shimomura and Y. Hayakawa (RSC Adv., 2018, 8, 26664) report that the photocatalytic and electrochemical efficiency of transition metal dichalcogenides (MoS2) is correlated to the number of edge sites of the crystal, while the (001) basal plane of MoS2 crystal is inert towards hydrogen evolution.


H. Li, M. Du, M. J. Mleczko, A. Koh, Y. Nishi, E. Pop, A. J. Bard, and X. Zheng (J. Am. Chem. Soc. 2016, 138, 5123); S. Kang, S. Han, Y. Kang (ChemSusChem, 2019, 12, 2671); L. Zeng, S. Chen, J. van der Zalm, X. Li, A. Chen (Chem. Commun., 2019, 55, 7386) found that by introducing sulfur vacancies in the (001) basal plane of MoS2 crystals, the catalytic activity of MoS2 can be boosted in the hydrogen evolution reaction, CO2 reduction, and NH3 synthesis.


A. Politano, G. Chiarello, C. Kuo, C. Lue, R. Edla, P. Torelli, V. Pellegrini, D. W. Boukhvalov (Adv. Funct. Mater. 2018, 28, 1706504); H. Huang, X. Fan, D. J. Singh, and W. Zheng (ACS Omega 2018, 3, 10058) found that the pristine surface of layered transition-metal dichalcogenides (PtSe2, PtTe2) are chemically inert toward most common ambient gases, including O2, H2O, and even in the air. However, by doping or introducing selenium or tellurium vacancies, a large density of active sites can be created in the (001) basal plane for water splitting and water-gas shift reaction.


Despite all these efforts, it is still not understood what the active site(s) is/are for the various catalytic processes. For example, it is not understood why the adsorption energy can be altered significantly by introducing defects such as vacancies. The answer to these questions is very important for the design of high-performance catalysts with controllable active sites for a given heterogeneous reaction.


OBJECT OF THE INVENTION

It is, therefore, an object of the invention to provide

    • a method for controllably making catalysts with active surface site(s), and/or
    • a method for improving the efficiency of a known catalysts which has hitherto not been made available with access to its most active surface site(s);
    • catalysts exhibiting active surface site(s), determined by the above method.


BRIEF DESCRIPTION OF THE INVENTION

The above object is achieved by selecting from the Inorganic Crystal Structure Database, FIZ Karlsruhe, Germany (ICSD, https://icsd.fiz-karlsruhe.de) those topological insulators, specifically topological trivial insulators, wherein the position of WCCs (Wannier Charge Centers) is not occupied by an atom. These compounds are characterized by a metallic surface state at a predefined specified crystal surface determined by the method according to the present invention. In order to expose the metallic surface state to a potential reactant for photocatalytic/electrochemical reaction a crystal of the selected insulator compound is cut or grown in a predefined crystallographic direction (characterized by its Miller index (h,k,l)).


It has been found that a given obstructed atomic insulator (OAI) with atoms sitting at WPocc={xi,yi,zi|i∈occupied position} and obstructed WCCs localized at WPOAI={Xj, Yj, Zj|j∉occupied position} has metallic surface states on surface planes characterized by the equation f(x, y, z)=0 with Miller index (or normal vector) (h,k,l) when it satisfies the following conditions:






{







(

h
,
k
,
l

)

·

(


x
-

X
j


,

y
-

Y
j


,

-

Z
j



)


=
0

,









(

h
,
k
,
l

)

·

(


x
-

x
i


,

y
-

y
i


,

z
-

z
i



)



0

,






h
,
k
,

l

ϵ

Z









This means that the surface plane f(x, y, z)=0 with normal vector (h,k,l) cuts through the position of obstructed WCCs (Xj, Yj, Zj), but stays away from the atoms' positions (xi, yi, zi).


Topological trivial insulators, i.e. those insulators without topological electronic structures, are characterized by an indirect band gap (of about 0.001-7.000 eV) in the bulk with different crystal momentum (k-vector) for the conduction and valence band. Using the Topological quantum chemistry theory (Nature 547.7663 (2017): 298-305), and the Real Space Invariants (RSI) disclosed in “Science 367 (6479), 794-797 (2020)”, it was found that some of the topological insulators, specifically topological trivial insulators, have crystalline symmetry-protected metallic surface states on certain crystallographic surfaces and that these metal surface states can explain the catalytic performance.


Thus, the present invention can provide new and/or improved catalysts, especially for photocatalytic/electrochemical reactions, such as water splitting (Oxygen Evolution Reaction, OER, or Hydrogen Evolution Reaction, HER), ammonia synthesis, CO2 reduction, and oxygen reduction reaction (ORR) in fuel cells.







DETAILED DESCRIPTION OF THE INVENTION

It was found that the active sites for heterogeneous reactions are metallic surface states, localized at/on specific crystallographic surfaces, characterized by their surface normal expressed as (h,k,l)-index (Miller index). The metallic surface states can be imagined as “dangling bonds” which extend from the catalyst's surface and which cause metallic conductivity. Inside the crystal body of a catalytic compound (the bulk) all bonds are saturated; the atomic orbitals (AOs) of the elements, which make up the catalytic compound, overlap each other, thereby forming molecular orbitals (MOs) with joint electrons. However, at the boundaries of the crystal certain atomic orbitals have no corresponding binding partner for forming a MO; they remain “unsaturated” and extend beyond the crystal boundary as “dangling bond”. Of course, the metallic surface states, or “dangling bonds”, can also be created through the introduction of defects in the crystal structure, such as elemental vacancies. It was found that the above-defined metal surface states increase catalytic efficiency. Thus, with the knowledge of the above finding one can

    • a) explain the catalytic efficiency of known catalytic compounds,
    • b) turn a given compound, which has yet uncovered catalytic potential, into an efficient catalyst by cutting or growing a crystal of this potential catalytic material in a predefined crystallographic direction (characterized by its surface normal, expressed in Miller indices (h,k,l)), thereby revealing the metal surface states. The direction is determined by the crystal surface with metallic surface states, which can be calculated (see below) or obtained from the below material list
    • c) eventually improve the catalytic efficiency of known catalytic compounds with method b),
    • d) screen known compounds for catalytic material, and/or
    • e) provide a list of compounds that can be used as catalysts.


As used herein the following terms have the following meaning:


“Surface properties” means the bonding and electronic structures at the surface of a crystal.


“Topological trivial insulator” means an insulator according to the traditional definition, i.e. one that has no topological feature(s) such as band inversion between conduction and valence band. Consequently, insulators that exhibit (a) topological feature(s) are called “topological insulators”.


“Indirect band gap” means that the bottom of the conduction band and the top of the valence band have different crystal momentum (k-vector) in the Brillouin zone.


“Metallic surface states” means the dangling bonds derived electronic states, which are located between the conduction and valence band. These surface states have de-localized electrons and are highly electrically conductive. In the real space, they are at the crystal surface.


In the Momentum space (k), they are located in the gap between the bulk conduction and valence band.


“Certain surfaces” means the surface of a catalyst crystal with a surface normal of a designated Miller-index ((h,k,l)-index).


“Catalytic active site” means the crystal surfaces where heterogeneous catalysis reactions may occur.


“Occupied positions” means the available Wyckoff positions in a given space group which is/are occupied by (an) atom(s). An example is given below for space group No. 25 (Pmm2):












Wyckoff Positions of Group Pmm2 (No. 25)













Wyckoff
Site




Multiplicity
letter
symmetry
Coordinates
















4
i
1
(x, y, z) (−x, −y, z)






(x, −y, z) (−x, y, z)



2
h
m..
(½, y, z) (½, −y, z)



2
g
m..
(0, y, z) (0, −y, z)



2
f
.m.
(x, ½, z) (−x, ½, z)



2
e
.m.
(x, 0, z) (−x, 0, z)



1
d
mm2
(½, ½, z)



1
c
mm2
(½, 0, z)



1
b
mm2
(0, ½, z)



1
a
mm2
(0, 0, z)










Thus, a Wyckoff position of a defined space group consists of all points X for which the site-symmetry groups are conjugate subgroups of the defined space group. Each Wyckoff position of a space group is labelled by a letter which is called the Wyckoff letter. The number of different Wyckoff positions of each space group is finite, the maximal numbers being 9 for plane groups (realized in p2 mm) and 27 for space groups (realized in Pmmm). There is a total of 72 Wyckoff positions in plane groups and 1731 Wyckoff positions in space groups.


Heterogeneous catalytic reactions are a type of catalytic process where the catalyst and the reactants are not present in the same phase. This occurs e.g. in reactions between gases or liquids or both at the surface of a solid catalyst. Typical heterogeneous catalytic reactions include photocatalytic/electrochemical water splitting, ammonia synthesis, CO2 reduction, and oxygen reduction reaction (ORR) e.g. in fuel cells. According to the classic surface adsorption theory, a heterogeneous reaction comprises four stages:

    • 1) Diffusion of a reactant to the solid catalyst surface. The diffusion rate is determined by the bulk concentration of the reactant and the thickness of the boundary layer (a layer of solution formed at the catalyst surface) surrounding the catalyst particle.
    • 2) The adsorption of reactants onto the surface of the catalyst through chemical or physical bonding.
    • 3) Oxidation or reduction at the catalyst surface, which is characterized by an electron transfer between the catalyst and adsorbates.
    • 4) Desorption of the reaction product. This process is accompanied by a breaking of (a) bond(s) as the product(s) desorb from the surface of the catalyst.


The catalytic efficiency generally depends on the adsorption energy of the adsorbates/reaction intermediates and the catalytic active site(s). A good catalyst requires that the adsorption energy is “just right” so that the products can be formed and released as quickly as possible. Adsorption energy can be positive or negative; positive energy means the adsorption is weak, while negative energy means good, i.e. strong adsorption. However, an adsorption energy which is too positive will lead to a low concentration of reactants at the catalyst surface(s) and therefore will increase the reaction kinetics. On the other hand, if the adsorption energy is too negative the products remain on the catalyst surface too long and may act as “poison” to the active site(s).


It was now found that the catalytic efficiency of topological insulators, specifically topological trivial insulators, directly correlates with its metallic surface states. Using the Topological Quantum Chemistry (TQC) Theory (Nature 547.7663 (2017): 298-305), all of the topological trivial, as well as the topologically nontrivial, band insulators in the Inorganic Crystal Structure Database (ICSD) (Nature 566.7745) (2017): 480-485) were identified. Topologically trivial insulators come in two distinct categories: with and without surface states.


The Band Representations (BRs) of the valence bands of all these topological band insulators were identified (see: Nature 566.7745) (2017): 480-485; and in the Topological materials database, see: https://www.topologicalquantumchemistry.com). For a given topological band insulator with atoms sitting at the Wyckoff positions WPocc={xi, yi, zi|i∈occ=occupied position}, using the BRs and the formulae of Real Space Invariants (RSI) e.g. disclosed in “Science 367 (6479), 794-797 (2020)”, one can calculate the RSIs of all the Wyckoff positions (WPs) of the crystal symmetry group. Thus, for a given space group, one can define RSIs for each of the Wyckoff positions of that space group. For a topological band insulator, the RSI defined at a Wyckoff position is always an integer, which stands for the number of irreducible Wannier orbitals (=irreducible Wannier Charge Centers (WCCs)) at that Wyckoff position.


The Wyckoff positions with nonzero RSI give the positions of irreducible Wannier Charge Centers (WCCs) (Physical Review B 89.11 (2014)), WPwcc={xk,yk,zk|RSIk≠0}. Any BRs of a topological band insulator, which have at least one irreducible WCC localized at the empty Wyckoff position (i.e. a Wyckoff position which is not occupied by atom), is in the obstructed atomic limit phase, i.e. ∃(Xj, Yj, Zj)∈WPwcc, (Xj, Yj, Zj)∉WPocc. Thus, all of the Wyckoff positions, which have nonzero RSI and which are not occupied by the atoms of the material are called “obstructed Wyckoff positions”, WPOAI={Xj, Yj, Zj|RSIj≠0, j∉occupied positions}. A band insulator is a not obstructed atomic insulator when all of its irreducible WCCs are occupied by atoms. Otherwise, it is an Obstructed Atomic Insulator (OAI).


For Obstructed Atomic Insulators with occupied Wyckoff Positions WPocc={xi, yi, zi|i∈occupied positions} and obstructed Wyckoff positions WPOAI={Xj, Yj, Zj|RSIj≠0, j∈occupied positions}, their surface planes f(x, y, z)=0 with Miller index (or normal vector) (h,k,l) have metallic surface states when (h,k,l) satisfy the following conditions:






{







(

h
,
k
,
l

)

·

(


x
-

X
j


,

y
-

Y
j


,

-

Z
j



)


=
0

,









(

h
,
k
,
l

)

·

(


x
-

x
i


,

y
-

y
i


,

z
-

z
i



)



0

,






h
,
k
,

l

ϵ

Z









This means that the surface plane f(x, y, z)=0 with normal vector (h,k,l) cuts through the position of obstructed Wyckoff positions, but stays away from the occupied positions in a crystal.


Any cleaved crystal surface that cuts through theses obstructed Wyckoff Positions must have metallic surface states on that crystal surface. The location of these metallic surface states on the surface of a catalyst crystal can be predicted with the above theory. This is illustrated in FIGS. 1 and 2 for a MoS2 crystal. The surface states are located at the edge sites with dangling bonds. The (001) basal plane has no surface states and is inert for catalytic reactions. However, edge sites which are normal to the (001) face, like (100), or (010), or (110) etc. are active towards catalytic reactions such as hydrogen evolution. When these metallic surface states are located near the Fermi level (i.e. up to about 0.5 eV below or above the Fermi level) they can be transferred easily in catalytic reactions, and can serve as active centers for chemical reactions.


The position of the metallic surface state in a MoS2 crystal is shown in FIG. 3. MoS2 crystallizes in space group P63/mmc (#194) with Mo and S at Wyckoff position 2c (⅓, ⅔, ¼) and 4f (⅓, ⅔, z) (where z is a general position not equal to ¼), respectively. Using the Topological quantum chemistry (TQC) theory, the Real Space Invariants (RSI) at Wyckoff position 2b (0,0,¼) is δ(b)=1.0. Thus, there is an irreducible WCC localized at the 2b position, which is not occupied by an atom. This shows, that with the above theory one can identify the surface plane in MoS2 which has metallic surface states (indicated by its Miller index (1,0,0)) as shown in FIG. 3(a). On the other hand, the surface with Miller index (0,0,1) cuts the 2c position which is occupied with an atom. Therefore, the (001) surface does not have metallic surface states within the energy gap, as shown in FIG. 3(b).


The prediction of the catalytic behavior of MoS2 crystal has been proven experimentally. FIG. 4 shows the experimental setup for the HER. The bulk MoS2 single crystal is attached to a titanium wire with silver paint. The edges and basal plane can be seen clearly in FIG. 4. FIG. 5a shows the linear polarization curves for the whole crystal (Edge+basal plane), Edges only, and basal plane. It can be seen that the activity of the whole crystal is almost the same as that of the edges. The activities decrease significantly when the edges are partially covered with a gel. FIG. 5b shows a photo taken at an overpotential of −0.57 vs RHE. Hydrogen bubbles are formed at the edges, but not on the basal plane. Thus, it can be concluded that the HER activity comes from the crystal edges.


Accordingly, the invention provides a method of selecting a potentially catalytic active compound which method comprises

    • identifying all the topological insulators in the ICSD, preferably all the topological trivial insulators,
    • calculating the Real Space Invariants of the valence bands for all these topological insulators in order to
    • identify in all these topological insulators the Wyckoff Positions where the irreducible Wannier Charge Centers (WCCs) are localized, and then
    • selecting as potentially catalytic active compound a topological insulator wherein the position of WCCs is not occupied by any atom.


This method was applied to all compounds in the ICSD and the potentially catalytic active compounds have been identified. These compounds are listed in the attached Table labelled “OAI”. Many compounds in this table have multiple listings. Multiple listings of the same compound (meaning the same stoichiometry) may occur when different contributors to the ICSD have reported (slightly) varying data like varying lattice parameter, different space group allocations or Wyckoff allocations etc. The condensed list of unique compounds (=one listing only) is reproduced in the following Table 1:









TABLE 1







Ba1P8, I4P2, Mn1P4, Nb2Se9, Os1P4, P3Ru1, P4Ru1, P5Re2, Re1S2, Re1Se2, S2Tc1, Lu1P5, P5Y1, As1Ge1,


As1Si1, Ba1P3, Bi1S2, Bi1Se2, Br4Nb1, Br6Si2, C22F14, C2Ca1, Ca5P8, Cl3Mo1, Cl3Y2, Cl4Nb1, Cl4Ta1,


Cs5Te3, Ga1Te1, Ge1P1, Hg1O2, In1Se1, K1Sb2, Na1P2, O2Rb2, P3Sr1, Rb1Sb2, Ag1P2, As2Co1, As2Ir1,


As2La1, As2Rh1, Au1O1, B2F4, B4Mn1, Ca1O2, Cd1P4, Co1P2, Cs1Te4, Cs2I8, Cu1P2, Fe1P4, Fe1S1, Ga2I3,


Hg2N6, Ir1N2, Ir1P2, Ir1Sb2, La1P7, La1S2, La1Se2, Li2O2, Mg1P4, N2O4, N2S2, O2Tc1, P2Rh1, P7Pb1,


Rh1Sb2, Rh1Si1, Sb1Zn1, Ba1S2, Ba1Se2, C2Ba1, C2Sr1, I6Pt2, Ni1P2, O2Si1, P2Pd1, S2Yb1, S4V1, Se3Tl2,


Se9V2, Te3Tl2, As3Ca4, Cs2Te2, K2O2, Rb2Te2, As2Fe1, As2Os1, As2Ru1, C1N1, Fe1P2, Fe1S2, Fe1Sb2,


Fe1Se2, In1S1, N2Pt1, Os1P2, Os1Sb2, P2Ru1, Ru1Sb2, Ru1Te2, Ge3Os2, Ge3Ru2, Os2Si3, Ru2Si3, As1Cd1,


As1Zn1, B2Cl4, C2N2, Cd1Sb1, Cl1O2, P4Re1, P4Tc1, Pd1S2, B2Fe1, Na1P5, P3Re1, P3Tc1, Ba5P4, Ba5Sb4,


K1Tl1, Ba1O2, F3La1, As6Cs4, As6Rb4, Cs4P6, K4P6, P6Rb4, Al2Ru1, Ga2Os1, Ga2Ru1, C2Li2, C2Na2,


Cs2O2, Cs2S2, Rb2S2, B3Si1, H6Ru1, O64Si32, K5Te3, B10F12, Li1Si1, C1N2, Ca1In3, Ga3K1, Ga3Rb1,


H8Si1, C2Mg1, Fe1Ga3, Ga3Os1, Ga3Ru1, In3Ru1, Li2S2, B4Os1, Cl2Zn1, Hg1I2, Hg2I4, Al2Os1, As1Ca2,


Bi1Ca2, Br1Hg1, Br2Hg2, Cl2Hg2, F2Hg2, Ga3K2, Hg1I1, Hg2I2, In3Rb2, O2Sr1, Ba1Te2, O2Zn1, S2Sr1,


Au1Br1, Au1Cl1, O3U1, Br12Zr6, Cl12Zr6, I12Zr6, I6Si2, As1B6, As2B12, B12P2, B12Si3, B6O1, B6P1,


Br8Nb3, C1B4, C3B12, Ga1S1, I8Nb3, Cr1N2, Ga1Se1, Mo1N2, N2W1, Ca1P1, Ca2P2, K2S2, K2Se2, Na2O2,


Na2S2, P1Sr1, C2Os1, Hf1N2, K2Te2, Mo1S2, Mo1Se2, Mo1Te2, Na1S1, Na2Se2, S2W1, Se2W1, Te2W1,


As2Pt1, Cd1O2, Cd1S2, Cd1Se2, Fe1Te2, Mg1O2, Mg1Se2, Mg1Te2, N2Pd1, Os1S2, Os1Se2, Os1Te2, P2Pt1,


Ru1S2, Ru1Se2, S2Zn1, Se2Zn1, Ag1Br1, Ag1Cl1, Ag1I1, B4Fe1, Be5Pt1, Br1Cu1, Cd1S1, Cd1Se1, Cd1Te1,


Cl1Cu1, Cu1I1, Cu5Tb1, O1Zn1, S1Sn1, S1Zn1, Se1Zn1, Te1Zn1, B6Ca1, B6Si1, B6Sr1 and B1Li1,


Al2Cd2Cl8, Al4Cl14Te4, As1Fe1S1, Au1Br8Te1, B18Cs8S18, B18Rb8S18, B18Rb8Se18, B8Br6P4, Bi2Br8Te4,


Bi4Cl16Te14, Bi6Cl20Te4, Br12Ta2Te4, Br1Mo1Te4, Br2Nb1S2, Br2Nb1Se2, C22Co6O18, C2I10La6, C2O4Pb1,


Cl12Ta2Te4, Cl18P2Re2, Cl2Nb1Se2, Cl5O4Re2, Cl6Hf1Te4, Cl8Ga2Hg2, Cs1Sb2Se4, Cs2S6Sn2, Cs2S8Sb4,


Cs2Se6Sn2, Cs4P2Se10, Cu4P3Se4, F12I4Sb2, F12Sb2Te4, Ge1Li1Te2, Ge2Te6Tl6, Hg1O3V1, Hg2P2S6,


I12Nb2Te8, I1Ta1Te4, In2O5P1, K2O8S2, K2Sb4Se8, La6O18Re4, Li1Mo1S2, Mo4N14Sr10, Na2O8S2,


Rb2Sb4Se8, Si2Te6Tl6, As2Ga2Sr1, C2Ca1O4, Al2Na7Sb5, Ba3P6Si4, Bi9I3Rh2, Cl7Nb3Se5, Ir2Se5Sn1,


K4P8Te4, Al1O4W1, As1Cl2Hg2, As2F12I4, As3Ba2Cd2, As3Sr2Zn2, Ba5Cr1N5, Bi4Br2Ru1, Br10Te4Zr2,


C1B2O2, C1N1Th1, C2Br2Gd2, C2La2O2, C4Cs2O4, C4Li2O4, C4O4Rb2, Cd1P1S3, Cd2P2S6, Cd6Sb12Sr11,


Cl2Hg2P1, Cl2Nb1S2, Fe1P1S3, Fe2P2S6, Ge1K3S3, Ge2K6S6, Ge2K6Se6, Hg6O7Si2, I2O1Ta1, K6Si2Te6,


Mg1P1S3, Na4P2S6, Ni1P1S3, Ni1P1Se3, Ni2P2S6, P1S3Zn1, P2S6V2, P2S6Zn2, P6Si8Zn4, Hg2Mo2O7,


Hg2O4S1, Hg2O4Se1, Hg4O7P2, K2Mo8O16, Ag5Ge1O4, As1Cd2Cl2, As1Fe1Se1, As1Fe1Te1, As1Ru1Te1,


As2Cs4Te6, As2F12Hg4, As2Hg6O10, As2Hg6O8, Ba1P3Pt2, Ba2P2S6, Ba2P2Se6, Ba6P6Sn2, Bi1Os1Se1,


Br14Ga4Te4, Br3Hg2Te1, C1D1K1O3, C2Ag2O4, C2Cd1O4, C2H6O6, C2Li2O4, C2Na2O4, C2O4Tl2,


C2O4Zn1, C4Na2O4, Ca1Mo5O8, Ca2P2S6, Ca2P2Se6, Cd2Cl2P1, Cl14Ga4Te4, Cl3Cu1K1, Cl3Mo1S2,


Cl7O3Re2, Co1K2O2, Cs1O5V2, Cs2O8S2, Cs2Se6Te2, Cu1La2S4, Fe1P1S1, Fe1P1Se1, Fe1S1Sb1,


Fe1Sb1Se1, Fe1Sb1Te1, Ge2Na6Se6, Ge2Na6Te6, H4B2O4, Hg1O4Re1, Hg2N2O4, Hg4N2O8, Hg6O8P2,


I1Nb2Te6, In4P6S18, K4O8P2, K6Se6Sn2, K6Sn2Te6, Mo5O8Sr1, Na6Si2Te6, Os1P1S1, Os1P1Se1, Os1S1Sb1,


Os1Sb1Se1, Os1Sb1Te1, P1Pb1Se3, P1Ru1S1, P1Ru1Se1, P1Se3Sn1, P2Pb2S6, P2Pb2Se6, P2S6Sn2, P2S6Sr2,


P2Se6Sn2, P2Se6Sr2, P2Se6Tl4, Ru1S1Sb1, Ru1Sb1Se1, Ru1Sb1Te1, Ag2O2Pb1, As1F6I5, As3Br1Cd2,


As3Br1Hg2, As3Cd2I1, As6Ba1Pt4, As6Pt4Sr1, Au1Cl1O2, Au1Cl4Cs1, Au1Cl4Rb1, Au1Cl4Tl1, Au1F4Li1,


Au1Li1S1, B2Li2Se5, Bi3Cl1O4, Br1Cd2P3, Br2Hg2O6, C2O4Sn1, C4Ag2O4, Cd2Cl1P3, Cd2I1P3, Cd2O12P4,


Cl1Hg2O1, Cl1Hg2P3, Cl2Hg4O2, Cl4Os1Sc4, Cs1F7Sb2, Cs2Re3Se6, Cs4Re6S13, Cs4Re6Se13, Cs4S13Tc6,


Cs4Se13Tc6, Cs6Ge2Se6, Cs6Ge2Te6, Cs6Sn2Te6, Cu2O2Pb1, Cu2Re3Se6, Fe2O12P4, Ge2K6Te6, Hg2P2Se6,


K2Re3S6, K2Re3Se6, K4Re6Se12, K4S12Tc6, K4Se12Tc6, Mn2Mo1P12, Na2Nb4O11, Na2Re3S6, Na2Re3Se6,


O3Si1Sr1, O4Pd1S1, O4Pt1S1, O7P2Pd2, P6Pt4Sr1, Rb2Re3S6, Rb2Re3Se6, Rb4Re6S12, Rb4Re6S13,


Rb4Re6Se12, Rb4S13Tc6, Rb4Se12Tc6, Re3S6Tl2, Re3Se6Tl2, Re6Se12Tl4, Br11Cs1Nb4, Br11Nb4Rb1,


Cl11Cs1Nb4, Cl11Nb4Rb1, Al2Ca5Sb6, Al2Cl8Se4, As6Ca5Ga2, Ba1Nb8O14, Ba3O1Sb2, Ba5In2Sb6,


C2K2O4, C2O4Rb2, Ca5In2Sb6, In2Sb6Sr5, Nb8O14Sr1, Ag5O4Si1, Br1Hg2P3, Nb2Ni1O6, O9P2V2,


Al2Cl8Te4, Au1O4S1, Cl2N4S6, Co1Ge1Te1, Cu1O3Se1, Cu1P2Se1, Ge1Rh1Te1, O6P2Tl4, Pt1Sb1Si1,


Al1K1Sb4, Al1P3Si1, As1La1Te1, As2Hg4O7, Ba1P4Te2, Cs2Ge1Te4, Cs2Sn1Te4, Ga1K1Sb4, H2B1Li1,


La1Mn1S3, La1P1S1, P1S1Y1, P2Ru2Th1, I1K4P21, I1P21Rb4, B12Li2Si2, B2Ba1Se6, In9K1Na3, La2O2S2,


Na4P2Se6, Nb1P2S8, F6Pa1Rb1, Au1Na1S1, Cs2Ni3S4, Cs2Ni3Se4, Cs2Pd3Se4, Cs2Pt3S4, Cs2Pt3Se4,


Li2O4U1, Na2O4U1, Ni3Rb2S4, Pt3Rb2S4, Au1Cs1F4, Au5Cs7O2, Au5O2Rb7, Br3Cs1Li2, Cl2I2Ta1,


Cl3Cs1Li2, Hf2N2S1, Li2Ni1O2, Na2O3Ti1, Na2O4Pd3, O3Pd1Sr2, Al1B14Li1, Ba1Ce1O3, C2B13Li1,


Cu11K3Te16, O4P1Rh1, O4Si1Zn2, P2S6Th1, P2S6Zr1, Ba9Br34O1Pr6, Bi4I2Ru1, La4O10Re2, Br2Cs1F1,


C2Ag1K1, C2Au1Cs1, C2Au1K1, C2Au1Na1, C2Au1Rb1, C2Cu1Rb1, C2Ag1Cs1, C2Cu1K1, Cl3O1W1,


I3O1W1, Li6O4Zn1, Cl6Hf1Se4, Cl6Se4Zr1, Br2Cs2F2, Cs2I6Pd1, C4Ba1O4, Ag3Cu1S2, Ba1Cu2O2,


Ba1O7U2, C4O4Pb1, Cd1In2O4, Cl2O1Pd2, Cu2O2Sr1, Al1Si1Te3, B12Br12Cs2, B12Cl12Cs2, B12Cs2I12,


Cd2P2Se6, Cs8O1Tl8, Fe1P1Se3, Fe2P2Se6, Mg2P2Se6, Nb6O12Ti2, As2Hg2O6, Ca1O6Os2, O6Ru2Sr1,


C2Cs2Pd1, C2Cs2Pt1, C2K2Pd1, C2K2Pt1, C2Na2Pd1, C2Na2Pt1, C2Pd1Rb2, C2Pt1Rb2, H2B2Ca1,


Mg3Nb6O11, O2Pr2S1, O2Pr2Se1, B9Mg1N1, Cs4O1Tl2, F1Gd1O1, H8F4N2, Br9Os2Rb3, C9Fe2O9,


Mo1S1Se1, Ag2I10Tl6, Ba5O10Ru2, Ca1Ga2P2, Ca1In2P2, Cl9Cs3Ru2, Cl9Cs3Ti2, Cs3F9Fe2, Cs3I9Zr2,


In2P2Sr1, K1Nb1S2, K1Nb1Se2, Li1Nb1O2, Li1Nb1S2, Na1Nb1O2, Na1Nb1S2, Na1Nb1Se2, H12B12Cs2,


H12B12K2, H12B12Rb2, H12B12Tl2, H20B12N2, As1Rb3Se16, K3P1Se16, H6Cl2N2, F6O2Pt1, Ag1Cu4Tb1,


Au1Sc1Sn1, Bi1Co1Zr1, Bi1Lu1Ni1, Bi1Ni1Sc1, Bi1Ni1Y1, Co1Sb1Ti1, Cu1Rb1Te1, Fe1Nb1Sb1, Fe1Sb1V1,


Ge1Pt1Ti1, Hf1Ni1Sn1, Hf1Pd1Sn1, Lu1Ni1Sb1, Nb1Ru1Sb1, Ni1Sb1Sc1, Ni1Sb1Y1, Ni1Sn1Ti1, Ni1Sn1Zr1,


O4S1Zn1, Pd1Sb1Sc1, Pt1Sb1Sc1, Pt1Sb1Y1, Pt1Sn1Ti1, Rh1Sb1Th1, Ru1Sb1Ta1, Ru1Sb1V1, Ag6Ge10P12,


Nb3Sb2Te5, In3O8P2, Fe2Ge1Ti1, H6B6Cs2, H6B6K2, Ag2Mo1O4, Ag6K2S4, Al1Cs1O2, Al1K1O2,


Al1O2Rb1, Al2Cd1O4, Al2Cd1S4, Al2Cd1Se4, Al2Hg1S4, Al2Hg1Se4, Al2O4Zn1, Al2S4Zn1, Al2Se4Zn1,


As4He2O6, Ba2Ge4S10, Cd1Ga2O4, Cd1In2S4, Cd1In2Se4, Cd1Lu2S4, Cd1Lu2Se4, Cd1O4Rh2, Cd1S4Sc2,


Cd1S4Y2, Cd1Sc2Se4, Cd1Se4Y2, Cd2O4Si1, Cd2O4Sn1, Cl4Li2Zn1, Cs1N2Nb1, Ga2O4Zn1, Hg1In2S4,


In2O4Zn1, In2S4Zn1, K8Sb4Sn1, Lu2Mg1S4, Lu2Mg1Se4, Mg1O4Rh2, Mg1Se4Y2, O4Rh2Zn1, O4Sn1Zn2,


S4Sc2Zn1, S4Y2Zn1, Se4Y2Zn1,


Ag1Bi1P2S6, As1Cl3F6S3, As2Cd1Ge1K1, As2Cd1Ge1Rb1, B18Cs4Hg2Se18, B18Hg2Rb4Se18, B3Cu1Li3O7,


Br10O1Ta2Te4, C10H18Cu2N2O10, C10H18N2O10Rh2, C1F3Hg1O3S1, C1H5Eu1O7P1, C1H5Nd1O7P1,


C1H5O7P1Pr1, C2H10Ga2Ge4N2O12, C2H26B12N8, C2H6Ca1O7, C2H6K2O13S1U1, C2H6O12U2,


C2H8Br3Cu1N1O1, C2H8In2O14Se2, C3H7F1N1O5Sn1, C4H11N1O10, C4H12Ba2N2O10S2, C4H12Fe1O6S4,


C4H12N6O14Se2U2, C4H14F3N1O2V1, C4H16Cl6Cu2N2, C4H7Cs1O10, C4H7K1O10, C5H10N1O6,


C6F6Na4O12Sn4, C6H12Fe1N8O8, C6H4Na4Np2O18, C8H20N6O18S2U2, C8H28F6N2O4V2,


C8H4K6N8O6Os2S2, C8I2Mo2O8, Cl10Mo2N4S4, Cl10Nb2O1Te4, Cl2N4O12S10, Cs2P2Se6Zn1,


Cu1O9Se3Sr2, Cu2Na2O11Si4, F2N2O4Xe1, F2O7Te2V2, H10F8In2N2O2, H12I8Mg1O6, H12Mg1O12S2,


H12O12S2Zn1, H14Hg2O14Te2, H14N4O8S2, H16B12Na2O14S6, H18O12Se4Sn1Sr2, H24Li2N8Te2,


H26B20K4O4, H32N14Se6Sn2, H34Cl4Cr2N8O6, H4Cu2Na2O13Si4, H6B2F8N2, H6Cs2O12P4, H6F22N2Sb4,


H6O12P4Rb2, H8Na6O14P4, K4Mn1Mo3O12, K4N2O14S4, Lu1Na1P2S6, Na1P2S6Tb1, Na1P2S6Y1,


P2Rb2Se6Zn1, C4H3Cs1O14U2, C4H5K1O15U2, C4H5O15Rb1U2, Cs2Cu2O19Si8, Cu2Ge4O13Sc2,


K3P5Ru1Se10, Ag2Br6Hg7P8, Ag2Hg7I6P8, Au2K2P2Se6, Au2La4O2P4, Au2P2Se6Tl2, C2Cl2O4Pb2,


C2H2Ag1O9S1Tb1, C2H4Ca2Cl2O6, C2H6N2Rb2, C4H6B12Cs2I12N2, C4H8N2O4, H20B12Li2O4, In1K2P2S7,


La2P4S14Tl4, C8H12Ag2N4O4, Ag1As1K1S2, Ag1Cu1O4P1, Ag2Cs2P2Se6, Ag2O8P2V1, Ag2P2Se6Tl2,


Al1As1Cu1O5, Al1Cu1O8P2Rb1, Al2Br6N2S2, Al2Br6N2Se2, As1F6N2S3, Ba1La1Sb2Se6, Ba1Mo2O16P4,


C10F4Mn2O8, C12Bi2O12Ru4, C1O6P1Sn2, C2As2F12N2Te4, C2Cl10N2Sb2, C2Cu1O6Tl2, C2F6N4O6S4Se4,


C2F6N4O6S8, C2H1Cs1O4, C2H2Na2O6, C2H4Cs2O6, C2H4F6O6S2Si2, C2H4Fe4O14P2, C2H4O14P2Zn4,


C2H6K2N2, C2H6K4N8O10, C3H2Na1O7Zn1, C3H3Ba1O7, C4H12Cl8Nb2S2, C4H18B2P2, C4H2Fe2O6,


C4H2O8Tl2, C6H10O6Sn1, C6H4Mg2Na2O14, C6O16Rb2U2, Cd1Mo1O6P1, Cd1P2Rb2Se6, Cl12Mo2O4P2,


Cs2O12P2U2, Cs4O2S10V2, Cu1P1Se3Tl1, Cu2P2S6Tl2, Cu2P2Se6Tl2, F2N4O6S8, Fe1I1N2O2, Fe1K2P2S6,


Fe1K2P2Se6, Fe2K1O8P2, H10Br2N2O2, H10N2O8P2, H12N4O4P2, H12O6P2Rb4S6, H14Ni1O12P2,


H2Hg6N4O14, H2O6P2Tl2, H3K1O6P2, H5O7P1V1, H6Cs2N2P4, H8K4O4P2S6, H8Li4O12P2, Hg1K2P2Se6,


K2Mg1P2Se6, K2P2Se6Zn1, Li2O8P2V1, Mo2O16P4Sr1, Na2O8P2V1, Ni1O10P2V2, Ag3P4S12Tl5,


Ba1In2O14P4, Ba1La2O14Te5, Ba1O8P2Th1, Ba2Gd2O13Si4, Bi2Cl8Hg3Te2, C1Ag2Cl1N1O4S1,


C2Ag1N2Na1, C2F6Na2O4Sb2, C2H2Cs2O5, C2H2K2O5, C2H2K2O6, C2H2O5Rb2, C2H4B2O2,


C2H6Fe1N2O4, C2H8Cl3Cu1N1, C2H8I2N4S2, C2N2O6S2, C4H12Mg1O6S4, C4H16F4Mn1N1O2,


C4H4O10Th1, C4H6Ba1O10, C4H6Cd1O2S4, C4H6Na2O7, C4H6O7Sr1, C4H8Cd1Cl2N2, C4H8O12Th1,


C4H8O8Zn1, C6H6Ag3Co1N8, Cd3Na2O10Si3, Cl3Na2O12Te4Y3, Cu1Mo2O8Sb1, Eu1O8Rb1S2, F9K5O4U2,


H14Na3Np1O12, H2F4K1Mn1O1, H2F4Mn1O1Rb1, H4Ca2O13P3V1, H4F4O2Rb1V1, H8Ni1O10V2,


Hg1In1S3Tl1, Hg1O7P2Pd1, K2Rb2Re6S13, K4Mo8O52P12, O14Sr3Te4U1, As2Cl3Hg3Tl1, Br3Hg3Sb2Tl1,


H8Cs4O4P2Se6, H8O4P2Rb4Se6, La2O8S2Ta3, Cl1N2S1Se2, Cr2Li4N6Sr2, H6F6N2Si1, H6F1N1O2,


H6F5N2Sb1, As6Ba4Cd3Li2, Ba4Cd3Li2P6, C4H12Cl8Nb2Se2, H8K4O4P2Se6, Ba1O7Sr1Ta2, Br9Cs5Nb2S4,


Br9Nb2S4Tl5, Cl8Cs5I1S4U2, Cl9Cs5Nb2S4, Cl9Nb2S4Tl5, F1K1Nb2O6Sr1, H1La2Li1O3, La1O11Sr2Ta3,


C4N4Pt1Rb2, Cs1F3Mo1O2, H4Al1F5O2Zn1, K1Na2O15Si6Y1, La1Nb2O7Rb1, Li2O7P2Pd1, O14P4Pd3Tl2,


C4Cd1Hg1N4S4, C4Cd1Hg1N4Se4, C4Cd1N4S4Zn1, C4Cd1N4Se4Zn1, C4Co1Cs1O4, C4Hg1N4S4Zn1,


C4Hg1N4Se4Zn1, Cl1K2Na1O6S2, Ba1O7Si2V1, C4H8In1K1O12, C4H8K1Lu1O12, C8K1O8Y1,


Cl2K5Na1O12S4, Br4Cs2I2Pd1, Br4I2Pd1Rb2, Cl4Cs2I2Pd1, Ba4Bi3K1O1, Ba4K1O1Sb3, Ba4O1Rb1Sb3,


As2Cs2O8Th1, Ce1K2O8P2, Cl2Cs2N2O6Pb1, As1K1Ni1O4, As1Na1Ni1O4, As2Ba1Ni2O8, Ba1Ni2O8P2,


C4H4Cd1O6, Ca2Li6Mn2N6, Br15Cs2La1O3Ta6, Cl18Cs1Lu1Nb6, C8H24Cl18N2Nb6, Ce1O1P1Zn1,


H12B12Br1Cs3, H12B12Br1K3, H12B12Br1Rb3, H12B12Cl1Cs3, H12B12Cl1Rb3, H12B12Cs3I1, H12B12I1K3,


H12B12I1Rb3, As2Ba6Na2O17Ru2, Ba5Br2O9Ru2, Ba6Na2O17Ru2V2, C4Fe2Na6O16S1, Cs3Mo4O16P3,


Ag3Ge3P6Sn2, Ag3P6Si3Sn2, C4Cd1K2N4, C4Hg1K2N4 and C4K2N4Zn1.









In one aspect of the invention, a method is provided for controllably making catalysts with the active surface site(s), which method comprises

    • selecting a potentially catalytic active compound either according to the above selection process or from the above Table 1,
    • synthesizing a crystal of this potentially catalytic active compound either so that it is grown in a predefined crystallographic direction (characterized by its h,k,l-indices) which exposes the metallic surface state; or cutting the crystal in a predefined crystallographic direction (characterized by its h,k,l-indices), so that the metallic surface state is exposed,


wherein the predefined crystallographic direction is the direction of the normal vector (h,k,l) of the surface plane f(x, y, z)=0 which cuts through the position of obstructed WCCs, but stays away from the atoms' positions, condition which is fulfilled when:






{







(

h
,
k
,
l

)

·

(


x
-

X
j


,

y
-

Y
j


,

-

Z
j



)


=
0

,









(

h
,
k
,
l

)

·

(


x
-

x
i


,

y
-

y
i


,

z
-

z
i



)



0

,






h
,
k
,

l

ϵ

Z









with the obstructed WCCs localized at WPOAI={Xj, Yj, Zj|RSIj≠0, j∉occupied positions} and atoms occupying WPocc={xi, yi, zi|i∈occupied positions}.


A further aspect of the invention comprises a method for converting

    • a compound, which
      • either has been selected with the above method or
      • has been selected from Table 1,
    • and which compound does not provide a surface with a metal surface state


into a compound which provides a surface with a metal surface state, by cutting or growing a crystal of this compound in a predefined crystallographic direction thereby revealing metal surface states, wherein the predefined crystallographic direction is determined as described above.


Moreover, the present invention comprises a catalyst selected from the compounds listed in Table 1

    • wherein a crystal of the selected compound is grown in a predefined crystallographic direction (characterized by its h,k,l-indices); or is cut in a predefined crystallographic direction (characterized by its h,k,l-indices),
    • wherein the predefined crystallographic direction is the direction of the normal vector (h,k,l) of the surface plane f(x, y, z)=0 which cuts through the position of obstructed WCCs, but stays away from the atoms' positions, condition which is fulfilled when:






{







(

h
,
k
,
l

)

·

(


x
-

X
j


,

y
-

Y
j


,

-

Z
j



)


=
0

,









(

h
,
k
,
l

)

·

(


x
-

x
i


,

y
-

y
i


,

z
-

z
i



)



0

,






h
,
k
,

l

ϵ

Z









with the obstructed WCCs localized at WPOAI={Xj, Yj, Zj|RSIj≠0, j∈occupied positions} and atoms occupying WPocc={xi, yi, zi|i∈occupied positions}.


Method of Making the Compounds

The compounds of the present invention can e.g. be grown out of a stoichiometric mixture of the elements of the compound. The elements may be mixed together and then heated, preferably to a temperature of about 300° C., preferably 200° C., most preferred 100° C. above the melting point of the lowest melting element over a period of 1 h to 10 h, preferably 2 h to 8 h, more preferably 3 h to 7 h and then kept for 5 h to 50 h, preferably 10 h to 30 h, more preferably about 20 h at that temperature. Preferably, the mixture is placed in an inert crucible for heating, e.g. an alumina crucible which preferably is sealed, e.g. in a quartz tube under a partial pressure of an inert gas, e.g. Ar. Thereafter the mixture is slowly cooled to a temperature of about 450° C., preferably 400° C., more preferably 350° C. over a period of 40 h to 90 h, preferably 50 h to 80 h, more preferably 55 h to 65 h.


In an alternative method first, a polycrystalline ingot is prepared, e.g. using induction or arc melting technique with the stoichiometric mixture of the elements. The polycrystalline ingot is then crushed into microcrystalline powders and filled preferably in an alumina tube with a cone shape end and then fully sealed in a tantalum tube. The tube is then heated up to a temperature higher than the melting point of the compound to obtain a fully molten state and then slowly cooled to about 650° C. and then to room temperature.


In general, the compounds are manufactured so that they grow in a predefined crystallographic direction (characterized by its (h,k,l)-indices) which exposes the metallic surface state. It is known that the morphology of the crystal is closely related to the surface energy of each crystal surface. In the crystal growth process, the crystal surface with high surface energy has a faster growth rate than the lower one. Thus, according to the thermodynamic equilibrium theory, those surfaces with high surface energy will disappear while the surfaces with the lowest total energy will survive (M. Khan, et al. CrystEngComm, 2013, 15, 2631). Thus, one can design a catalyst if the metallic surface states coincide with the surface with the lowest surface energy. If the metallic surface states are located at the crystal surface with high surface energy, it is possible to control the surface energy by using additives. The additives, such as polyvinylpyrrolidone, sodium dodecyl sulfate, and hypophosphorous acid, can bind to a specific crystallographic surface and decrease the surface energy. This will reduce the crystal growth rate and alter morphology, exposing the desired crystal surface with metallic surface states (J. P. van der Eerden, et al. Electrochim. Acta, 1986, 31, 1007; A. Ballabh, et al, Cryst. Growth Des., 2006, 6, 1591). A crystal can also be “cut” in a predefined crystallographic direction (characterized by its h,k,l-indices), so that the metallic surface state is exposed. For catalysts in the form of a bulk crystal, the crystal structure and crystal orientation can be determined by single-crystal X-ray diffraction. After the orientation has being determined, one can cut the crystal along a specified direction and expose the desired crystal surface.












OAI Table

















Number of valence




Space
ICSD-
Chemical
Indirect
electrons per unit

Occupied


group
No.
formula
gap(eV)
cell
Obstructed RSI list
Wyckoff positions
















2
96544
Ba1P8
0.765
100
δ1(a) = 1.0, δ1(b) = 1.0
{i}


2
203216
I4P2
1.556
38
δ1(d) = 1.0
{i}


2
36293
I4P2
1.097
38
δ1(h) = 1.0
{i}


2
426518
I4P2
1.604
38
δ1(f) = 1.0
{i}


2
100786
Mn1P4
0.383
54
δ1(c) = 1.0, δ1(d) = 1.0, δ1(h) = 1.0
{i}


2
16416
Mn1P4
0.428
162
δ1(a) = 1.0, δ1(c) = 1.0, δ1(g) = 1.0
{i}


2
62538
Nb2Se9
0.629
160
δ1(a) = 1.0, δ1(h) = 1.0
{i}


2
645386
Nb2Se9
0.669
160
δ1(a) = 1.0, δ1(h) = 1.0
{i}


2
8179
Nb2Se9
0.684
160
δ1(a) = 1.0, δ1(h) = 1.0
{i}


2
647710
Os1P4
1.396
84
δ1(e) = 1.0, δ1(f) = 1.0, δ1(h) = 1.0
{a, i}


2
62420
P3Ru1
1.12
92
δ1(b) = 1.0, δ1(d) = 1.0,
{i}







δ1(e) = 1.0, δ1(g) = 1.0


2
2492
P4Ru1
1.287
84
δ1(e) = 1.0, δ1(f) = 1.0, δ1(h) = 1.0
{a, i}


2
24808
P5Re2
0.436
156
δ1(a) = 1.0, δ1(b) = 1.0,
{i}







δ1(c) = 1.0, δ1(d) = 1.0,







δ1(e) = 1.0, δ1(h) = 1.0


2
650077
Re1S2
0.806
76
δ1(g) = 1.0, δ1(h) = 1.0
{i}


2
75459
Re1S2
1.122
76
δ1(c) = 1.0, δ1(e) = 1.0
{i}


2
26256
Re1Se2
0.677
76
δ1(g) = 1.0, δ1(h) = 1.0
{i}


2
650094
Re1Se2
0.674
76
δ1(g) = 1.0, δ1(h) = 1.0
{i}


2
66658
Re1Se2
0.677
76
δ1(g) = 1.0, δ1(h) = 1.0
{i}


2
81813
Re1Se2
0.969
76
δ1(g) = 1.0, δ1(h) = 1.0
{i}


2
81816
S2Tc1
0.933
76
δ1(g) = 1.0, δ1(h) = 1.0
{i}


11
409187
Lu1P5
0.138
100
δ1(b) = 1.0, δ1(d) = 1.0
{f, e}


11
409188
P5Y1
0.104
72
δ1(b) = 1.0, δ1(d) = 1.0
{f, e}


12
610598
As1Ge1
0.301
54
δ1(c) = −1.0
{i}


12
153457
As1Si1
0.944
54
δ1(b) = −1.0
{i}


12
43227
As1Si1
0.944
54
δ1(c) = −1.0
{i}


12
611404
As1Si1
0.495
54
δ1(c) = −1.0
{i}


12
673902
As1Si1
1.05
54
δ1(b) = −1.0
{i}


12
23618
Ba1P3
0.59
50
δ1(b) = −1.0
{j, i}


12
426771
Ba1P3
0.521
50
δ1(c) = −1.0
{j, i}


12
194722
Bi1S2
0.825
68
δ1(a) = −1.0, δ1(c) = −1.0
{i}


12
194720
Bi1Se2
0.47
68
δ1(a) = −1.0, δ1(c) = −1.0
{i}


12
239640
Br4Nb1
0.851
82
δ1(a) = −1.0
{j, i, g}


12
239354
Br6Si2
4.096
50
δ1(d) = −1.0
{j, i}


12
411879
C22F14
2.41
186
δ1(b) = −1.0
{i, i}


12
411880
C22F14
2.415
186
δ1(c) = −1.0
{j, i}


12
252725
C2Ca1
1.997
20
δ1(a) = 1.0, δ1(d) = 1.0
{i}


12
252731
C2Ca1
1.8
20
δ1(a) = 1.0, δ1(d) = 1.0
{i}


12
252740
C2Ca1
1.712
20
δ1(a) = 1.0, δ1(d) = 1.0
{i}


12
252743
C2Ca1
0.36
20
δ1(a) = 1.0, δ1(d) = 1.0
{i}


12
252746
C2Ca1
2.183
20
δ1(a) = 1.0, δ1(d) = 1.0
{i}


12
252749
C2Ca1
2.779
20
δ1(b) = 1.0, δ1(c) = 1.0
{i}


12
252752
C2Ca1
2.043
20
δ1(a) = 1.0, δ1(d) = 1.0
{i}


12
252755
C2Ca1
2.695
20
δ1(a) = 1.0, δ1(d) = 1.0
{i}


12
252758
C2Ca1
1.746
20
δ1(a) = 1.0, δ1(d) = 1.0
{i}


12
252761
C2Ca1
1.896
20
δ1(a) = 1.0, δ1(d) = 1.0
{i}


12
252764
C2Ca1
2.176
20
δ1(a) = 1.0, δ1(d) = 1.0
{i}


12
252767
C2Ca1
2.13
20
δ1(a) = 1.0, δ1(d) = 1.0
{i}


12
252770
C2Ca1
1.938
20
δ1(a) = 1.0, δ1(d) = 1.0
{i}


12
252773
C2Ca1
2.058
20
δ1(b) = 1.0, δ1(c) = 1.0
{i}


12
252776
C2Ca1
2.343
20
δ1(b) = 1.0, δ1(c) = 1.0
{i}


12
290833
C2Ca1
2.32
20
δ1(b) = 1.0, δ1(c) = 1.0
{i}


12
411190
C2Ca1
2.756
20
δ1(b) = 1.0, δ1(c) = 1.0
{i}


12
54185
C2Ca1
1.159
20
δ1(b) = 1.0, δ1(c) = 1.0
{i}


12
54188
C2Ca1
1.624
20
δ1(b) = 1.0, δ1(c) = 1.0
{i}


12
672970
C2Ca1
2.308
20
δ1(b) = 1.0, δ1(c) = 1.0
{i}


12
94385
C2Ca1
2.159
20
δ1(b) = 1.0, δ1(c) = 1.0
{i}


12
74854
Ca5P8
1.181
50
δ1(a) = −1.0
{j, h, d, i, g}


12
26108
Cl3Mo1
0.046
54
δ1(a) = 1.0
{j, i, g}


12
83878
Cl3Mo1
0.057
54
δ1(a) = 1.0
{j, i, g}


12
23337
Cl3Y2
0.73
86
δ1(a) = −1.0
{i}


12
1010
Cl4Nb1
0.851
82
δ1(a) = −1.0
{j, i, g}


12
402406
Cl4Ta1
1.043
66
δ1(b) = −1.0
{j, i, g}


12
34000
Cs5Te3
0.236
126
δ1(b) = −1.0
{h, i, g}


12
153456
Ga1Te1
0.881
54
δ1(b) = −1.0
{i}


12
635512
Ga1Te1
0.847
54
δ1(b) = −1.0
{i}


12
8249
Ga1Te1
0.884
54
δ1(d) = −1.0
{i}


12
427243
Ge1P1
0.484
54
δ1(a) = −1.0
{i}


12
637492
Ge1P1
0.489
54
δ1(c) = −1.0
{i}


12
48214
Hg1O2
0.319
24
δ1(d) = −1.0
{a, i}


12
655816
Hg1O2
0.077
24
δ1(d) = −1.0
{a, i}


12
672535
In1Se1
0.85
18
δ1(d) = −1.0
{i}


12
71083
In1Se1
1.07
18
δ1(d) = −1.0
{i}


12
80945
K1Sb2
0.182
38
δ1(a) = −1.0
{i}


12
673935
Na1P2
0.807
22
δ1(a) = −1.0
{i}


12
671296
O2Rb2
2.848
30
δ1(d) = −1.0
{i}


12
23628
P3Sr1
0.355
100
δ1(f) = 1.0
{j, i}


12
419402
Rb1Sb2
0.313
38
δ1(a) = −1.0
{i}


14
35283
Ag1P2
0.622
84
δ1(c) = 1.0
{e}


14
605629
Ag1P2
0.536
84
δ1(d) = 1.0
{e}


14
174220
As2Co1
0.036
76
δ1(d) = 1.0
{e}


14
30242
As2Co1
0.077
76
δ1(d) = 1.0
{e}


14
42613
As2Co1
0.054
76
δ1(d) = 1.0
{e}


14
610026
As2Co1
0.051
76
δ1(c) = 1.0
{e}


14
610039
As2Co1
0.098
76
δ1(d) = 1.0
{e}


14
42573
As2Ir1
0.721
76
δ1(d) = 1.0
{e}


14
610734
As2Ir1
0.687
76
δ1(c) = 1.0
{e}


14
610739
As2Ir1
0.736
76
δ1(d) = 1.0
{e}


14
610742
As2Ir1
0.72
76
δ1(c) = 1.0
{e}


14
610769
As2La1
0.172
84
δ1(b) = 1.0
{e}


14
42616
As2Rh1
0.374
76
δ1(d) = 1.0
{e}


14
611263
As2Rh1
0.338
76
δ1(d) = 1.0
{e}


14
611271
As2Rh1
0.44
76
δ1(d) = 1.0
{e}


14
611275
As2Rh1
0.375
76
δ1(d) = 1.0
{e}


14
657340
As2Rh1
0.416
76
δ1(d) = 1.0
{e}


14
673552
Au1O1
0.396
68
δ1(d) = 1.0
{e}


14
27867
B2F4
4.979
68
δ1(c) = 1.0
{e}


14
425100
B4Mn1
0.011
76
δ1(c) = 1.0
{e}


14
426770
Ba1P3
1.36
100
δ1(a) = 1.0
{e}


14
671326
Ca1O2
2.296
56
δ1(a) = 1.0, δ1(b) = 1.0
{e}


14
25605
Cd1P4
0.343
64
δ1(d) = 1.0
{a, e}


14
620212
Cd1P4
0.343
64
δ1(d) = 1.0
{a, e}


14
38316
Co1P2
0.344
76
δ1(d) = 1.0
{e}


14
47182
Cs1Te4
0.478
132
δ1(a) = 1.0
{e}


14
44621
Cs2I8
1.438
148
δ1(b) = 1.0
{e}


14
5413
Cs2I8
1.371
148
δ1(b) = 1.0
{e}


14
35282
Cu1P2
0.847
84
δ1(d) = 1.0
{e}


14
628625
Cu1P2
0.842
84
δ1(d) = 1.0
{e}


14
653601
Cu1P2
0.839
84
δ1(b) = 1.0
{e}


14
2413
Fe1P4
0.896
168
δ1(d) = 1.0
{a, e}


14
87501
Fe1S1
0.002
168
δ1(a) = 1.0, δ1(d) = 1.0
{e}


14
89381
Fe1S1
0.002
168
δ1(a) = 1.0, δ1(d) = 1.0
{e}


14
24822
Ga2I3
2.252
108
δ1(a) = 1.0
{e}


14
426345
Hg2N6
2.41
108
δ1(d) = 1.0
{e}


14
98661
Hg2N6
2.479
108
δ1(b) = 1.0
{e}


14
160623
Ir1N2
0.479
76
δ1(a) = 1.0
{e}


14
240755
Ir1N2
0.328
76
δ1(a) = 1.0
{e}


14
174222
Ir1P2
0.722
76
δ1(c) = 1.0
{e}


14
174229
Ir1P2
0.701
76
δ1(c) = 1.0
{e}


14
174230
Ir1P2
0.688
76
δ1(d) = 1.0
{e}


14
174232
Ir1P2
0.681
76
δ1(d) = 1.0
{e}


14
174233
Ir1P2
0.738
76
δ1(c) = 1.0
{e}


14
174234
Ir1P2
0.701
76
δ1(d) = 1.0
{e}


14
174235
Ir1P2
0.717
76
δ1(d) = 1.0
{e}


14
174236
Ir1P2
0.701
76
δ1(c) = 1.0
{e}


14
44661
Ir1P2
0.998
76
δ1(d) = 1.0
{e}


14
42620
Ir1Sb2
0.622
76
δ1(d) = 1.0
{e}


14
43502
Ir1Sb2
0.653
76
δ1(d) = 1.0
{e}


14
640955
Ir1Sb2
0.608
76
δ1(b) = 1.0
{e}


14
640961
Ir1Sb2
0.627
76
δ1(b) = 1.0
{e}


14
41938
La1P7
0.856
184
δ1(b) = 1.0, δ1(c) = 1.0
{e}


14
641821
La1S2
0.581
92
δ1(a) = 1.0
{e}


14
32529
La1Se2
0.202
92
δ1(c) = 1.0
{e}


14
32530
La1Se2
0.204
92
δ1(c) = 1.0
{e}


14
671295
Li2O2
3.457
28
δ1(c) = 1.0
{e}


14
113
Mg1P4
0.534
44
δ1(d) = 1.0
{a, e}


14
23555
Mg1P4
0.531
44
δ1(d) = 1.0
{a, e}


14
42030
Mg1P4
0.491
44
δ1(d) = 1.0
{a, e}


14
28331
N2O4
2.569
68
δ1(b) = 1.0
{e}


14
33998
N2O4
2.777
68
δ1(a) = 1.0
{e}


14
165331
N2S2
3.056
44
δ1(a) = 1.0
{e}


14
37353
N2S2
2.897
44
δ1(a) = 1.0
{e}


14
41968
N2S2
2.846
44
δ1(a) = 1.0
{e}


14
173153
O2Tc1
0.09
76
δ1(d) = 1.0
{e}


14
647708
Os1P4
1.02
56
δ1(c) = 1.0
{e, b}


14
174221
P2Rh1
0.421
76
δ1(c) = 1.0
{e}


14
174223
P2Rh1
0.34
76
δ1(d) = 1.0
{e}


14
174224
P2Rh1
0.386
76
δ1(c) = 1.0
{e}


14
174225
P2Rh1
0.395
76
δ1(d) = 1.0
{e}


14
174226
P2Rh1
0.37
76
δ1(d) = 1.0
{e}


14
174227
P2Rh1
0.457
76
δ1(d) = 1.0
{e}


14
174228
P2Rh1
0.399
76
δ1(c) = 1.0
{e}


14
42615
P2Rh1
0.666
76
δ1(c) = 1.0
{e}


14
648018
P4Ru1
0.704
56
δ1(d) = 1.0
{a, e}


14
427804
P7Pb1
0.629
156
δ1(d) = 1.0
{e}


14
650249
Rh1Sb2
0.005
76
δ1(a) = 1.0
{e}


14
653588
Rh1Si1
0.408
52
δ1(c) = 1.0
{e}


14
79235
Rh1Si1
0.251
52
δ1(b) = 1.0
{e}


14
673942
Sb1Zn1
0.054
68
δ1(a) = 1.0
{e}


15
2004
Ba1S2
1.556
44
δ1(c) = 1.0
{f, e}


15
23639
Ba1S2
1.559
44
δ1(d) = 1.0
{f, e}


15
42134
Ba1S2
1.569
44
δ1(c) = 1.0
{f, e}


15
16358
Ba1Se2
0.992
44
δ1(d) = 1.0
{f, e}


15
88102
C2Ba1
1.841
36
δ1(d) = −1.0
{f, e}


15
252715
C2Ca1
2.105
20
δ1(d) = −1.0
{f, e}


15
252721
C2Ca1
1.384
20
δ1(d) = −1.0
{f, e}


15
252722
C2Ca1
1.636
20
δ1(c) = −1.0
{f, e}


15
252724
C2Ca1
2.69
20
δ1(d) = −1.0
{f, e}


15
252727
C2Ca1
2.846
20
δ1(d) = −1.0
{f, e}


15
252730
C2Ca1
2.553
20
δ1(c) = −1.0
{f, e}


15
252733
C2Ca1
2.835
20
δ1(d) = −1.0
{f, e}


15
252736
C2Ca1
1.91
20
δ1(d) = −1.0
{f, e}


15
252739
C2Ca1
2.312
20
δ1(d) = −1.0
{f, e}


15
252742
C2Ca1
2.28
20
δ1(c) = −1.0
{f, e}


15
252745
C2Ca1
2.477
20
δ1(d) = −1.0
{f, e}


15
252748
C2Ca1
2.452
20
δ1(d) = −1.0
{f, e}


15
252751
C2Ca1
2.386
20
δ1(c) = −1.0
{f, e}


15
252754
C2Ca1
2.414
20
δ1(d) = −1.0
{f, e}


15
252757
C2Ca1
1.993
20
δ1(c) = −1.0
{f, e}


15
252760
C2Ca1
2.163
20
δ1(c) = −1.0
{f, e}


15
252763
C2Ca1
1.627
20
δ1(c) = −1.0
{f, e}


15
252766
C2Ca1
1.704
20
δ1(c) = −1.0
{f, e}


15
252769
C2Ca1
2.159
20
δ1(d) = −1.0
{f, e}


15
252772
C2Ca1
2.013
20
δ1(c) = −1.0
{f, e}


15
252775
C2Ca1
1.823
20
δ1(d) = −1.0
{f, e}


15
54184
C2Ca1
2.244
20
δ1(c) = −1.0
{f, e}


15
54187
C2Ca1
2.161
20
δ1(d) = −1.0
{f, e}


15
672969
C2Ca1
2.477
20
δ1(d) = −1.0
{f, e}


15
91051
C2Sr1
2.43
36
δ1(c) = −1.0
{f, e}


15
671322
Ca1O2
3.146
28
δ1(d) = 1.0
{f, e}


15
671327
Ca1O2
3.311
28
δ1(c) = 1.0
{f, e}


15
633067
Fe1P4
0.741
112
δ1(a) = 1.0, δ1(b) = 1.0, δ1(c) = 3.0
{f, d, e}


15
65415
Fe1P4
0.743
112
δ1(a) = 1.0, δ1(b) = 1.0, δ1(c) = 3.0
{f, d, e}


15
47120
I6Pt2
0.285
124
δ1(d) = 4.0
{f, c, e}


15
1829
Mn1P4
0.468
216
δ1(c) = 1.0
{f}


15
27160
Ni1P2
0.627
40
δ1(c) = 1.0
{f, d}


15
646107
Ni1P2
0.634
40
δ1(c) = 1.0
{f, d}


15
91560
Ni1P2
0.633
40
δ1(d) = 1.0
{f, c}


15
100081
O2Si1
5.897
128
δ1(d) = −2.0
{f, c, e}


15
100749
O2Si1
5.899
128
δ1(d) = −2.0
{f, c, e}


15
100750
O2Si1
5.898
128
δ1(d) = −2.0
{f, c, e}


15
100751
O2Si1
6.002
128
δ1(d) = −2.0
{f, c, e}


15
100752
O2Si1
6.054
128
δ1(d) = −2.0
{f, c, e}


15
100753
O2Si1
6.063
128
δ1(d) = −2.0
{f, c, e}


15
100754
O2Si1
6.11
128
δ1(c) = −2.0
{f, d, e}


15
100755
O2Si1
6.142
128
δ1(d) = −2.0
{f, c, e}


15
156195
O2Si1
5.896
128
δ1(d) = −2.0
{f, c, e}


15
162627
O2Si1
5.654
128
δ1(c) = −2.0
{f, d, e}


15
162628
O2Si1
6.042
128
δ1(c) = −2.0
{f, d, e}


15
172286
O2Si1
5.896
128
δ1(d) = −2.0
{f, c, e}


15
172287
O2Si1
5.902
128
δ1(d) = −2.0
{f, c, e}


15
172288
O2Si1
6.012
128
δ1(d) = −2.0
{f, c, e}


15
172289
O2Si1
6.04
128
δ1(d) = −2.0
{f, c, e}


15
172290
O2Si1
6.096
128
δ1(d) = −2.0
{f, c, e}


15
172291
O2Si1
6.135
128
δ1(d) = −2.0
{f, c, e}


15
172292
O2Si1
6.167
128
δ1(d) = −2.0
{f, c, e}


15
172293
O2Si1
6.217
128
δ1(d) = −2.0
{f, c, e}


15
172294
O2Si1
6.222
128
δ1(d) = −2.0
{f, c, e}


15
172295
O2Si1
6.287
128
δ1(d) = −2.0
{f, c, e}


15
172296
O2Si1
6.324
128
δ1(d) = −2.0
{f, c, e}


15
193155
O2Si1
6.022
128
δ1(c) = −2.0
{f, d, e}


15
193156
O2Si1
6.159
128
δ1(d) = −2.0
{f, c, e}


15
193157
O2Si1
6.35
128
δ1(d) = −2.0
{f, c, e}


15
193158
O2Si1
6.467
128
δ1(d) = −2.0
{f, c, e}


15
30869
O2Si1
5.988
128
δ1(d) = −2.0
{f, c, e}


15
49813
O2Si1
5.854
128
δ1(d) = −2.0
{f, c, e}


15
49814
O2Si1
5.864
128
δ1(d) = −2.0
{f, c, e}


15
65370
O2Si1
5.895
128
δ1(d) = −2.0
{f, c, e}


15
65371
O2Si1
5.892
128
δ1(d) = −2.0
{f, c, e}


15
75655
O2Si1
5.713
64
δ1(c) = −2.0
{f, d, e}


15
166275
P2Pd1
0.274
40
δ1(b) = 1.0
{a, f}


15
48163
P2Pd1
0.711
40
δ1(d) = 4.0
{f, c}


15
651433
S2Yb1
0.152
72
δ1(c) = 1.0
{f, e}


15
16797
S4V1
0.684
116
δ1(d) = 1.0
{f}


15
428285
S4V1
0.578
116
δ1(d) = 1.0
{f}


15
64770
S4V1
0.651
116
δ1(d) = 1.0
{f}


15
652069
Se3Tl2
0.548
48
δ1(d) = 1.0
{f, e}


15
48145
Se9V2
0.425
128
δ1(c) = 1.0
{f, e}


15
410895
Te3Tl2
0.319
48
δ1(c) = 1.0
{f, e}


48
170533
O2Si1
4.304
128
δ1(f) = −2.0
{m, j, e, k, i}


55
252055
As3Ca4
0.506
184
δ1(a) = −1.0, δ1(b) = −1.0
{e, f, h, i, g}


55
83351
Cs2Te2
0.963
60
δ1(c) = −1.0
{h, g}


55
671294
K2O2
2.737
60
δ1(b) = −1.0
{h, g}


55
83350
Rb2Te2
0.792
60
δ1(a) = −1.0
{h, g}


58
41724
As2Fe1
0.236
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
41805
As2Fe1
0.27
36
δ1(a) = −1.0, δ1(d) = −1.0
{c, g}


58
42114
As2Fe1
0.236
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
42603
As2Fe1
0.327
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
42723
As2Fe1
0.328
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
610453
As2Fe1
0.205
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
610456
As2Fe1
0.215
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
610471
As2Fe1
0.215
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
65168
As2Fe1
0.236
36
δ1(a) = −1.0, δ1(d) = −1.0
{b, g}


58
672723
As2Fe1
0.224
36
δ1(b) = −1.0, δ1(c) = −1.0
{d, g}


58
94062
As2Fe1
0.22
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
238253
As2Os1
0.625
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
42610
As2Os1
0.63
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
611135
As2Os1
0.617
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
611138
As2Os1
0.617
36
δ1(a) = −1.0, δ1(d) = −1.0
{b, g}


58
995
As2Os1
0.615
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
42578
As2Ru1
0.191
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
611289
As2Ru1
0.433
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
611294
As2Ru1
0.431
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
994
As2Ru1
0.434
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
672096
C1N1
3.643
36
δ1(a) = −1.0
{g}


58
15027
Fe1P2
0.35
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
42904
Fe1P2
0.434
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
633052
Fe1P2
0.348
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
633072
Fe1P2
0.302
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
109374
Fe1S2
0.735
40
δ1(c) = −1.0
{a, g}


58
26756
Fe1S2
0.733
40
δ1(c) = −1.0
{a, g}


58
42415
Fe1S2
0.733
40
δ1(c) = −1.0
{a, g}


58
42416
Fe1S2
0.727
40
δ1(c) = −1.0
{a, g}


58
633255
Fe1S2
0.705
40
δ1(c) = −1.0
{a, g}


58
633275
Fe1S2
0.738
40
δ1(c) = −1.0
{a, g}


58
633304
Fe1S2
0.721
40
δ1(c) = −1.0
{a, g}


58
151397
Fe1Sb2
0.111
36
δ1(a) = −1.0, δ1(d) = −1.0
{c, g}


58
25680
Fe1Se2
0.211
40
δ1(c) = −1.0
{a, g}


58
42041
Fe1Se2
0.226
40
δ1(a) = −1.0
{c, g}


58
42115
Fe1Se2
0.24
40
δ1(c) = −1.0
{a, g}


58
44751
Fe1Se2
0.215
40
δ1(c) = −1.0
{a, g}


58
633469
Fe1Se2
0.205
40
δ1(c) = −1.0
{a, g}


58
633479
Fe1Se2
0.225
40
δ1(c) = −1.0
{a, g}


58
15931
In1S1
0.675
36
δ1(d) = −1.0
{g}


58
640349
In1S1
0.675
36
δ1(a) = −1.0
{g}


58
673915
In1S1
1.365
36
δ1(c) = −1.0
{g}


58
81338
In1S1
1.145
36
δ1(a) = −1.0
{g}


58
81339
In1S1
1.088
36
δ1(a) = −1.0
{g}


58
81340
In1S1
0.74
36
δ1(a) = −1.0
{g}


58
81341
In1S1
0.597
36
δ1(a) = −1.0
{g}


58
81342
In1S1
0.466
36
δ1(a) = −1.0
{g}


58
157940
N2Pt1
0.403
40
δ1(c) = −1.0
{a, g}


58
166463
N2Pt1
0.38
40
δ1(c) = −1.0
{a, g}


58
238252
Os1P2
0.686
36
δ1(a) = −1.0, δ1(d) = −1.0
{c, g}


58
42609
Os1P2
0.723
36
δ1(a) = −1.0, δ1(d) = −1.0
{b, g}


58
42740
Os1P2
0.051
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
647706
Os1P2
0.723
36
δ1(a) = −1.0, δ1(d) = −1.0
{b, g}


58
647711
Os1P2
0.723
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
672577
Os1P2
0.707
36
δ1(a) = −1.0, δ1(d) = −1.0
{c, g}


58
993
Os1P2
0.703
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
238254
Os1Sb2
0.405
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
42611
Os1Sb2
0.407
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
647754
Os1Sb2
0.316
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
647757
Os1Sb2
0.396
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
647758
Os1Sb2
0.31
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
997
Os1Sb2
0.323
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
42607
P2Ru1
0.539
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
42737
P2Ru1
0.539
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
648016
P2Ru1
0.44
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
648022
P2Ru1
0.441
36
δ1(a) = −1.0, δ1(d) = −1.0
{c, g}


58
992
P2Ru1
0.44
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
42608
Ru1Sb2
0.031
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
42739
Ru1Sb2
0.031
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
996
Ru1Sb2
0.002
36
δ1(b) = −1.0, δ1(c) = −1.0
{a, g}


58
106001
Ru1Te2
0.179
40
δ1(c) = −1.0
{a, g}


58
406722
Ru1Te2
0.19
40
δ1(b) = −1.0
{d, g}


58
650713
Ru1Te2
0.178
40
δ1(c) = −1.0
{a, g}


60
637466
Ge3Os2
0.634
224
δ1(a) = 1.0, δ1(b) = 1.0
{c, d}


60
95592
Ge3Os2
0.69
224
δ1(a) = 1.0, δ1(b) = 1.0
{c, d}


60
2345
Ge3Ru2
0.36
224
δ1(a) = 1.0, δ1(b) = 1.0
{c, d}


60
42121
Ge3Ru2
0.373
224
δ1(a) = 1.0, δ1(b) = 1.0
{c, d}


60
637740
Ge3Ru2
0.453
224
δ1(a) = 1.0, δ1(b) = 1.0
{c, d}


60
637743
Ge3Ru2
0.373
224
δ1(a) = 1.0, δ1(b) = 1.0
{c, d}


60
85205
Ge3Ru2
0.389
224
δ1(a) = 1.0, δ1(b) = 1.0
{c, d}


60
95588
Ge3Ru2
0.381
224
δ1(a) = 1.0, δ1(b) = 1.0
{c, d}


60
647772
Os2Si3
0.671
224
δ1(a) = 1.0, δ1(b) = 1.0
{c, d}


60
647782
Os2Si3
0.682
224
δ1(a) = 1.0, δ1(b) = 1.0
{c, d}


60
95590
Os2Si3
0.794
224
δ1(a) = 1.0, δ1(b) = 1.0
{c, d}


60
2344
Ru2Si3
0.461
224
δ1(a) = 1.0, δ1(b) = 1.0
{c, d}


60
42122
Ru2Si3
0.534
224
δ1(a) = 1.0, δ1(b) = 1.0
{c, d}


60
56644
Ru2Si3
0.447
224
δ1(a) = 1.0, δ1(b) = 1.0
{c, d}


60
650619
Ru2Si3
0.444
224
δ1(a) = 1.0, δ1(b) = 1.0
{c, d}


60
95586
Ru2Si3
0.549
224
δ1(a) = 1.0, δ1(b) = 1.0
{c, d}


61
432
As1Cd1
0.179
136
δ1(b) = 1.0
{c}


61
427612
As1Zn1
0.363
136
δ1(a) = 1.0
{c}


61
427613
As1Zn1
0.359
136
δ1(a) = 1.0
{c}


61
431
As1Zn1
0.248
136
δ1(a) = 1.0
{c}


61
14213
B2Cl4
2.672
136
δ1(a) = 1.0
{c}


61
31693
B2Cl4
2.622
136
δ1(b) = 1.0
{c}


61
15870
C2N2
5.245
72
δ1(a) = 1.0
{c}


61
52830
Cd1Sb1
0.098
136
δ1(a) = 1.0
{c}


61
52831
Cd1Sb1
0.067
136
δ1(b) = 1.0
{c}


61
620394
Cd1Sb1
0.117
136
δ1(b) = 1.0
{c}


61
620395
Cd1Sb1
0.082
136
δ1(b) = 1.0
{c}


61
180778
Cl1O2
0.391
152
δ1(a) = −1.0
{c}


61
67663
Cl1O2
0.343
152
δ1(b) = −1.0
{c}


61
67664
Cl1O2
0.391
152
δ1(a) = −1.0
{c}


61
67665
Cl1O2
0.411
152
δ1(b) = −1.0
{c}


61
67666
Cl1O2
0.424
152
δ1(a) = −1.0
{c}


61
24774
Hg1O2
0.324
96
δ1(b) = 1.0
{a, c}


61
8197
P4Re1
0.764
216
δ1(b) = 1.0
{c}


61
35117
P4Tc1
0.863
216
δ1(a) = 1.0
{c}


61
648753
Pd1S2
0.092
88
δ1(b) = 1.0
{a, c}


61
43265
Sb1Zn1
0.066
136
δ1(b) = 1.0
{c}


61
43653
Sb1Zn1
0.067
136
δ1(a) = 1.0
{c}


61
601137
Sb1Zn1
0.056
136
δ1(a) = 1.0
{c}


61
651770
Sb1Zn1
0.043
136
δ1(a) = 1.0
{c}


61
671286
Sb1Zn1
0.018
136
δ1(b) = 1.0
{c}


61
673941
Sb1Zn1
0.02
136
δ1(b) = 1.0
{c}


61
76937
Sb1Zn1
0.099
136
δ1(a) = 1.0
{c}


62
425310
B2Fe1
0.427
56
δ1(a) = 1.0
{c, d}


62
673936
Na1P5
1.393
104
δ1(a) = 1.0
{c, d}


62
99177
Na1P5
1.334
104
δ1(a) = 1.0
{c, d}


62
647985
P3Re1
0.07
88
δ1(b) = 1.0
{c}


62
35200
P3Tc1
0.417
88
δ1(a) = 1.0
{c}


64
429733
Ba5P4
0.857
140
δ1(a) = −1.0
{f, d, b, g}


64
280022
Ba5Sb4
0.227
140
δ1(a) = −1.0
{f, d, b, g}


64
262063
K1Tl1
0.116
144
δ1(b) = −2.0
{f, d, e, g}


64
262067
K1Tl1
0.034
144
δ1(b) = −2.0
{f, d, e, g}


64
180559
K2O2
2.538
60
δ1(a) = −1.0
{f, e}


64
25527
K2O2
2.403
60
δ1(a) = −1.0
{f, e}


64
36641
K2O2
2.478
60
δ1(a) = −1.0
{f, e}


65
180398
Ba1O2
0.484
22
δ1(c) = −1.0
{a, j}


67
164055
F3La1
4.816
128
δ1(c) = 2.0, δ1(f) = 2.0
{n, b, e, h, d, g}


68
170527
O2Si1
4.623
128
δ1(d) = −2.0
{c, e, h, i, g}


69
409382
As6Cs4
0.427
66
δ1(a) = 1.0
{f, h, n, i}


69
409381
As6Rb4
0.395
66
δ1(a) = 1.0
{f, h, n, i}


69
65185
Cs4P6
0.84
66
δ1(a) = 1.0
{f, h, n, i}


69
33259
K4P6
0.698
66
δ1(a) = 1.0
{f, h, n, i}


69
65184
P6Rb4
0.749
66
δ1(a) = 1.0
{f, h, n, i}


69
654296
P6Rb4
0.746
66
δ1(a) = 1.0
{f, h, n, i}


70
58156
Al2Ru1
0.095
28
δ1(d) = 1.0
{f, b}


70
609228
Al2Ru1
0.105
28
δ1(d) = 1.0
{f, b}


70
103785
Ga2Os1
0.544
28
δ1(d) = 1.0
{f, b}


70
635227
Ga2Ru1
0.203
28
δ1(d) = 1.0
{f, b}


70
635228
Ga2Ru1
0.101
28
δ1(d) = 1.0
{f, b}


70
670154
Ga2Ru1
0.089
28
δ1(d) = 1.0
{f, b}


70
670380
Ga2Ru1
0.234
28
δ1(d) = 1.0
{f, b}


71
25705
C2Li2
3.569
10
δ1(c) = 1.0
{i, g}


71
670913
C2Li2
3.304
10
δ1(d) = 1.0
{h, i}


71
671740
C2Li2
3.264
10
δ1(c) = 1.0
{i, g}


71
671741
C2Li2
3.177
10
δ1(c) = 1.0
{i, g}


71
671742
C2Li2
3.094
10
δ1(c) = 1.0
{i, g}


71
671743
C2Li2
3.024
10
δ1(c) = 1.0
{i, g}


71
671744
C2Li2
2.957
10
δ1(c) = 1.0
{i, g}


71
671745
C2Li2
2.895
10
δ1(c) = 1.0
{i, g}


71
671746
C2Li2
2.841
10
δ1(c) = 1.0
{i, g}


71
671747
C2Li2
2.786
10
δ1(c) = 1.0
{i, g}


71
671748
C2Li2
2.732
10
δ1(c) = 1.0
{i, g}


71
671749
C2Li2
2.658
10
δ1(c) = 1.0
{i, g}


71
671750
C2Li2
2.585
10
δ1(c) = 1.0
{i, g}


71
671751
C2Li2
2.507
10
δ1(c) = 1.0
{i, g}


71
671752
C2Li2
2.442
10
δ1(c) = 1.0
{i, g}


71
671753
C2Li2
2.365
10
δ1(c) = 1.0
{i, g}


71
671754
C2Li2
2.071
10
δ1(a) = 1.0
{i, g}


71
671755
C2Li2
1.906
10
δ1(c) = 1.0
{i, g}


71
89535
C2Li2
3.497
10
δ1(a) = 1.0
{i, g}


71
95835
C2Na2
3.648
10
δ1(c) = 1.0
{i, g}


71
25529
Cs2O2
1.745
30
δ1(c) = −1.0
{i, g}


71
200474
Cs2S2
1.79
30
δ1(d) = −1.0
{h, i}


71
167554
F3La1
5.594
32
δ1(b) = 2.0
{a, c, j}


71
180560
O2Rb2
1.929
30
δ1(c) = −1.0
{i, g}


71
25528
O2Rb2
1.806
30
δ1(c) = −1.0
{i, g}


71
73175
Rb2S2
1.697
30
δ1(a) = −1.0
{i, g}


74
412621
B3Si1
1.405
104
δ1(b) = 1.0, δ1(d) = −1.0
{h, j, i}


74
674920
H6Ru1
0.228
56
δ1(d) = −1.0
{h, j, i, g}


74
84260
O64Si32
3.856
256
δ1(d) = 2.0
{j, b, e, h, i, g}


87
66024
K5Te3
0.103
126
δ1(a) = −1.0
{h, d, e}


87
96743
K5Te3
0.117
126
δ1(a) = −1.0
{h, d, e}


88
412618
B10F12
3.268
228
δ1(a) = 1.0
{f, e}


88
160538
Li1Si1
0.012
40
δ1(d) = 1.0
{f}


119
247678
C1N2
0.115
14
δ1(b) = 1.0
{d, e}


119
102867
Cs1In3
0.054
54
δ1(d) = −1.0
{a, f, b, i}


119
103649
Ga3K1
0.208
54
δ1(c) = −1.0
{a, f, b, i}


119
20664
Ga3K1
0.212
54
δ1(a) = −1.0
{c, d, e, i}


119
634466
Ga3K1
0.206
54
δ1(c) = −1.0
{a, f, b, i}


119
103943
Ga3Rb1
0.25
54
δ1(c) = −1.0
{a, f, b, i}


119
169739
H8Si1
6.013
12
δ1(b) = 1.0, δ1(d) = 1.0
{a, f, e, i}


136
88057
C2Mg1
2.847
20
δ1(a) = 1.0
{f, b}


136
103447
Fe1Ga3
0.084
68
δ1(a) = −1.0
{f, c, j}


136
103448
Fe1Ga3
0.439
68
δ1(b) = −1.0
{f, c, j}


136
412077
Fe1Ga3
0.41
68
δ1(a) = −1.0
{c, j, g}


136
631748
Fe1Ga3
0.442
68
δ1(b) = −1.0
{f, c, j}


136
631760
Fe1Ga3
0.44
68
δ1(b) = −1.0
{f, c, j}


136
670144
Fe1Ga3
0.44
68
δ1(b) = −1.0
{c, j, g}


136
635024
Ga3Os1
0.438
68
δ1(b) = −1.0
{f, c, j}


136
412078
Ga3Ru1
0.353
68
δ1(b) = −1.0
{f, c, j}


136
635229
Ga3Ru1
0.361
68
δ1(a) = −1.0
{f, c, j}


136
55514
In3Ru1
0.185
68
δ1(b) = −1.0
{f, c, j}


136
640343
In3Ru1
0.181
68
δ1(b) = −1.0
{f, c, j}


136
671853
Li2S2
1.778
28
δ1(b) = −1.0
{f, d}


137
674671
B4Os1
1.962
40
δ1(b) = −1.0
{a, g}


137
26152
Cl2Zn1
3.837
52
δ1(b) = −1.0
{a, d}


137
150345
Hg1I2
0.926
52
δ1(a) = −1.0
{d, b}


137
22241
Hg1I2
0.96
52
δ1(a) = −1.0
{d, b}


137
22401
Hg1I2
0.975
52
δ1(b) = −1.0
{a, d}


137
36312
Hg1I2
1.05
52
δ1(b) = −1.0
{a, d}


137
67069
Hg1I2
0.967
52
δ1(b) = −1.0
{a, d}


137
68262
Hg1I2
0.959
52
δ1(a) = −1.0
{d, b}


137
241170
Hg2I4
0.912
52
δ1(a) = −1.0
{d, b}


137
241171
Hg2I4
0.914
52
δ1(a) = −1.0
{d, b}


137
241172
Hg2I4
0.919
52
δ1(a) = −1.0
{d, b}


137
241173
Hg2I4
0.926
52
δ1(a) = −1.0
{d, b}


137
241174
Hg2I4
0.932
52
δ1(a) = −1.0
{d, b}


137
241175
Hg2I4
0.941
52
δ1(a) = −1.0
{d, b}


139
58108
Al2Os1
0.264
14
δ1(c) = −1.0
{a, e}


139
166865
As1Ca2
0.02
18
δ2(b) = −1.0
{c, e}


139
42357
As1Ca2
0.02
18
δ2(b) = −1.0
{c, e}


139
180397
Ba1O2
1.872
22
δ2(b) = −1.0
{a, e}


139
24248
Ba1O2
1.238
22
δ2(b) = −1.0
{a, e}


139
24729
Ba1O2
2.172
22
δ2(a) = −1.0
{e, b}


139
80750
Ba1O2
2.151
22
δ2(b) = −1.0
{a, e}


139
42136
Bi1Ca2
0.006
18
δ2(b) = −1.0
{c, e}


139
673918
Br1Hg1
2.355
38
δ2(a) = −1.0
{e}


139
157980
Br2Hg2
1.658
38
δ2(a) = −1.0
{e}


139
23721
Br2Hg2
1.727
38
δ2(a) = −1.0
{e}


139
31174
Br2Hg2
2.068
38
δ2(a) = −1.0
{e}


139
168410
C2Ba1
1.469
18
δ1(b) = 1.0
{a, e}


139
186575
C2Ba1
1.457
18
δ1(b) = 1.0
{a, e}


139
56160
C2Ba1
1.394
18
δ1(b) = 1.0
{a, e}


139
615792
C2Ba1
1.646
18
δ1(b) = 1.0
{a, e}


139
615794
C2Ba1
0.409
18
δ1(b) = 1.0
{a, e}


139
88098
C2Ba1
1.664
18
δ1(b) = 1.0
{a, e}


139
88101
C2Ba1
1.414
18
δ1(b) = 1.0
{a, e}


139
252714
C2Ca1
1.728
10
δ1(b) = 1.0
{a, e}


139
252717
C2Ca1
2.122
10
δ1(b) = 1.0
{a, e}


139
252720
C2Ca1
0.228
10
δ1(b) = 1.0
{a, e}


139
252723
C2Ca1
0.281
10
δ1(b) = 1.0
{a, e}


139
252726
C2Ca1
1.588
10
δ1(b) = 1.0
{a, e}


139
252729
C2Ca1
1.449
10
δ1(b) = 1.0
{a, e}


139
252732
C2Ca1
1.632
10
δ1(b) = 1.0
{a, e}


139
252735
C2Ca1
1.774
10
δ1(b) = 1.0
{a, e}


139
252738
C2Ca1
2.293
10
δ1(b) = 1.0
{a, e}


139
252741
C2Ca1
1.73
10
δ1(b) = 1.0
{a, e}


139
252744
C2Ca1
1.732
10
δ1(b) = 1.0
{a, e}


139
252747
C2Ca1
2.388
10
δ1(b) = 1.0
{a, e}


139
252750
C2Ca1
1.723
10
δ1(b) = 1.0
{a, e}


139
252753
C2Ca1
2.387
10
δ1(b) = 1.0
{a, e}


139
252756
C2Ca1
1.449
10
δ1(b) = 1.0
{a, e}


139
252759
C2Ca1
1.729
10
δ1(b) = 1.0
{a, e}


139
252762
C2Ca1
1.272
10
δ1(b) = 1.0
{a, e}


139
252765
C2Ca1
1.254
10
δ1(b) = 1.0
{a, e}


139
252768
C2Ca1
1.732
10
δ1(b) = 1.0
{a, e}


139
252771
C2Ca1
1.731
10
δ1(b) = 1.0
{a, e}


139
252774
C2Ca1
2.151
10
δ1(b) = 1.0
{a, e}


139
410313
C2Ca1
1.569
10
δ1(b) = 1.0
{a, e}


139
411188
C2Ca1
1.539
10
δ1(b) = 1.0
{a, e}


139
54186
C2Ca1
1.205
10
δ1(b) = 1.0
{a, e}


139
56158
C2Ca1
1.725
10
δ1(b) = 1.0
{a, e}


139
617300
C2Ca1
1.539
10
δ1(b) = 1.0
{a, e}


139
617303
C2Ca1
1.521
10
δ1(b) = 1.0
{a, e}


139
672968
C2Ca1
1.325
10
δ1(b) = 1.0
{a, e}


139
74665
C2Ca1
1.596
10
δ1(b) = 1.0
{a, e}


139
410316
C2Sr1
2.014
18
δ1(b) = 1.0
{a, e}


139
410317
C2Sr1
1.849
18
δ1(b) = 1.0
{a, e}


139
618813
C2Sr1
1.951
18
δ1(b) = 1.0
{a, e}


139
618815
C2Sr1
0.872
18
δ1(b) = 1.0
{a, e}


139
91048
C2Sr1
1.914
18
δ1(b) = 1.0
{a, e}


139
91050
C2Sr1
2.004
18
δ1(b) = 1.0
{a, e}


139
20275
Ca1O2
1.636
14
δ2(a) = −1.0
{e, b}


139
619462
Ca1O2
1.384
14
δ2(b) = −1.0
{a, e}


139
671324
Ca1O2
2.897
14
δ2(b) = −1.0
{a, e}


139
157979
Cl2Hg2
1.833
38
δ2(a) = −1.0
{e}


139
23720
Cl2Hg2
2.836
38
δ2(a) = −1.0
{e}


139
31173
Cl2Hg2
2.367
38
δ2(a) = −1.0
{e}


139
36195
Cl2Hg2
2.413
38
δ2(a) = −1.0
{e}


139
65441
Cl2Hg2
2.913
38
δ2(a) = −1.0
{e}


139
23719
F2Hg2
1.635
38
δ2(a) = −1.0
{e}


139
27700
F2Hg2
1.325
38
δ2(a) = −1.0
{e}


139
72354
F2Hg2
1.72
38
δ2(a) = −1.0
{e}


139
160496
Ga3K2
0.119
54
δ1(a) = −1.0, δ1(c) = −1.0
{d, e, i}


139
673919
Hg1I1
1.607
38
δ2(a) = −1.0
{e}


139
157981
Hg1I1
1.106
38
δ2(a) = −1.0
{e}


139
262368
Hg2I2
1.594
38
δ2(a) = −1.0
{e}


139
36189
Hg2I2
1.197
38
δ2(a) = −1.0
{e}


139
370026
In3Rb2
0.048
54
δ1(a) = −1.0, δ1(c) = −1.0
{d, e, i}


139
24249
O2Sr1
2.202
22
δ2(b) = −1.0
{a, e}


139
647474
O2Sr1
2.778
22
δ2(b) = −1.0
{a, e}


140
75555
Ba3Te2
0.345
44
δ1(d) = −1.0
{a, h}


140
80280
Ba3Te2
0.345
44
δ1(d) = −1.0
{a, h}


140
671323
Ca1O2
2.952
28
δ1(d) = −1.0
{a, h}


140
672113
O2Zn1
3.207
48
δ1(d) = −1.0
{a, h}


140
23640
S2Sr1
1.334
44
δ1(d) = −1.0
{a, h}


140
642
S2Sr1
1.3
44
δ1(d) = −1.0
{a, h}


141
200286
Au1Br1
1.49
72
δ1(d) = −5.0
{c, e}


141
6052
Au1Cl1
1.226
72
δ1(c) = −5.0
{d, e}


141
1093
O3U1
1.347
256
δ1(c) = 2.0
{h, d, e}


141
15884
O3U1
0.503
256
δ1(d) = 2.0
{c, e, h}


141
670375
O3U1
1.349
256
δ1(c) = 2.0
{h, d, e}


141
153257
O64Si32
5.621
256
δ1(c) = 2.0
{e, h, d, i, g}


148
41540
Br12Zr6
0.013
108
δ2(a) = −2.0
{f}


148
41539
Cl12Zr6
0.025
108
δ2(a) = −2.0
{f}


148
35145
I12Zr6
0.005
108
δ2(a) = −2.0
{f}


148
239355
I6Si2
2.809
50
δ2(a) = −1.0
{f, c}


164
247679
C1N2
2.316
28
δ2(a) = −1.0, δ1(f) = −1.0
{c, d}


164
670188
C2Mg1
0.686
10
δ1(e) = −1.0
{d, b}


166
107916
As1B6
2.573
46
δ2(a) = 1.0, δ2(b) = −1.0, δ1(d) = −1.0
{c, h}


166
68151
As1B6
2.655
46
δ2(a) = 1.0, δ2(b) = −1.0, δ1(d) = −1.0
{c, h}


166
62749
As2B12
2.64
46
δ2(a) = 1.0, δ2(b) = −1.0, δ1(d) = −1.0
{c, h}


166
62748
B12P2
2.419
46
δ2(a) = 1.0, δ2(b) = −1.0, δ1(d) = −1.0
{c, h}


166
615435
B12Si3
0.67
48
δ2(a) = 1.0, δ1(d) = −1.0
{c, h, b}


166
615112
B6O1
1.192
48
δ2(a) = 1.0, δ1(d) = −1.0
{c, h}


166
656230
B6O1
2.057
48
δ2(a) = 1.0, δ1(d) = −1.0
{c, h}


166
656231
B6O1
1.67
48
δ2(a) = 1.0, δ1(d) = −1.0
{c, h}


166
71065
B6O1
1.67
48
δ2(a) = 1.0, δ1(d) = −1.0
{c, h}


166
71066
B6O1
2.057
48
δ2(a) = 1.0, δ1(d) = −1.0
{c, h}


166
82879
B6O1
1.683
48
δ2(a) = 1.0, δ1(d) = −1.0
{c, h}


166
615156
B6P1
2.375
46
δ2(a) = 1.0, δ2(b) = −1.0, δ1(d) = −1.0
{c, h}


166
615157
B6P1
2.375
46
δ2(a) = 1.0, δ2(b) = −1.0, δ1(d) = −1.0
{c, h}


166
25766
Br8Nb3
0.069
190
δ2(b) = −1.0
{c, h}


166
421609
Br8Nb3
0.06
190
δ2(b) = −1.0
{c, h}


166
29093
C1B4
1.102
48
δ2(a) = 1.0, δ1(d) = −1.0
{c, h, b}


166
654971
C1B4
1.106
48
δ2(a) = 1.0, δ1(d) = −1.0
{c, h, b}


166
186576
C2Ba1
1.043
18
δ1(b) = 1.0
{a, c}


166
236872
C2Ca1
2.086
10
δ1(b) = 1.0
{a, c}


166
236873
C2Sr1
1.677
18
δ1(b) = 1.0
{a, c}


166
612562
C3B12
0.84
48
δ2(a) = 1.0, δ1(d) = −1.0
{c, h, b}


166
40824
Ga1S1
1.553
18
δ2(a) = −1.0
{c}


166
25767
I8Nb3
0.091
190
δ2(b) = −1.0
{c, h}


187
673442
Cr1N2
0.609
16
δ1(0) = 1.0, δ1(f) = 1.0, δ1(h) = 1.0
{a, i}


187
601159
Ga1Se1
1.024
36
δ1(0) = 1.0, δ1(f) = 1.0
{h, i, g}


187
635363
Ga1Se1
1.003
36
δ1(b) = 1.0, δ1(e) = 1.0
{h, i, g}


187
635372
Ga1Se1
1.05
36
δ1(b) = 1.0, δ1(e) = 1.0
{h, i, g}


187
71082
Ga1Se1
1.068
36
δ1(a) = 1.0, δ1(f) = 1.0
{h, i, g}


187
73387
Ga1Se1
1.068
36
δ1(b) = 1.0, δ1(e) = 1.0
{h, i, g}


187
640503
In1Se1
0.66
36
δ1(a) = 1.0, δ1(f) = 1.0
{h, i, g}


187
674581
Mo1N2
0.765
16
δ1(d) = 1.0, δ1(e) = 1.0, δ1(1) = 1.0
{a, h}


187
290433
N2W1
0.81
16
δ1(a) = 1.0, δ1(d) = 1.0, δ1(h) = 1.0
{f, g}


189
26261
Ca1P1
0.405
42
δ1(b) = 1.0, δ1(0) = −1.0
{f, h, e, g}


189
83352
Ca2P2
0.281
42
δ1(b) = 1.0, δ1(0) = −1.0
{f, h, e, g}


189
43406
K2S2
1.517
90
δ1(b) = 1.0, δ1(0) = −1.0
{f, h, e, g}


189
73171
K2S2
1.44
90
δ1(a) = 1.0, δ1(d) = −1.0
{f, h, e, g}


189
73172
K2Se2
0.697
90
δ1(a) = 1.0, δ1(d) = −1.0
{f, h, e, g}


189
109276
Na2O2
1.981
42
δ1(a) = 1.0, δ1(d) = −1.0
{f, h, e, g}


189
180558
Na2O2
1.438
42
δ1(a) = 1.0, δ1(d) = −1.0
{f, h, e, g}


189
25526
Na2O2
1.975
42
δ1(b) = 1.0, δ1(0) = −1.0
{f, h, e, g}


189
26575
Na2O2
1.978
42
δ1(a) = 1.0, δ1(d) = −1.0
{f, h, e, g}


189
43405
Na2S2
0.861
42
δ1(b) = 1.0, δ1(0) = −1.0
{f, h, e, g}


189
73180
Na2S2
0.896
42
δ1(a) = 1.0, δ1(d) = −1.0
{f, h, e, g}


189
26262
P1Sr1
0.457
90
δ1(b) = 1.0, δ1(0) = −1.0
{f, h, e, g}


189
73176
Rb2S2
1.03
90
δ1(a) = 1.0, δ1(d) = −1.0
{f, h, e, g}


194
168280
C2Os1
0.018
32
δ2(a) = −1.0
{d, e}


194
673438
Cr1N2
0.762
32
δ2(a) = −1.0, δ1(0) = 1.0
{d, e}


194
167394
Ga1S1
1.574
36
δ1(0) = 1.0
{f}


194
173940
Ga1S1
1.553
36
δ1(0) = 1.0
{f}


194
173941
Ga1S1
1.552
36
δ1(0) = 1.0
{f}


194
201344
Ga1S1
1.553
36
δ1(0) = 1.0
{f}


194
201345
Ga1S1
1.552
36
δ1(0) = 1.0
{f}


194
25660
Ga1S1
1.566
36
δ1(0) = 1.0
{f}


194
53586
Ga1S1
1.469
36
δ1(0) = 1.0
{f}


194
53587
Ga1S1
1.586
36
δ1(0) = 1.0
{f}


194
53588
Ga1S1
0.972
36
δ1(0) = 1.0
{f}


194
53589
Ga1S1
1.21
36
δ1(0) = 1.0
{f}


194
53590
Ga1S1
1.06
36
δ1(0) = 1.0
{f}


194
59
Ga1S1
1.574
36
δ1(0) = 1.0
{f}


194
635244
Ga1S1
1.575
36
δ1(0) = 1.0
{f}


194
635251
Ga1S1
1.588
36
δ1(0) = 1.0
{f}


194
635254
Ga1S1
1.042
36
δ1(b) = 1.0
{f, e}


194
658768
Ga1S1
1.613
36
δ1(0) = 1.0
{f}


194
673912
Ga1S1
1.966
36
δ1(0) = 1.0
{f}


194
20237
Ga1Se1
1.175
36
δ1(0) = 1.0
{f}


194
41978
Ga1Se1
0.886
36
δ1(0) = 1.0
{f}


194
43540
Ga1Se1
0.886
36
δ1(0) = 1.0
{f}


194
63122
Ga1Se1
0.929
36
δ1(0) = 1.0
{f}


194
635369
Ga1Se1
0.913
36
δ1(0) = 1.0
{f}


194
635382
Ga1Se1
0.933
36
δ1(0) = 1.0
{f}


194
673913
Ga1Se1
1.048
36
δ1(0) = 1.0
{f}


194
673914
Ga1Te1
0.479
36
δ1(0) = 1.0
{f}


194
290428
Hf1N2
0.49
28
δ2(a) = −1.0
{d, e}


194
185172
In1Se1
0.479
36
δ1(0) = 1.0
{f}


194
430520
K2Se2
0.887
60
δ1(d) = 1.0
{a, c, f}


194
73174
K2Te2
0.483
60
δ1(d) = 1.0
{a, c, f}


194
96741
K2Te2
0.428
60
δ1(d) = 1.0
{a, c, f}


194
152183
Li2O2
1.977
28
δ1(d) = 1.0
{a, c, f}


194
180557
Li2O2
1.562
28
δ1(d) = 1.0
{a, c, f}


194
25530
Li2O2
2.254
28
δ1(d) = 1.0
{a, c, f}


194
674574
Mo1N2
0.896
32
δ2(a) = −1.0, δ1(0) = 1.0
{d, e}


194
105091
Mo1S2
0.737
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
191305
Mo1S2
0.888
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
196994
Mo1S2
0.847
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, d}


194
24000
Mo1S2
0.869
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
31067
Mo1S2
1.002
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
49801
Mo1S2
0.861
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
601647
Mo11S2
0.848
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
644245
Mo1S2
0.868
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
644246
Mo1S2
0.87
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
644250
Mo1S2
0.866
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
644259
Mo1S2
0.906
36
δ1(d) = 1.0
{f, b}


194
674349
Mo1S2
0.878
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
674355
Mo1S2
0.843
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
674361
Mo1S2
0.85
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
674383
Mo1S2
0.807
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
84180
Mo1S2
0.847
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, d}


194
95569
Mo1S2
0.888
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
95570
Mo1S2
0.906
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
167357
Mo1Se2
0.861
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
191306
Mo1Se2
0.843
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
49800
Mo1Se2
0.822
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
601045
Mo1Se2
0.812
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, d}


194
644334
Mo1Se2
0.863
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
644335
Mo1Se2
0.82
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
644340
Mo1Se2
0.826
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
644346
Mo1Se2
0.856
36
δ1(d) = 1.0
{f, b}


194
674350
Mo1Se2
0.828
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
674356
Mo1Se2
0.812
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
674362
Mo1Se2
0.814
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
15431
Mo1Te2
0.72
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
24155
Mo1Te2
0.699
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
644476
Mo1Te2
0.711
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
644481
Mo1Te2
0.715
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
674351
Mo1Te2
0.66
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
674357
Mo1Te2
0.656
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
674363
Mo1Te2
0.662
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
290434
N2W1
1.031
32
δ2(a) = −1.0, δ1(c) = 1.0
{d, e}


194
644958
Na1S1
1.263
28
δ1(d) = 1.0
{a, c, f}


194
43407
Na2S2
1.263
28
δ1(d) = 1.0
{a, c, f}


194
644955
Na2S2
1.212
28
δ1(d) = 1.0
{a, c, f}


194
73173
Na2S2
1.234
28
δ1(d) = 1.0
{a, c, f}


194
43408
Na2Se2
0.573
28
δ1(d) = 1.0
{a, c, f}


194
196773
S2W1
0.918
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
196993
S2W1
0.825
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, d}


194
202366
S2W1
0.94
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
56014
S2W1
1.006
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, d}


194
651384
S2W1
0.823
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, d}


194
651387
S2W1
0.813
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, d}


194
674352
S2W1
0.959
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
674358
S2W1
0.924
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
674364
S2W1
0.957
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
84181
S2W1
0.825
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, d}


194
196992
Se2W1
0.867
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, d}


194
40752
Se2W1
0.881
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
652167
Se2W1
0.863
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, d}


194
652170
Se2W1
0.869
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, d}


194
674353
Se2W1
0.889
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
674359
Se2W1
0.862
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
674365
Se2W1
0.872
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
84182
Se2W1
0.867
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, d}


194
653170
Te2W1
0.564
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
674354
Te2W1
0.611
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
674360
Te2W1
0.582
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


194
674366
Te2W1
0.613
36
δ1(b) = 1.0, δ1(e) = 2.0
{f, c}


204
201140
N2O4
2.83
102
δ1(b) = −1.0
{d, g}


204
201141
N2O4
2.85
102
δ1(b) = −1.0
{d, g}


204
201142
N2O4
2.873
102
δ1(b) = −1.0
{d, g}


204
29047
N2O4
3.597
102
δ1(b) = −1.0
{d, g}


204
52347
N2O4
2.321
102
δ1(b) = −1.0
{e, g}


205
196823
As2Pt1
0.252
80
δ2(b) = −1.0
{a, c}


205
24156
As2Pt1
0.345
80
δ2(b) = −1.0
{a, c}


205
24203
As2Pt1
0.225
80
δ2(b) = −1.0
{a, c}


205
38428
As2Pt1
0.243
80
δ2(b) = −1.0
{a, c}


205
43104
As2Pt1
0.252
80
δ2(b) = −1.0
{a, c}


205
52375
As2Pt1
0.249
80
δ2(b) = −1.0
{a, c}


205
611228
As2Pt1
0.25
80
δ2(b) = −1.0
{a, c}


205
611230
As2Pt1
0.307
80
δ2(b) = −1.0
{a, c}


205
109339
Cd1O2
1.45
96
δ2(a) = −1.0
{c, b}


205
36151
Cd1O2
1.392
96
δ2(b) = −1.0
{a, c}


205
60764
Cd1O2
1.392
96
δ2(b) = −1.0
{a, c}


205
620201
Cd1O2
1.399
96
δ2(b) = −1.0
{a, c}


205
620305
Cd1S2
0.693
96
δ2(b) = −1.0
{a, c}


205
620416
Cd1Se2
0.5
96
δ2(b) = −1.0
{a, c}


205
109377
Fe1S2
0.598
80
δ2(b) = −1.0
{a, c}


205
15012
Fe1S2
0.512
80
δ2(b) = −1.0
{a, c}


205
316
Fe1S2
0.614
80
δ2(b) = −1.0
{a, c}


205
43716
Fe1S2
0.511
80
δ2(b) = −1.0
{a, c}


205
52372
Fe1S2
0.709
80
δ2(b) = −1.0
{a, c}


205
53529
Fe1S2
0.708
80
δ2(b) = −1.0
{a, c}


205
53935
Fe1S2
0.132
80
δ2(b) = −1.0
{a, c}


205
633254
Fe1S2
0.61
80
δ2(b) = −1.0
{a, c}


205
633270
Fe1S2
0.61
80
δ2(b) = −1.0
{a, c}


205
633273
Fe1S2
0.512
80
δ2(b) = −1.0
{a, c}


205
633274
Fe1S2
0.61
80
δ2(b) = −1.0
{a, c}


205
633287
Fe1S2
0.29
80
δ2(b) = −1.0
{a, c}


205
633288
Fe1S2
0.5
80
δ2(b) = −1.0
{a, c}


205
633289
Fe1S2
0.709
80
δ2(b) = −1.0
{a, c}


205
633293
Fe1S2
0.61
80
δ2(b) = −1.0
{a, c}


205
656511
Fe1S2
0.61
80
δ2(b) = −1.0
{a, c}


205
633475
Fe1Se2
0.408
80
δ2(b) = −1.0
{a, c}


205
633869
Fe1Te2
0.034
80
δ2(b) = −1.0
{a, c}


205
290429
Hf1N2
0.882
56
δ2(b) = −1.0
{a, c}


205
35479
Mg1O2
3.905
56
δ2(a) = −1.0
{c, b}


205
41732
Mg1O2
3.942
56
δ2(b) = −1.0
{a, c}


205
642815
Mg1Se2
1.566
56
δ2(b) = −1.0
{a, c}


205
30390
Mg1Te2
1.201
56
δ2(b) = −1.0
{a, c}


205
41733
Mg1Te2
1.094
56
δ2(b) = −1.0
{a, c}


205
642881
Mg1Te2
1.059
56
δ2(b) = −1.0
{a, c}


205
191245
N2Pd1
0.643
80
δ2(b) = −1.0
{a, c}


205
166462
N2Pt1
1.089
80
δ2(b) = −1.0
{a, c}


205
169857
N2Pt1
1.477
80
δ2(b) = −1.0
{a, c}


205
290447
N2Pt1
1.231
80
δ2(b) = −1.0
{a, c}


205
60763
O2Zn1
2.322
96
δ2(b) = −1.0
{a, c}


205
647668
O2Zn1
2.328
96
δ2(b) = −1.0
{a, c}


205
24187
Os1S2
0.086
80
δ2(b) = −1.0
{a, c}


205
300224
Os1S2
0.051
80
δ2(b) = −1.0
{a, c}


205
56020
Os1S2
1.517
80
δ2(a) = −1.0
{c, b}


205
647749
Os1S2
0.035
80
δ2(b) = −1.0
{a, c}


205
647750
Os1S2
0.029
80
δ2(b) = −1.0
{a, c}


205
24202
Os1Se2
0.104
80
δ2(b) = −1.0
{a, c}


205
647826
Os1Te2
0.588
80
δ2(b) = −1.0
{a, c}


205
647829
Os1Te2
0.583
80
δ2(b) = −1.0
{a, c}


205
647831
Os1Te2
0.578
80
δ2(b) = −1.0
{a, c}


205
647832
Os1Te2
0.581
80
δ2(b) = −1.0
{a, c}


205
15026
P2Pt1
1.114
80
δ2(b) = −1.0
{a, c}


205
43103
P2Pt1
1.002
80
δ2(b) = −1.0
{a, c}


205
602147
P2Pt1
1.166
80
δ2(b) = −1.0
{a, c}


205
647967
P2Pt1
1.116
80
δ2(b) = −1.0
{a, c}


205
647970
P2Pt1
0.983
80
δ2(b) = −1.0
{a, c}


205
647971
P2Pt1
0.985
80
δ2(b) = −1.0
{a, c}


205
71029
P2Pt1
1.119
80
δ2(b) = −1.0
{a, c}


205
74514
P2Pt1
1.126
80
δ2(b) = −1.0
{a, c}


205
24186
Ru1S2
0.59
80
δ2(b) = −1.0
{a, c}


205
41996
Ru1S2
0.069
80
δ2(b) = −1.0
{a, c}


205
52374
Ru1S2
0.919
80
δ2(a) = −1.0
{c, b}


205
56019
Ru1S2
1.823
80
δ2(b) = −1.0
{a, c}


205
600680
Ru1S2
0.705
80
δ2(b) = −1.0
{a, c}


205
604472
Ru1S2
0.398
80
δ2(b) = −1.0
{a, c}


205
650577
Ru1S2
0.705
80
δ2(b) = −1.0
{a, c}


205
650579
Ru1S2
0.705
80
δ2(b) = −1.0
{a, c}


205
650581
Ru1S2
0.705
80
δ2(b) = −1.0
{a, c}


205
657507
Ru1S2
0.705
80
δ2(b) = −1.0
{a, c}


205
68472
Ru1S2
0.738
80
δ2(b) = −1.0
{a, c}


205
24201
Ru1Se2
0.416
80
δ2(b) = −1.0
{a, c}


205
650607
Ru1Se2
0.415
80
δ2(a) = −1.0
{c, b}


205
650609
Ru1Se2
0.416
80
δ2(b) = −1.0
{a, c}


205
650610
Ru1Se2
0.32
80
δ2(b) = −1.0
{a, c}


205
650611
Ru1Se2
0.323
80
δ2(b) = −1.0
{a, c}


205
657508
Ru1Se2
0.415
80
δ2(b) = −1.0
{a, c}


205
68473
Ru1Se2
0.383
80
δ2(b) = −1.0
{a, c}


205
24188
Ru1Te2
0.139
80
δ2(b) = −1.0
{a, c}


205
650710
Ru1Te2
0.061
80
δ2(b) = −1.0
{a, c}


205
650714
Ru1Te2
0.072
80
δ2(b) = −1.0
{a, c}


205
650719
Ru1Te2
0.071
80
δ2(b) = −1.0
{a, c}


205
650721
Ru1Te2
0.124
80
δ2(b) = −1.0
{a, c}


205
650722
Ru1Te2
0.134
80
δ2(b) = −1.0
{a, c}


205
65169
Ru1Te2
0.076
80
δ2(b) = −1.0
{a, c}


205
659137
Ru1Te2
0.072
80
δ2(b) = −1.0
{a, c}


205
651447
S2Zn1
1.263
96
δ2(b) = −1.0
{a, c}


205
652213
Se2Zn1
0.695
96
δ2(b) = −1.0
{a, c}


216
672039
Ag1Br1
1.02
18
δ1(d) = −1.0
{a, c}


216
672042
Ag1Cl1
1.138
18
δ1(d) = −1.0
{a, c}


216
670429
Ag1I1
1.142
18
δ1(d) = −1.0
{a, c}


216
670858
B4Fe1
0.676
20
δ1(b) = 1.0
{a, e}


216
616395
Be5Pt1
0.006
20
δ1(b) = 1.0
{a, c, e}


216
30090
Br1Cu1
0.464
18
δ1(d) = −1.0
{a, c}


216
670437
Br1Cu1
0.4
18
δ1(d) = −1.0
{a, c}


216
186009
Cd1S1
1.099
18
δ1(d) = −1.0
{c, b}


216
670446
Cd1S1
1.024
18
δ1(d) = −1.0
{a, c}


216
670449
Cd1Se1
0.388
18
δ1(d) = −1.0
{a, c}


216
290011
Cd1Te1
0.321
18
δ1(d) = −1.0
{c, b}


216
670452
Cd1Te1
0.315
18
δ1(d) = −1.0
{a, c}


216
93944
Cd1Te1
0.509
18
δ1(d) = −1.0
{c, b}


216
23988
Cl1Cu1
0.395
18
δ1(d) = −1.0
{c, b}


216
670453
Cl1Cu1
0.444
18
δ1(d) = −1.0
{a, c}


216
157431
Cu1I1
0.996
18
δ1(d) = −1.0
{a, c}


216
163427
Cu1I1
1.005
18
δ1(d) = −1.0
{a, c}


216
163436
Cu1I1
1.002
18
δ1(d) = −1.0
{a, c}


216
24771
Cu1I1
0.89
18
δ1(d) = −1.0
{c, b}


216
30085
Cu1I1
1.029
18
δ1(d) = −1.0
{a, c}


216
33724
Cu1I1
1.027
18
δ1(d) = −1.0
{a, c}


216
670438
Cu1I1
0.927
18
δ1(d) = −1.0
{a, c}


216
76611
Cu1I1
0.991
18
δ1(d) = −1.0
{a, c}


216
629316
Cu5Tb1
0.015
74
δ1(d) = −1.0
{a, c, e}


216
670493
O1Zn1
0.612
18
δ1(d) = −1.0
{a, c}


216
670479
S1Sn1
0.134
10
δ1(d) = 1.0
{a, c}


216
601048
S1Zn1
2.119
18
δ1(d) = −1.0
{a, c}


216
651445
S1Zn1
2.096
18
δ1(d) = −1.0
{a, c}


216
651451
S1Zn1
1.938
18
δ1(d) = −1.0
{a, c}


216
651454
S1Zn1
2.097
18
δ1(d) = −1.0
{a, c}


216
651455
S1Zn1
2.097
18
δ1(d) = −1.0
{a, c}


216
651457
S1Zn1
2.096
18
δ1(d) = −1.0
{a, c}


216
651458
S1Zn1
2.109
18
δ1(d) = −1.0
{a, c}


216
670469
S1Zn1
1.959
18
δ1(d) = −1.0
{a, c}


216
167830
Se1Zn1
1.153
18
δ1(d) = −1.0
{c, b}


216
652209
Se1Zn1
1.201
18
δ1(d) = −1.0
{a, c}


216
652210
Se1Zn1
1.178
18
δ1(d) = −1.0
{a, c}


216
652211
Se1Zn1
0.982
18
δ1(d) = −1.0
{a, c}


216
652212
Se1Zn1
1.208
18
δ1(d) = −1.0
{a, c}


216
652214
Se1Zn1
1.204
18
δ1(d) = −1.0
{a, c}


216
652215
Se1Zn1
1.197
18
δ1(d) = −1.0
{a, c}


216
652216
Se1Zn1
1.195
18
δ1(d) = −1.0
{a, c}


216
652220
Se1Zn1
1.195
18
δ1(d) = −1.0
{a, c}


216
652221
Se1Zn1
1.201
18
δ1(d) = −1.0
{a, c}


216
652222
Se1Zn1
1.198
18
δ1(d) = −1.0
{a, c}


216
652223
Se1Zn1
1.193
18
δ1(d) = −1.0
{a, c}


216
652224
Se1Zn1
1.197
18
δ1(d) = −1.0
{a, c}


216
652226
Se1Zn1
1.21
18
δ1(d) = −1.0
{a, c}


216
652227
Se1Zn1
1.238
18
δ1(d) = −1.0
{a, c}


216
652228
Se1Zn1
1.238
18
δ1(d) = −1.0
{a, c}


216
670495
Se1Zn1
1.026
18
δ1(d) = −1.0
{a, c}


216
52513
Te1Zn1
0.986
18
δ1(d) = −1.0
{a, c}


216
653193
Te1Zn1
0.986
18
δ1(d) = −1.0
{a, c}


216
653194
Te1Zn1
0.992
18
δ1(d) = −1.0
{a, c}


216
653195
Te1Zn1
0.994
18
δ1(d) = −1.0
{a, c}


216
653196
Te1Zn1
0.982
18
δ1(d) = −1.0
{a, c}


216
653198
Te1Zn1
0.992
18
δ1(d) = −1.0
{a, c}


216
653199
Te1Zn1
0.992
18
δ1(d) = −1.0
{a, c}


216
653205
Te1Zn1
1.017
18
δ1(d) = −1.0
{a, c}


216
670486
Te1Zn1
0.76
18
δ1(d) = −1.0
{a, c}


221
26753
B6Ca1
0.213
20
δ1(a) = −1.0, δ2(d) = −1.0
{e, b}


221
44985
B6Ca1
0.412
20
δ1(b) = −1.0, δ2(c) = −1.0
{a, f}


221
655040
B6Ca1
0.213
20
δ1(b) = −1.0, δ2(c) = −1.0
{f, a}


221
20240
B6Si1
0.435
22
δ1(b) = −1.0, δ2(c) = −1.0
{a, f}


221
659503
B6Sr1
0.164
28
δ1(b) = −1.0, δ2(c) = −1.0
{f, a}


227
236959
B1Li1
1.454
8
δ2(c) = −1.0
{a, b}


227
162620
O2Si1
5.436
32
δ1(d) = 1.0, δ2(d) = 1.0
{a, c}


227
170476
O2Si1
6.021
128
δ1(c) = 1.0, δ2(c) = 1.0
{f, d, e}


227
35536
O2Si1
5.668
32
δ1(d) = 1.0, δ2(d) = 1.0
{a, c}


227
77458
O2Si1
5.671
32
δ1(d) = 1.0, δ2(d) = 1.0
{a, c}


227
77459
O2Si1
5.67
32
δ1(d) = 1.0, δ2(d) = 1.0
{a, c}


227
77460
O2Si1
5.669
32
δ1(d) = 1.0, δ2(d) = 1.0
{a, c}


2
59173
Al2Cd2Cl8
2.978
86
δ1(f) = 1.0
{i}


2
62038
Al2Cd2Cl8
3.048
86
δ1(g) = 1.0
{i}


2
426520
Al4Cl14Te4
0.032
134
δ1(a) = 1.0
{i}


2
43508
As1Fe1S1
0.225
76
δ1(e) = 1.0, δ1(g) = 1.0
{i}


2
43509
As1Fe1S1
0.118
76
δ1(f) = 1.0, δ1(g) = 1.0
{i}


2
63129
Au1Br8Te1
1.046
146
δ1(c) = 1.0
{i}


2
98522
B18Cs8S18
3.127
234
δ1(a) = −1.0
{i}


2
98521
B18Rb8S18
3.084
234
δ1(a) = −1.0
{i}


2
410757
B18Rb8Se18
2.270
234
δ1(a) = −1.0
{i}


2
432662
B8Br6P4
3.104
86
δ1(h) = 1.0
{i}


2
83806
Bi2Br8Te4
1.061
90
δ1(c) = 1.0
{i}


2
391157
Bi4Cl16Te14
0.571
216
δ1(b) = 1.0, δ1(e) = 1.0
{i}


2
426521
Bi6Cl20Te4
1.363
194
δ1(f) = 1.0
{i}


2
83805
Bi6Cl20Te4
1.348
194
δ1(b) = 1.0
{i}


2
401905
Br12Ta2Te4
0.961
118
δ1(f) = 1.0
{i}


2
82245
Br1Mo1Te4
0.809
74
δ1(a) = 1.0
{i}


2
424413
Br2Nb1S2
1.403
78
δ1(a) = 1.0
{i}


2
202821
Br2Nb1Se2
0.919
78
δ1(a) = 1.0
{i}


2
165428
C22Co6O18
1.419
250
δ1(h) = −1.0
{i}


2
415092
C2I10La6
0.201
144
δ1(a) = 2.0
{i}


2
109830
C2O4Pb1
2.607
72
δ1(e) = 1.0, δ1(g) = 1.0
{i}


2
109831
C2O4Pb1
2.720
72
δ1(e) = 1.0, δ1(g) = 1.0
{i}


2
401907
Cl12Ta2Te4
1.149
118
δ1(f) = 1.0
{i}


2
410188
Cl18P2Re2
0.009
150
δ1(h) = −1.0
{i}


2
10483
Cl2Nb1Se2
0.947
78
δ1(a) = 1.0
{i}


2
416429
Cl5O4Re2
0.019
146
δ1(e) = 1.0
{i}


2
401589
Cl6Hf1Te4
1.163
70
δ1(h) = 1.0
{a, i}


2
413579
Cl8Ga2Hg2
3.055
86
δ1(c) = 1.0
{i}


2
415580
Cs1Sb2Se4
1.032
86
δ1(a) = 1.0
{i}


2
61220
Cs1Sb2Se4
1.020
86
δ1(c) = 1.0
{i}


2
73008
Cs2S6Sn2
1.846
62
δ1(c) = 1.0
{i}


2
67976
Cs2S8Sb4
1.283
86
δ1(c) = 1.0
{i}


2
402842
Cs2Se6Sn2
1.193
62
δ1(c) = 1.0
{i}


2
408148
Cs2Se6Sn2
1.180
62
δ1(g) = 1.0
{i}


2
418434
Cs4P2Se10
1.524
106
δ1(h) = 1.0
{i}


2
430940
Cu4P3Se4
0.935
166
δ1(b) = 1.0, δ1(c) = 1.0, δ1(f) = 1.0
{i}


2
63301
F12I4Sb2
0.573
122
δ1(a) = −1.0
{i}


2
201222
F12Sb2Te4
1.064
118
δ1(c) = 1.0
{i}


2
35676
Ge1Li1Te2
0.342
102
δ1(g) = 1.0
{d, b, i}


2
49658
Ge2Te6Tl6
0.468
124
δ1(c) = 1.0, δ1(f) = 1.0
{i}


2
82242
Hg1O3V1
1.825
70
δ1(f) = 1.0
{i}


2
2564
Hg2P2S6
1.792
70
δ1(h) = 1.0
{i}


2
639130
Hg2P2S6
1.828
70
δ1(h) = 1.0
{i}


2
78371
I12Nb2Te8
0.525
158
δ1(h) = 1.0
{i}


2
67533
I1Ta1Te4
0.286
72
δ1(a) = 1.0, δ1(d) = 1.0
{i}


2
413858
In2O5P1
2.526
82
δ1(d) = 1.0
{i}


2
16972
K2O8S2
0.435
78
δ1(a) = 1.0
{i}


2
54024
K2O8S2
3.750
78
δ1(c) = 1.0
{i}


2
402886
K2Sb4Se8
1.088
86
δ1(h) = 1.0
{i}


2
30535
La6O18Re4
0.137
202
δ1(d) = −1.0
{i}


2
150688
Li1Mo1S2
0.988
76
δ1(d) = 1.0, δ1(e) = 1.0
{i}


2
95571
Li1Mo1S2
0.136
76
δ1(d) = 1.0, δ1(f) = 1.0
{i}


2
413932
Mo4N14Sr10
1.236
194
δ1(h) = 1.0
{i}


2
171374
Na2O8S2
3.839
62
δ1(f) = 1.0
{i}


2
402887
Rb2Sb4Se8
1.092
86
δ1(h) = 1.0
{i}


2
416310
Si2Te6Tl6
0.793
124
δ1(c) = 1.0, δ1(f) = 1.0
{i}


10
422527
As2Ga2Sr1
0.257
104
δ1(a) = −1.0, δ1(g) = −1.0
{c, d, n, m}


10
246004
C2Ca1O4
2.314
136
δ1(b) = −1.0, δ1(c) = −1.0, δ1(d) = −1.0,
{o, m, l, n, j}







δ1(h) = −1.0


10
246005
C2Ca1O4
2.259
136
δ1(a) = −1.0, δ1(e) = −1.0, δ1(f) = −1.0,
{o, m, n, k, i}







δ1(g) = −1.0


11
48168
Al2Na7Sb5
0.278
76
δ1(b) = 1.0
{f, e}


11
29261
Ba3P6Si4
0.353
152
δ1(a) = 1.0
{f, e}


11
411136
Bi9I3Rh2
0.198
168
δ1(a) = 1.0
{f, e}


11
10066
Cl7Nb3Se5
0.920
236
δ1(a) = 1.0
{f, e}


11
430682
Ir2Se5Sn1
0.202
208
δ1(a) = 1.0
{f, e}


11
249937
K4P8Te4
1.078
100
δ1(d) = 1.0
{f, e}


12
4164
Al1O4W1
1.116
66
δ1(a) = −1.0
{j, i, g}


12
39930
As1Cl2Hg2
1.642
172
δ1(b) = −1.0, δ1(c) = −1.0
{j, i}


12
37001
As2F12I4
0.525
122
δ1(a) = 1.0
{j, i}


12
420833
As3Ba2Cd2
0.026
118
δ1(a) = −1.0
{i}


12
262413
As3Sr2Zn2
0.091
118
δ1(a) = −1.0
{i}


12
82360
Ba5Cr1N5
0.112
162
δ1(c) = −1.0
{j, i, g}


12
406951
Bi4Br2Ru1
0.336
84
δ1(a) = −1.0, δ1(b) = −1.0
{i, g}


12
69975
Br10Te4Zr2
1.043
102
δ1(d) = −1.0
{h, j, i, g}


12
424414
Br2Nb1S2
1.313
78
δ1(a) = −1.0
{j, i, g}


12
202822
Br2Nb1Se2
0.841
78
δ1(a) = −1.0
{j, i, g}


12
672450
C1B2O2
4.656
44
δ1(f) = 1.0
{i}


12
2785
C1N1Th1
1.018
42
δ1(d) = 1.0
{i}


12
47225
C2Br2Gd2
0.002
58
δ1(b) = −1.0
{i}


12
72274
C2Br2Gd2
0.003
58
δ1(a) = −1.0
{i}


12
462
C2La2O2
3.038
42
δ1(a) = 1.0
{i}


12
154357
C4Cs2O4
2.718
58
δ1(a) = 1.0
{j, i}


12
154354
C4Li2O4
2.139
42
δ1(c) = 1.0
{h, i, g}


12
154356
C4O4Rb2
2.717
58
δ1(a) = 1.0
{j, i}


12
61393
Cd1P1S1
1.883
70
δ1(a) = −1.0
{j, i, g}


12
620232
Cd1P1S1
1.739
70
δ1(a) = −1.0
{j, i, g}


12
79556
Cd1P1S1
1.882
70
δ1(a) = −1.0
{j, i, g}


12
657320
Cd2P2S6
1.875
70
δ1(a) = −1.0
{j, i, g}


12
413701
Cd6Sb12Sr11
0.167
242
δ1(d) = −1.0
{a, i}


12
418887
Cd6Sb12Sr11
0.155
242
δ1(b) = −1.0
{c, i}


12
50594
Cl1Hg2P1
1.796
86
δ1(b) = −1.0, δ1(f) = 5.0
{h, e, i}


12
10484
Cl2Nb1S2
1.425
78
δ1(a) = −1.0
{j, i, g}


12
25631
Cl2Nb2S2
1.330
78
δ1(a) = −1.0
{j, i, g}


12
61392
Fe1P1S3
0.118
62
δ1(a) = −1.0
{j, i, g}


12
16252
Fe2P2S6
0.098
62
δ1(a) = −1.0
{j, i, g}


12
27307
Fe2P2S6
0.104
62
δ1(a) = −1.0
{j, i, g}


12
633080
Fe2P2S6
0.121
62
δ1(a) = −1.0
{j, i, g}


12
633087
Fe2P2S6
0.120
62
δ1(a) = −1.0
{j, i, g}


12
657319
Fe2P2S6
0.107
62
δ1(a) = −1.0
{j, i, g}


12
636776
Ge1K3S3
2.684
98
δ1(a) = −1.0
{h, j, e, i}


12
47111
Ge2K6S6
2.239
98
δ1(c) = −1.0
{f, j, i, g}


12
47112
Ge2K6Se6
2.145
98
δ1(a) = −1.0
{h, j, e, i}


12
69123
Hg6O7Si2
1.555
122
δ1(a) = −1.0
{j, b, i}


12
80109
I2O1Ta1
0.754
50
δ1(c) = −1.0
{i}


12
1238
K6Si2Te6
1.970
98
δ1(a) = −1.0
{h, j, e, i}


12
642729
Mg1P1S3
2.531
50
δ1(a) = −1.0
{j, i, g}


12
426907
Na4P2S6
2.758
50
δ1(a) = −1.0
{h, j, i, g}


12
602341
Ni1P1S3
0.005
66
δ1(a) = 1.0
{j, i, g}


12
646133
Ni1P1S3
0.004
66
δ1(a) = 1.0
{j, i, g}


12
646145
Ni1P1Se3
0.013
66
δ1(a) = 1.0
{j, i, g}


12
657314
Ni2P2S6
0.003
66
δ1(a) = 1.0
{j, i, g}


12
79557
P1S3Zn1
2.074
70
δ1(a) = −1.0
{j, i, g}


12
648076
P2S6V2
0.152
56
δ1(a) = −1.0, δ1(b) = −1.0, δ1(e) = 1.0
{j, i, g}


12
201933
P2S6Zn2
2.073
70
δ1(a) = −1.0
{j, i, g}


12
648084
P2S6Zn2
2.035
70
δ1(a) = −1.0
{j, i, g}


12
648089
P2S6Zn2
2.089
70
δ1(a) = −1.0
{j, i, g}


12
1434
P6S18Zn4
1.763
186
δ1(c) = −1.0
{j, i}


13
51511
Hg2Mo2O7
2.326
156
δ1(c) = 1.0
{e, g}


13
15005
Hg2O4S1
0.093
108
δ1(d) = 1.0
{e, g}


13
248726
Hg2O4S1
2.134
108
δ1(a) = 1.0
{f, g}


13
15006
Hg2O4Se1
0.272
108
δ1(a) = 1.0
{f, g}


13
410762
Hg4O7P2
1.841
200
δ1(b) = 1.0
{f, g}


13
60242
K2Mo8O16
0.066
324
δ1(b) = 1.0
{e, g}


14
71897
Ag5Ge1O4
0.631
332
δ1(b) = 1.0
{e}


14
72317
Ag5Ge1O4
0.631
332
δ1(b) = 1.0
{e}


14
10323
Al4Cl14Te4
1.490
268
δ1(b) = 1.0
{e}


14
26013
As1Cd2Cl2
1.171
172
δ1(b) = 1.0
{e}


14
109206
As1Fe1S1
0.626
76
δ1(a) = 1.0
{e}


14
15986
As1Fe1S1
0.128
76
δ1(a) = 1.0
{e}


14
185809
As1Fe1S1
0.572
76
δ1(c) = 1.0
{e}


14
62400
As1Fe1S1
0.134
76
δ1(d) = 1.0
{e}


14
610526
As1Fe1Se1
0.243
76
δ1(b) = 1.0
{e}


14
610529
As1Fe1Te1
0.541
76
δ1(a) = 1.0
{e}


14
611299
As1Ru1Te1
0.898
76
δ1(a) = 1.0
{e}


14
405235
As2Cs4Te6
0.816
164
δ1(b) = 1.0
{e}


14
35412
As2F12Hg4
1.005
284
δ1(c) = 1.0
{e}


14
427418
As2Hg6O10
1.493
284
δ1(c) = 1.0
{e}


14
2604
As2Hg6O8
0.545
260
δ1(d) = 1.0
{e}


14
413886
As2Hg6O8
0.614
260
δ1(a) = 1.0
{e}


14
62520
Ba1P3Pt2
0.112
180
δ1(a) = 1.0
{c, d, e}


14
412764
Ba2P2S6
3.205
132
δ1(d) = 1.0
{e}


14
412768
Ba2P2Se6
2.221
132
δ1(d) = 1.0
{e}


14
35342
Ba6P6Sn2
0.864
196
δ1(a) = 1.0
{e}


14
616892
Bi1Os1Se1
0.424
76
δ1(d) = 1.0
{e}


14
415090
Br14Ga4Te4
1.343
268
δ1(d) = 1.0
{e}


14
417407
Br3Hg2Te1
1.868
204
δ1(c) = 1.0
{e}


14
2328
C1D1K1O3
0.455
124
δ1(d) = −1.0
{e}


14
109600
C2Ag2O4
1.004
108
δ1(b) = 1.0
{e}


14
109601
C2Ag2O1
2.518
108
δ1(b) = 1.0
{e}


14
109602
C2Ag2O4
2.533
108
δ1(a) = 1.0
{e}


14
109603
C2Ag2O4
2.509
108
δ1(b) = 1.0
{e}


14
170029
C2Cd1O4
3.324
88
δ1(d) = 1.0
{a, e}


14
246777
C2H6O6
3.262
100
δ1(a) = 1.0
{e}


14
246778
C2H6O6
3.414
100
δ1(b) = 1.0
{e}


14
173993
C2Li2O4
3.609
68
δ1(d) = 1.0
{e}


14
171458
C2Na2O4
2.513
68
δ1(a) = 1.0
{e}


14
171459
C2Na2O4
3.486
68
δ1(a) = 1.0
{e}


14
56906
C2Na2O4
3.369
68
δ1(a) = 1.0
{e}


14
170127
C2O4Tl2
2.514
76
δ1(d) = 1.0
{e}


14
109665
C2O4Zn1
2.341
88
δ1(b) = 1.0
{a, e}


14
154355
C4Na2O4
2.563
84
δ1(a) = −1.0
{e}


14
152115
Ca1Mo5O8
0.193
320
δ1(c) = 1.0, δ1(d) = 1.0
{e}


14
280969
Ca1Mo5O8
0.142
320
δ1(a) = 1.0, δ1(b) = 1.0
{e}


14
405192
Ca2P2S6
3.158
100
δ1(d) = 1.0
{e}


14
412765
Ca2P2Se6
2.255
100
δ1(d) = 1.0
{e}


14
412647
Cd2Cl2P1
1.560
172
δ1(a) = 1.0
{e}


14
59914
Cl14Ga4Te4
1.477
268
δ1(b) = 1.0
{e}


14
109325
Cl3Cu1K1
0.017
164
δ1(b) = −1.0
{e}


14
28062
Cl3Mo1S2
1.319
156
δ1(d) = 1.0
{e}


14
416053
Cl7O3Re2
0.003
324
δ1(d) = 1.0
{e}


14
74940
Co1K2O2
0.036
156
δ1(d) = 1.0
{e}


14
16279
Cs1O5V2
0.006
196
δ1(a) = 1.0
{e}


14
850
Cs1O5V2
0.030
196
δ1(c) = 1.0
{e}


14
26726
Cs2O8S2
1.421
156
δ1(c) = 1.0
{e}


14
84993
Cs2Se6Te2
0.753
132
δ1(d) = 1.0
{e}


14
412900
Cu1La2S4
1.579
228
δ1(a) = 1.0
{e}


14
628243
Cu1La2S4
1.583
228
δ1(a) = 1.0
{e}


14
633086
Fe1P1S1
0.318
76
δ1(d) = 1.0
{e}


14
633093
Fe1P1Se1
0.320
76
δ1(b) = 1.0
{e}


14
24161
Fe1S1Sb1
0.452
76
δ1(b) = 1.0
{e}


14
633399
Fe1Sb1Se1
0.172
76
δ1(d) = 1.0
{e}


14
633405
Fe1Sb1Te1
0.189
76
δ1(b) = 1.0
{e}


14
61400
Ge2Na6Se6
2.071
100
δ1(d) = 1.0
{e}


14
47113
Ge2Na6Te6
1.396
100
δ1(b) = 1.0
{e}


14
170953
H4B2O4
4.792
136
δ1(a) = 1.0, δ1(b) = 1.0
{e}


14
74885
Hg1O4Re1
3.000
172
δ1(d) = 1.0
{e}


14
422481
Hg2N2O4
2.187
116
δ1(a) = 1.0
{e}


14
60055
Hg2N2O4
2.174
116
δ1(a) = 1.0
{e}


14
61064
Hg2N2O4
2.189
116
δ1(c) = 1.0
{e}


14
59156
Hg4N2O8
1.687
212
δ1(b) = 1.0
{e}


14
61101
Hg4N2O8
1.788
212
δ1(a) = 1.0
{e}


14
61437
Hg4N2O8
1.788
212
δ1(a) = 1.0
{e}


14
410760
Hg6O8P2
0.919
260
δ1(a) = 1.0
{e}


14
410761
Hg6O8P2
2.510
260
δ1(a) = 1.0
{e}


14
71516
I1Nb2Te6
0.458
276
δ1(b) = 1.0, δ1(c) = 1.0, δ1(d) = 1.0
{e}


14
1700
In4P6S18
1.562
300
δ1(b) = 1.0
{e}


14
418250
K4O8P2
3.529
188
δ1(d) = 1.0
{e}


14
410863
K6Se6Sn2
1.881
196
δ1(c) = 1.0
{e}


14
10109
K6Sn2Te6
1.426
196
δ1(a) = 1.0
{e}


14
80470
Mo5O8Sr1
0.095
352
δ1(c) = 1.0, δ1(d) = 1.0
{e}


14
15579
Na6Si2Te6
1.868
100
δ1(a) = 1.0
{e}


14
647714
Os1P1S1
0.814
76
δ1(d) = 1.0
{e}


14
647716
Os1P1Se1
0.740
76
δ1(c) = 1.0
{e}


14
647751
Os1S1Sb1
0.381
76
δ1(d) = 1.0
{e}


14
647759
Os1Sb1Se1
0.548
76
δ1(d) = 1.0
{e}


14
647762
Os1Sb1Te1
0.500
76
δ1(d) = 1.0
{e}


14
62230
P1Pb1Se3
1.591
108
δ1(c) = 1.0
{e}


14
648023
P1Ru1S1
0.510
76
δ1(c) = 1.0
{e}


14
648027
P1Ru1Se1
0.507
76
δ1(d) = 1.0
{e}


14
648028
P1Ru1Se1
0.515
76
δ1(d) = 1.0
{e}


14
655564
P1Se3Sn1
1.314
108
δ1(d) = 1.0
{e}


14
647906
P2Pb2S6
2.062
108
δ1(d) = 1.0
{e}


14
647911
P2Pb2Se6
1.573
108
δ1(d) = 1.0
{e}


14
647914
P2Pb2Se6
1.579
108
δ1(d) = 1.0
{e}


14
39232
P2S6Sn2
1.620
108
δ1(a) = 1.0
{e}


14
72835
P2S6Sn2
1.644
108
δ1(c) = 1.0
{e}


14
405191
P2S6Sr2
3.153
132
δ1(c) = 1.0
{e}


14
64659
P2Se6Sn2
1.315
108
δ1(d) = 1.0
{e}


14
648111
P2Se6Sn2
1.358
108
δ1(d) = 1.0
{e}


14
648112
P2Se6Sn2
0.127
108
δ1(d) = 1.0
{e}


14
648114
P2Se6Sn2
1.314
108
δ1(d) = 1.0
{e}


14
412766
P2Se6Sr2
2.224
132
δ1(d) = 1.0
{e}


14
62697
P2Se6Tl4
1.430
232
δ1(b) = 1.0, δ1(c) = 1.0
{e}


14
650583
Ru1S1Sb1
0.172
76
δ1(c) = 1.0
{e}


14
650594
Ru1Sb1Se1
0.296
76
δ1(d) = 1.0
{e}


14
650595
Ru1Sb1Te1
0.328
76
δ1(d) = 1.0
{e}


14
650596
Ru1Sb1Te1
0.355
76
δ1(d) = 1.0
{e}


15
24037
Ag2O2Pb1
1.006
76
δ1(c) = 5.0
{f, d, e, b}


15
65998
Ag2O2Pb1
0.997
76
δ1(c) = 5.0
{a, d, e, f}


15
59115
As1F6I5
1.290
164
δ1(d) = −1.0
{f, c, e}


15
75170
As3Br1Cd2
1.311
92
δ1(a) = 1.0
{f, e}


15
75169
As3Br1Hg2
1.182
92
δ1(a) = 1.0
{f, e}


15
40449
As3Cd2I1
1.245
92
δ1(a) = 1.0
{f, e}


15
62519
As6Ba1Pt4
0.702
160
δ1(c) = 1.0, δ1(d) = 1.0
{a, f, b, e}


15
62518
As6Pt4Sr1
0.748
160
δ1(c) = 1.0, δ1(d) = 1.0
{a, f, b, e}


15
670080
Au1Cl1O2
0.188
60
δ1(a) = −1.0, δ1(c) = 5.0
{f, d, e}


15
423233
Au1Cl4Cs1
1.881
96
δ1(d) = 4.0
{f, c, e}


15
26021
Au1Cl4Rb1
1.967
96
δ1(d) = 4.0
{f, c, e}


15
62107
Au1Cl4Tl1
1.782
84
δ1(c) = 4.0
{f, d, e}


15
9908
Au1F4Li1
1.179
80
δ1(c) = 4.0
{f, d, e}


15
165259
Au1Li1S1
1.142
72
δ1(d) = 5.0
{f, c, b}


15
411410
B2Li2Se5
1.716
76
δ1(b) = 1.0
{f, e}


15
409330
Bi3Cl1O4
2.391
92
δ1(d) = −2.0
{f, c, e}


15
100880
Br1Cd2P3
1.328
92
δ1(b) = 1.0
{f, e}


15
31925
Br2Hg2O6
3.493
148
δ1(a) = 1.0
{f}


15
150101
C2O4Sn1
2.597
72
δ1(d) = 1.0
{f, e}


15
54909
C2O4Sn1
2.554
72
δ1(c) = 1.0
{f, e}


15
109770
C4Ag2O4
0.711
248
δ1(b) = −1.0, δ1(d) = −1.0
{f}


15
100879
Cd2Cl1P3
1.441
92
δ1(b) = 1.0
{f, e}


15
100881
Cd2I1P3
1.223
92
δ1(b) = 1.0
{f, e}


15
260975
Cd2O12P4
4.397
232
δ1(c) = 5.0
{f, d, e}


15
28115
Cl1Hg2O1
1.909
148
δ1(c) = 5.0
{f, d, e}


15
74771
Cl1Hg2P3
1.510
92
δ1(a) = 1.0
{f, e}


15
16662
Cl2Hg4O2
1.332
148
δ1(d) = 5.0
{f, c, e}


15
28400
Cl2Hg4O2
1.249
148
δ1(c) = 5.0
{f, d, e}


15
65483
Cl2Hg4O2
1.966
148
δ1(d) = 5.0
{f, c, e}


15
421532
Cl4Os1Sc4
0.529
96
δ1(a) = 1.0
{f, e}


15
14119
Cs1F7Sb2
4.352
136
δ1(c) = −2.0
{f, d, e}


15
24741
Cs1F7Sb2
2.591
136
δ1(d) = −2.0
{f, c, e}


15
627081
Cs2Re3Se6
0.861
300
δ1(a) = 1.0
{f, e}


15
627082
Cs2Re3Se6
0.764
300
δ1(a) = 1.0
{f, e}


15
65966
Cs4Re6S13
1.368
312
δ1(a) = 1.0
{f, e}


15
60096
Cs4Re6Se13
1.038
312
δ1(a) = 1.0
{f, e}


15
72541
Cs4S13Tc6
0.974
312
δ1(a) = 1.0
{f, e}


15
72542
Cs4Se13Tc6
0.860
312
δ1(a) = 1.0
{f, e}


15
409512
Cs6Ge2Se6
1.760
196
δ1(d) = 1.0
{f, e}


15
89683
Cs6Ge2Te6
1.145
196
δ1(d) = 1.0
{f, e}


15
280070
Cs6Sn2Te6
1.233
196
δ1(c) = 1.0
{f, e}


15
400657
Cu2O2Pb1
0.783
76
δ1(c) = 5.0
{a, d, e, f}


15
628762
Cu2Re3Se6
0.329
316
δ1(a) = 1.0
{f, e}


15
33740
Fe2O12P4
0.335
216
δ1(d) = 3.0
{f, c, e}


15
63500
Fe2O12P4
0.412
216
δ1(d) = 3.0
{f, c, e}


15
10108
Ge2K6Te6
1.166
196
δ1(c) = 1.0
{f, e}


15
2565
Hg2P2Se6
1.060
140
δ1(d) = 1.0
{f}


15
639132
Hg2P2Se6
1.092
140
δ1(c) = 1.0
{f}


15
200836
K2Re3S6
1.411
300
δ1(a) = 1.0
{f, e}


15
641311
K2Re3S6
1.426
300
δ1(a) = 1.0
{f, e}


15
641312
K2Re3S6
1.496
300
δ1(a) = 1.0
{f, e}


15
641314
K2Re3S6
1.439
300
δ1(a) = 1.0
{f, e}


15
641315
K2Re3Se6
1.120
300
δ1(a) = 1.0
{f, e}


15
60101
K4Re6Sc12
1.110
300
δ1(a) = 1.0
{f, e}


15
72537
K4S12Tc6
1.040
300
δ1(a) = 1.0
{f, e}


15
72538
K4Se12Tc6
0.874
300
δ1(a) = 1.0
{f, e}


15
68107
Mn2Mo1P12
0.071
160
δ1(a) = 1.0, δ1(c) = 1.0, δ1(d) = 1.0
{f, e}


15
18305
Na2Nb4O11
1.949
240
δ1(c) = −2.0
{f, d, e}


15
200835
Na2Re3S6
1.519
236
δ1(a) = 1.0
{f, e}


15
644948
Na2Re3S6
1.536
236
δ1(a) = 1.0
{f, e}


15
644951
Na2Re3S6
1.726
236
δ1(a) = 1.0
{f, e}


15
76536
Na2Re3S6
1.471
236
δ1(a) = 1.0
{f, e}


15
644953
Na2Re3Se6
1.180
236
δ1(a) = 1.0
{f, e}


15
644954
Na2Re3Se6
1.120
236
δ1(a) = 1.0
{f, e}


15
261228
O3Si1Sr1
3.558
192
δ1(c) = −2.0
{f, d, e}


15
671478
O4Pd1S1
0.977
80
δ1(d) = 4.0
{f, c, e}


15
671485
O4Pt1S1
1.525
80
δ1(d) = 4.0
{f, c, e}


15
166875
O7P2Pd2
0.911
144
δ1(c) = 4.0
{a, d, e, f}


15
195291
O7P2Pd2
0.884
144
δ1(d) = 4.0
{a, c, f, e}


15
195292
O7P2Pd2
0.962
144
δ1(c) = 4.0
{a, d, e, f}


15
195293
O7P2Pd2
0.922
144
δ1(c) = 4.0
{a, d, e, f}


15
415239
O7P2Pd2
0.911
144
δ1(c) = 4.0
{a, d, e, f}


15
62517
P6Pt4Sr1
0.904
160
δ1(c) = 1.0, δ1(d) = 1.0
{a, f, b, e}


15
650019
Rb2Re3S6
1.344
300
δ1(a) = 1.0
{f, e}


15
650022
Rb2Re3Se6
1.007
300
δ1(a) = 1.0
{f, e}


15
650023
Rb2Re3Se6
1.021
300
δ1(a) = 1.0
{f, e}


15
79583
Rb4Re6S12
1.347
300
δ1(a) = 1.0
{f, e}


15
60098
Rb4Re6S13
1.203
312
δ1(a) = 1.0
{f, e}


15
60100
Rb4Re6Se12
1.038
300
δ1(a) = 1.0
{f, e}


15
72539
Rb4S13Tc6
0.941
312
δ1(a) = 1.0
{f, e}


15
72540
Rb4Se12Tc6
0.805
300
δ1(a) = 1.0
{f, e}


15
650081
Re3S6Tl2
0.966
252
δ1(a) = 1.0
{f, e}


15
650082
Re3S6Tl2
1.085
252
δ1(a) = 1.0
{f, e}


15
600320
Re3Se6Tl2
0.550
252
δ1(a) = 1.0
{f, e}


15
650098
Re3Se6Tl2
0.558
252
δ1(a) = 1.0
{f, e}


15
65822
Re6Se12Tl4
0.794
252
δ1(a) = 1.0
{f, e}


51
26077
Br11Cs1Nb4
0.150
276
δ1(b) = −1.0
{l, j, e, k, f, i, g}


51
380397
Br11Nb4Rb1
0.219
276
δ1(b) = −1.0
{l, j, k, e, f, i, g}


51
26076
Cl11Cs1Nb4
0.348
276
δ1(a) = −1.0
{l, j, k, e, f, i, g}


51
412126
Cl11Nb4Rb1
0.377
276
δ1(a) = −1.0
{l, j, e, k, f, i, g}


55
183853
Al2Ca5Sb6
0.131
92
δ1(d) = −1.0
{a, h, g}


55
60146
Al2Ca5Sb6
0.100
92
δ1(a) = −1.0
{h, d, g}


55
201221
Al2Cl8Se4
1.462
344
δ1(b) = −1.0, δ1(c) = −1.0
{e, f, h, i, g}


55
27
As6Ca5Ga2
0.085
92
δ1(a) = −1.0
{h, d, g}


55
79976
Ba1Nb8O14
0.339
396
δ1(b) = −1.0
{c, a, h, d, i, g}


55
280592
Ba3O1Sb2
0.318
184
δ1(b) = −1.0, δ1(d) = −1.0
{h, g}


55
62305
Ba5In2Sb6
0.003
172
δ1(a) = −1.0
{h, d, g}


55
163584
C2K2O4
2.813
100
δ1(c) = −1.0
{h, g}


55
165561
C2K2O4
2.813
100
δ1(c) = −1.0
{h, g}


55
163587
C2O4Rb2
3.187
100
δ1(a) = −1.0
{h, g}


55
165563
C2O4Rb2
3.187
100
δ1(a) = −1.0
{h, g}


55
36467
Ca5In2Sb6
0.031
92
δ1(a) = −1.0
{h, d, g}


55
672086
Ca5In2Sb6
0.104
92
δ1(b) = −1.0
{c, h, g}


55
36468
In2Sb6Sr5
0.004
172
δ1(a) = −1.0
{h, d, g}


55
202673
Nb8O14Sr1
0.259
396
δ1(b) = −1.0
{c, a, h, d, i, g}


55
202674
Nb8O14Sr1
0.172
396
δ1(c) = −1.0
{a, b, h, d, i, g}


58
165377
Ag5O4Si1
0.633
332
δ1(a) = −1.0
{h, g}


60
74770
Br1Hg2P3
1.005
184
δ1(a) = 1.0
{c, d}


60
15853
Nb2Ni1O6
0.024
288
δ1(a) = 1.0
{c, d}


60
91166
O9P2V2
0.029
296
δ1(a) = 1.0
{c, d}


61
421883
Al2Cl8Te4
1.373
344
δ1(b) = 1.0
{c}


61
411949
Au1O4S1
1.854
328
δ1(b) = 1.0
{c}


61
201539
Cl2N4S6
1.169
280
δ1(b) = −1.0
{c}


61
160511
Co1Ge1Te1
0.154
152
δ1(a) = 1.0
{c}


61
419780
Co1Ge1Te1
0.049
152
δ1(a) = 1.0
{c}


61
29506
Cu1O3Se1
0.103
280
δ1(a) = −1.0
{c}


61
61342
Cu1O3Se1
0.093
280
δ1(b) = −1.0
{c}


61
430942
Cu1P2Se1
0.648
216
δ1(b) = 1.0
{c}


61
260373
Ge1Rh1Te1
0.254
152
δ1(a) = 1.0
{c}


61
429412
O6P2Tl4
2.444
232
δ1(b) = 1.0
{c}


61
413194
Pt1Sb1Si1
0.199
152
δ1(a) = 1.0
{c}


62
300157
Al1K1Sb4
0.185
128
δ1(b) = 1.0
{c}


62
10032
Al1P3Si1
0.274
88
δ1(a) = 1.0
{c, d, b}


62
280231
As1La1Te1
0.045
88
δ1(a) = 1.0
{c}


62
391228
As2Hg4O7
1.379
400
δ1(a) = 1.0, δ1(b) = 1.0
{c, d}


62
412643
Ba1P4Te2
1.019
168
δ1(b) = 1.0
{c, d}


62
78830
Cs2Ge1Te4
0.521
184
δ1(b) = 1.0
{c, d}


62
74826
Cs2Sn1Te4
0.688
184
δ1(b) = 1.0
{c, d}


62
300158
Ga1K1Sb4
0.229
128
δ1(a) = 1.0
{c}


62
153289
H2B1Li1
0.412
24
δ1(b) = 1.0
{c}


62
673401
La1Mn1S3
0.333
144
δ1(a) = 1.0
{c}


62
641637
La1P1S1
0.453
176
δ1(b) = 1.0
{c, d}


62
648080
P1S1Y1
0.349
176
δ1(a) = 1.0
{c, d}


62
71962
P2Ru2Th1
0.152
152
δ1(b) = 1.0
{c}


63
391275
I1K4P21
1.087
296
δ1(d) = 1.0
{c, e, f, h, g}


63
391274
I1P21Rb4
1.244
296
δ1(d) = 1.0
{c, e, f, h, g}


64
418627
B12Li2Si2
1.682
92
δ1(a) = 1.0
{f, g}


64
411967
B2Ba1Se6
1.716
104
δ1(c) = 1.0
{a, d, f, g}


64
165180
In9K1Na3
0.014
156
δ1(b) = 1.0
{f, e, g}


64
68498
La2O2S2
1.570
92
δ1(a) = −1.0
{f, d, e}


64
415240
Na4P2Se6
1.943
100
δ1(a) = −1.0
{f, e, g}


64
37326
Nb1P2S8
1.289
284
δ1(a) = −1.0
{f, d, g}


67
36078
F6Pa1Rb1
0.297
128
δ1(f) = 2.0
{n, d, o, g}


68
165258
Au1Na1S1
2.138
288
δ1(c) = 5.0
{e, f, d, i, g}


69
627055
Cs2Ni3S4
0.287
72
δ1(c) = -4.0
{a, e, i, m}


69
33891
Cs2Ni3Se4
0.492
72
δ1(c) = -4.0
{e, b, i, m}


69
33892
Cs2Pd3Se4
1.007
72
δ1(c) = -4.0
{e, b, i, m}


69
26266
Cs2Pt3S4
1.117
72
δ1(c) = -4.0
{a, e, i, m}


69
33893
Cs2Pt3Se4
1.216
72
δ1(c) = -4.0
{a, e, i, m}


69
20578
Li2O4U1
0.764
40
δ1(c) = 2.0
{a, e, i}


69
20579
Na2O4U1
1.179
40
δ1(c) = 2.0
{a, e, i}


69
646311
Ni3Rb2S4
0.363
72
δ1(c) = -4.0
{a, e, i, m}


69
26267
Pt3Rb2S4
0.974
72
δ1(c) = -4.0
{a, e, i, m}


71
152056
Au1Cs1F4
2.190
96
δ1(c) = -4.0
{l, j, b, d, i, g}


71
411334
Au5Cs7O2
0.719
130
δ1(c) = 2.0
{a, l, j, h, d, i, g}


71
95821
Au5Cs7O2
1.123
130
δ1(c) = 2.0
{a, l, i, h, d, i, g}


71
411333
Au5O2Rb7
0.492
130
δ1(c) = -5.0
{a, l, j, h, d, i, g}


71
91309
Au5O2Rb7
0.491
130
δ1(c) = -5.0
{a, l, i, h, d, i, g}


71
95825
Au5O2Rb7
0.633
130
δ1(c) = 2.0
{a, l, j, h, d, i, g}


71
245981
Br3Cs1Li2
3.899
32
δ1(c) = 2.0
{d, j, b, i}


71
69688
Cl2I2Ta1
0.963
66
δ1(c) = −1.0
{f, n, j, i}


71
245974
Cl3Cs1Li2
4.944
32
δ1(b) = 2.0
{a, c, j, i}


71
250914
Hf2N2S1
1.532
24
δ1(d) = 2.0
{j, b, i}


71
25000
Li2Ni1O2
0.406
24
δ1(b) = -4.0
{c, j, i}


71
183666
Na2O3Ti1
1.019
24
δ1(c) = 2.0
{a, d, j, i}


71
6157
Na2O4Pd3
0.292
56
δ1(d) = -4.0
{j, b, i, l}


71
16536
O3Pd1Sr2
0.176
48
δ1(c) = 2.0
{a, d, i}


71
31961
O3Pd1Sr2
0.092
48
δ1(c) = 2.0
{a, d, i}


71
95214
O3Pd1Sr2
0.125
48
δ1(c) = 2.0
{a, d, i}


74
35336
Al1B14Li1
1.264
92
δ1(c) = 1.0
{h, d, j, e}


74
79626
Ba1Ce1O3
1.935
80
δ1(a) = 2.0
{f, d, e}


74
88591
Ba1Ce1O3
1.941
80
δ1(d) = 2.0
{f, c, e}


74
94347
Ba1Ce1O3
1.936
80
δ1(b) = 2.0
{f, c, e}


74
415557
C2B13Li1
2.539
96
δ1(d) = 1.0
{h, j, e}


74
88338
Cu11K3Te16
0.206
488
δ1(a) = 2.0, δ1(b) = −1.0
{c, j, e, f, h, i, g}


74
74726
O4P1Rh1
1.031
228
δ1(a) = -3.0
{c, j, e, f, h, i}


74
167191
O4Si1Zn2
1.997
208
δ1(c) = -5.0
{a, j, e, h, g}


84
35299
P2S6Th1
2.523
116
δ1(d) = −1.0
{j, e, k}


84
35298
P2S6Zr1
1.572
100
δ1(d) = −1.0
{j, e, k}


87
89497
Ba9Br34O1Pr6
0.008
406
δ1(b) = −1.0
{a, e, h, d, i, g}


87
406949
Bi4I2Ru1
0.341
84
δ2(a) = −1.0, δ1(b) = −1.0
{h, e}


87
81
La4O10Re2
0.894
118
δ2(a) = 1.0
{h, d, e, i}


123
69124
Br2Cs1F1
1.772
30
δ2(d) = −1.0
{a, h, c}


123
84019
Br2Cs1F1
1.371
30
δ2(d) = −1.0
{a, h, c}


123
410874
C2Ag1K1
2.357
28
δ1(b) = 1.0
{a, d, g}


123
411251
C2Au1Cs1
1.710
28
δ1(b) = 1.0
{a, d, g}


123
411255
C2Au1K1
1.861
28
δ1(b) = 1.0
{a, d, g}


123
411254
C2Au1Na1
1.085
20
δ1(b) = 1.0
{a, d, g}


123
411252
C2Au1Rb1
1.786
28
δ1(b) = 1.0
{a, d, g}


123
391118
C2Cu1Rb1
2.008
28
δ1(b) = 1.0
{a, d, g}


123
391119
C2Cu1Rb1
2.007
28
δ1(b) = 1.0
{a, d, g}


131
410873
C2Ag1Cs1
2.576
56
δ1(d) = 1.0
{e, b, k}


131
412037
C2Cu1K1
2.110
56
δ1(d) = 1.0
{b, e, k}


131
412038
C2Cu1K1
2.111
56
δ1(d) = 1.0
{b, e, k}


131
412039
C2Cu1Rb1
2.109
56
δ1(d) = 1.0
{b, e, k}


131
412040
C2Cu1Rb1
2.092
56
δ1(d) = 1.0
{b, e, k}


136
416393
Cl3O1W1
0.099
132
δ1(a) = −1.0
{f, i, g}


136
65183
I3O1W1
0.389
132
δ1(a) = −1.0
{f, i, g}


137
62137
Li6O4Zn1
3.707
84
δ1(a) = −1.0
{f, d, b, g}


138
401591
Cl6Hf1Se4
1.375
280
δ1(d) = −1.0
{c, j, h, i}


138
401590
Cl6Se4Zr1
1.394
280
δ1(d) = −1.0
{c, j, h, i}


139
84020
Br2Cs2F2
2.546
46
δ2(a) = −1.0
{e}


139
84021
Br2Cs2F2
2.295
46
δ2(a) = −1.0
{e}


139
84022
Br2Cs2F2
2.147
46
δ2(a) = −1.0
{e}


139
280189
Cs2I6Pd1
0.532
70
δ2(b) = −1.0
{a, h, d, e}


140
412830
C4Ba1O4
2.531
100
δ1(d) = 1.0
{a, l}


141
163982
Ag3Cu1S2
0.264
224
δ1(c) = −5.0
{h, d, e, g}


141
67526
Ag3Cu1S2
0.327
224
δ1(d) = −5.0
{c, h, e, g}


141
9456
Ba1Cu2O2
1.339
88
δ1(c) = −5.0
{a, d, e}


141
22206
Ba1O7U2
1.603
160
δ1(d) = 2.0
{c, a, e, b, f}


141
248144
C4O4Pb1
3.071
88
δ1(b) = 1.0
{a, h, e}


141
52389
Cd1In2O4
0.636
84
δ1(b) = −1.0
{a, h, d}


141
61333
Cl2O1Pd2
0.765
80
δ1(d) = −4.0
{a, c, e}


141
25002
Cu2O2Sr1
1.821
88
δ1(c) = −5.0
{a, d, e}


147
75001
Al1Si1Te3
0.688
50
δ2(b) = −1.0
{c, d, g}


148
151976
B12Br14Cs2
2.815
276
δ2(a) = 1.0, δ2(b) = 1.0
{f, c}


148
151975
B12Cl12Cs2
3.473
276
δ2(a) = 1.0, δ2(b) = 1.0
{f, c}


148
151977
B12Cs2I12
1.561
276
δ2(a) = 1.0, δ2(b) = 1.0
{f, c}


148
620234
Cd2P2Se6
1.235
70
δ2(b) = −1.0
{f, c}


148
620237
Cd2P2Se6
1.157
70
δ2(b) = −1.0
{f, c}


148
415545
Cs8O1Tl8
0.268
102
δ2(a) = −1.0
{f, c, b}


148
54141
Fe1P1Se3
0.187
62
δ2(b) = −1.0
{f, c}


148
633091
Fe1P1Se3
0.183
62
δ2(b) = −1.0
{f, c}


148
633094
Fe1P1Se3
0.184
62
δ2(b) = −1.0
{f, c}


148
633095
Fe1P1Se3
0.184
62
δ2(b) = −1.0
{f, c}


148
56890
Fe2P2Se6
0.073
62
δ2(b) = −1.0
{f, c}


148
413165
Mg2P2Se6
2.367
50
δ2(b) = −1.0
{f, c}


148
642731
Mg2P2Se6
2.384
50
δ2(b) = −1.0
{f, c}


148
280002
Nb6O12Ti2
0.491
158
δ2(a) = −1.0
{f, c}


162
411230
As2Hg2O6
1.770
70
δ2(a) = −1.0
{d, e, k}


162
673231
Ca1O6Os2
0.164
54
δ1(b) = −1.0
{a, d, k}


162
248351
O6Ru2Sr1
0.071
62
δ1(b) = −1.0
{a, d, k}


164
94396
C2Cs2Pd1
1.675
36
δ1(b) = 1.0
{a, c, d}


164
94397
C2Cs2Pt1
0.918
36
δ1(b) = 1.0
{a, c, d}


164
421489
C2K2Pd1
1.438
36
δ1(b) = 1.0
{a, c, d}


164
421490
C2K2Pd1
1.434
36
δ1(b) = 1.0
{a, c, d}


164
421491
C2K2Pt1
0.789
36
δ1(b) = 1.0
{a, c, d}


164
421492
C2K2Pt1
0.808
36
δ1(b) = 1.0
{a, c, d}


164
411388
C2Na2Pd1
0.783
20
δ1(b) = 1.0
{a, c, d}


164
50172
C2Na2Pd1
0.930
20
δ1(b) = 1.0
{a, c, d}


164
50173
C2Na2Pt1
0.334
20
δ1(b) = 1.0
{a, c, d}


164
421493
C2Pd1Rb2
1.607
36
δ1(b) = 1.0
{a, c, d}


164
421494
C2Pd1Rb2
1.570
36
δ1(b) = 1.0
{a, c, d}


164
94394
C2Pd1Rb2
1.561
36
δ1(b) = 1.0
{a, c, d}


164
94395
C2Pt1Rb2
0.919
36
δ1(b) = 1.0
{a, c, d}


164
183134
H2B2Ca1
0.052
10
δ1(f) = −1.0
{a, d}


164
200210
Mg3Nb6O11
0.159
150
δ2(a) = −1.0
{d, e, b, i}


164
62662
Mg3Nb6O11
0.183
150
δ2(a) = −1.0
{d, e, b, i}


164
109329
O2Pr2S1
0.009
44
δ2(b) = −1.0
{a, d}


164
154585
O2Pr2S1
0.006
44
δ2(b) = −1.0
{a, d}


164
25805
O2Pr2Se1
0.009
44
δ2(b) = −1.0
{a, d}


164
94415
O2Pr2Se1
0.008
44
δ2(b) = −1.0
{a, d}


166
280938
B9Mg1N1
1.681
68
δ2(a) = −1.0, δ2(b) = 1.0
{c, h}


166
422336
Cs4O1Tl2
0.162
144
δ2(b) = −2.0
{c, h, a}


166
184007
F1Gd1O1
0.013
62
δ2(a) = −1.0
{c}


166
247802
F1Gd1O1
0.013
62
δ2(a) = −1.0
{c}


166
247803
F1Gd1O1
0.013
62
δ2(a) = −1.0
{c}


166
247804
F1Gd1O1
0.013
62
δ2(a) = −1.0
{c}


166
247805
F1Gd1O1
0.013
62
δ2(a) = −1.0
{c}


166
247806
F1Gd1O1
0.013
62
δ2(a) = −1.0
{c}


166
87361
H8F4N2
1.807
46
δ2(a) = −1.0
{c, h}


176
75452
Br9Os2Rb3
0.338
212
δ1(c) = −1.0
{f, h, a, i}


176
31030
C9Fe2O9
2.544
212
δ1(c) = −1.0
{f, b, i}


176
6010
C9Fe2O9
2.682
212
δ1(c) = −1.0
{f, h, i}


187
191307
Mo1S1Se1
0.621
36
δ1(a) = 1.0, δ1(b) = 1.0, δ1(g) = 2.0
{h, d, e, i}


190
35389
Ag2I10T16
0.795
220
δ1(d) = −1.0
{f, h, e, g}


194
75386
Ba5O10Ru2
0.036
252
δ1(d) = 2.0
{c, a, e, k, f, h}


194
56896
Br9Os2Rb3
0.338
212
δ1(c) = 1.0
{f, h, b, k}


194
422525
Ca1Ga2P2
0.245
36
δ1(c) = 1.0
{a, f}


194
260562
Ca1In2P2
0.595
36
δ1(d) = 1.0
{a, f}


194
201057
Cl9Cs3Ru2
0.332
212
δ1(d) = 1.0
{f, h, b, k}


194
402407
Cl9Cs3Ti2
0.096
196
δ1(d) = 1.0
{f, h, b, k}


194
201958
Cs3F9Fe2
0.011
212
δ1(b) = 1.0
{e, k, f, h, d}


194
26565
Cs3I9Zr2
0.255
196
δ1(d) = 1.0
{f, h, b, k}


194
260563
In2P2Sr1
0.403
52
δ1(d) = 1.0
{a, f}


194
26286
K1Nb1S2
0.815
68
δ1(d) = 1.0
{a, f, b}


194
26288
K1Nb1Se2
0.545
68
δ1(d) = 1.0
{a, f, b}


194
300243
Li1Nb1O2
1.590
52
δ1(b) = 1.0
{f, d, a}


194
42008
Li1Nb1O2
1.605
52
δ1(b) = 1.0
{a, d, f}


194
451
Li1Nb1O2
1.617
52
δ1(b) = 1.0
{a, d, f}


194
73109
Li1Nb1O2
1.590
52
δ1(b) = 1.0
{a, d, f}


194
73110
Li1Nb1O2
1.592
52
δ1(b) = 1.0
{a, d, f}


194
75880
Li1Nb1O2
1.583
52
δ1(b) = 1.0
{a, d, f}


194
26284
Li1Nb1S2
0.702
52
δ1(d) = 1.0
{a, f, b}


194
29282
Na1Nb1O2
1.478
52
δ1(b) = 1.0
{a, d, f}


194
300244
Na1Nb1O2
1.256
52
δ1(b) = 1.0
{a, d, f}


194
73111
Na1Nb1O2
0.340
52
δ1(b) = 1.0
{a, d, f}


194
26285
Na1Nb1S2
0.606
52
δ1(d) = 1.0
{a, f, b}


194
26287
Na1Nb1Se2
0.405
52
δ1(d) = 1.0
{a, f, b}


202
92501
H12B12Cs2
5.609
66
δ1(a) = 1.0
{c, h}


202
36148
H12B12K2
6.042
66
δ1(a) = 1.0
{c, h}


202
98616
H12B12K2
5.976
66
δ1(a) = 1.0
{c, h}


202
20015
H12B12Rb2
4.589
66
δ1(a) = 1.0
{c, h}


202
98617
H12B12Rb2
5.807
66
δ1(a) = 1.0
{c, h}


202
151981
H12B12Tl2
3.592
54
δ1(b) = 1.0
{c, h}


202
261530
H12B12Tl2
3.600
54
δ1(a) = 1.0
{c, h}


202
422433
H12B12Tl2
3.600
54
δ1(a) = 1.0
{c, h}


202
98618
H20B12N2
5.875
66
δ1(a) = 1.0
{f, c, h}


203
405959
As1Rb3Se16
1.057
256
δ1(c) = 1.0, δ2(c) = 1.0
{a, e, b, d, g}


203
280849
K3P1Se16
1.142
256
δ1(d) = 1.0, δ2(d) = 1.0
{c, a, e, b, g}


205
23145
H6Cl2N2
2.645
120
δ2(a) = −1.0
{c, d}


205
240903
H6Cl2N2
5.080
120
δ2(a) = −1.0
{c, d}


206
78851
F6O2Pt1
0.013
256
δ1(a) = 1.0
{c, e, b}


216
605048
Ag1Cu4Tb1
0.009
74
δ1(d) = −1.0
{a, c, e}


216
160459
Au1Sc1Sn1
0.014
18
δ1(c) = −1.0
{a, d, b}


216
245754
Au1Sc1Sn1
0.013
18
δ1(d) = −1.0
{a, c, b}


216
415827
Au1Sc1Sn1
0.018
18
δ1(c) = −1.0
{a, d, b}


216
58583
Au1Sc1Sn1
0.017
18
δ1(d) = −1.0
{a, c, b}


216
612303
Au1Sc1Sn1
0.017
18
δ1(d) = −1.0
{a, c, b}


216
107120
Bi1Co1Zr1
0.956
18
δ1(d) = −1.0
{a, c, b}


216
673864
Bi1Co1Zr1
0.969
18
δ1(d) = −1.0
{a, c, b}


216
58802
Bi1Lu1Ni1
0.062
40
δ1(d) = −1.0
{a, c, b}


216
58824
Bi1Ni1Sc1
0.142
18
δ1(d) = −1.0
{a, c, b}


216
672840
Bi1Ni1Sc1
0.143
18
δ1(d) = −1.0
{a, c, b}


216
58826
Bi1Ni1Y1
0.142
26
δ1(d) = −1.0
{a, c, b}


216
672841
Bi1Ni1Y1
0.143
26
δ1(d) = −1.0
{a, c, b}


216
169138
Co1Sb1Ti1
1.046
18
δ1(d) = −1.0
{a, c, b}


216
169139
Co1Sb1Ti1
1.045
18
δ1(d) = −1.0
{a, c, b}


216
169140
Co1Sb1Ti1
1.045
18
δ1(d) = −1.0
{a, c, b}


216
169141
Co1Sb1Ti1
1.045
18
δ1(d) = −1.0
{a, c, b}


216
169142
Co1Sb1Ti1
1.044
18
δ1(d) = −1.0
{a, c, b}


216
169143
Co1Sb1Ti1
1.044
18
δ1(d) = −1.0
{a, c, b}


216
169144
Co1Sb1Ti1
1.044
18
δ1(d) = −1.0
{a, c, b}


216
169145
Co1Sb1Ti1
1.044
18
δ1(d) = −1.0
{a, c, b}


216
169146
Co1Sb1Ti1
1.043
18
δ1(d) = −1.0
{a, c, b}


216
169147
Co1Sb1Ti1
1.042
18
δ1(d) = −1.0
{a, c, b}


216
169148
Co1Sb1Ti1
1.042
18
δ1(d) = −1.0
{a, c, b}


216
169149
Co1Sb1Ti1
1.042
18
δ1(d) = −1.0
{a, c, b}


216
169150
Co1Sb1Ti1
1.041
18
δ1(d) = −1.0
{a, c, b}


216
169151
Co1Sb1Ti1
1.041
18
δ1(d) = −1.0
{a, c, b}


216
169152
Co1Sb1Ti1
1.040
18
δ1(d) = −1.0
{a, c, b}


216
169153
Co1Sb1Ti1
1.039
18
δ1(d) = −1.0
{a, c, b}


216
169154
Co1Sb1Ti1
1.039
18
δ1(d) = −1.0
{a, c, b}


216
169155
Co1Sb1Ti1
1.039
18
δ1(d) = −1.0
{a, c, b}


216
169156
Co1Sb1Ti1
1.033
18
δ1(d) = −1.0
{a, c, b}


216
169157
Co1Sb1Ti1
1.031
18
δ1(d) = −1.0
{a, c, b}


216
169158
Co1Sb1Ti1
1.030
18
δ1(d) = −1.0
{a, c, b}


216
169159
Co1Sb1Ti1
1.028
18
δ1(d) = −1.0
{a, c, b}


216
169160
Co1Sb1Ti1
1.026
18
δ1(d) = −1.0
{a, c, b}


216
169161
Co1Sb1Ti1
1.025
18
δ1(d) = −1.0
{a, c, b}


216
169162
Co1Sb1Ti1
1.024
18
δ1(d) = −1.0
{a, c, b}


216
169163
Co1Sb1Ti1
1.022
18
δ1(d) = −1.0
{a, c, b}


216
169164
Co1Sb1Ti1
1.021
18
δ1(d) = −1.0
{a, c, b}


216
169165
Co1Sb1Ti1
1.019
18
δ1(d) = −1.0
{a, c, b}


216
53070
Co1Sb1Ti1
0.982
18
δ1(d) = −1.0
{a, c, b}


216
624920
Co1Sb1Ti1
1.038
18
δ1(d) = −1.0
{a, c, b}


216
670321
Cu1Rb1Te1
0.063
26
δ1(d) = −1.0
{a, c, b}


216
672074
Fe1Nb1Sb1
0.526
26
δ1(d) = −1.0
{a, c, b}


216
673076
Fe1Nb1Sb1
0.527
26
δ1(d) = −1.0
{a, c, b}


216
83928
Fe1Nb1Sb1
0.528
26
δ1(d) = −1.0
{a, c, b}


216
181131
Fe1Sb1V1
0.301
18
δ1(d) = −1.0
{a, c, b}


216
188964
Ge1Pt1Ti1
0.750
18
δ1(d) = −1.0
{a, c, b}


216
188965
Ge1Pt1Ti1
0.742
18
δ1(d) = −1.0
{a, c, b}


216
670934
Hf1Ni1Sn1
0.304
18
δ1(d) = −1.0
{a, c, b}


216
672837
Hf1Ni1Sn1
0.313
18
δ1(d) = −1.0
{a, c, b}


216
106773
Hf1Pd1Sn1
0.401
18
δ1(d) = −1.0
{a, c, b}


216
44913
Lu1Ni1Sb1
0.199
40
δ1(d) = −1.0
{a, c, b}


216
642458
Lu1Ni1Sb1
0.191
40
δ1(d) = −1.0
{a, c, b}


216
83929
Nb1Ru1Sb1
0.344
26
δ1(d) = −1.0
{a, c, b}


216
672838
Ni1Sb1Sc1
0.241
18
δ1(d) = −1.0
{a, c, b}


216
76695
Ni1Sb1Sc1
0.240
18
δ1(d) = −1.0
{a, c, b}


216
105331
Ni1Sb1Y1
0.260
26
δ1(d) = −1.0
{a, c, b}


216
672839
Ni1Sb1Y1
0.260
26
δ1(d) = −1.0
{a, c, b}


216
174568
Ni1Sn1Ti1
0.439
18
δ1(d) = −1.0
{a, c, b}


216
670932
Ni1Sn1Ti1
0.435
18
δ1(d) = −1.0
{a, c, b}


216
672469
Ni1Sn1Ti1
0.436
18
δ1(d) = −1.0
{a, c, b}


216
672836
Ni1Sn1Ti1
0.440
18
δ1(d) = −1.0
{a, c, b}


216
672973
Ni1Sn1Ti1
0.433
18
δ1(d) = −1.0
{a, c, b}


216
674781
Ni1Sn1Ti1
0.442
18
δ1(d) = −1.0
{a, c, b}


216
670933
Ni1Sn1Zr1
0.479
18
δ1(d) = −1.0
{a, c, b}


216
673865
Ni1Sn1Zr1
0.495
18
δ1(d) = −1.0
{a, c, b}


216
674785
Ni1Sn1Zr1
0.529
18
δ1(d) = −1.0
{a, c, b}


216
2457
O4S1Zn1
4.057
42
δ1(c) = −1.0
{a, d, e}


216
415944
Pd1Sb1Sc1
0.243
18
δ1(d) = −1.0
{a, c, b}


216
77948
Pt1Sb1Sc1
0.532
18
δ1(d) = −1.0
{a, c, b}


216
44970
Pt1Sb1Y1
0.215
26
δ1(d) = −1.0
{a, c, b}


216
649578
Pt1Sb1Y1
0.294
26
δ1(d) = −1.0
{a, c, b}


216
105799
Pt1Sn1Ti1
0.688
18
δ1(d) = −1.0
{a, c, b}


216
52067
Rh1Sb1Th1
0.654
26
δ1(d) = −1.0
{a, c, b}


216
107123
Ru1Sb1Ta1
0.607
18
δ1(d) = −1.0
{a, c, b}


216
107124
Ru1Sb1V1
0.163
18
δ1(d) = −1.0
{a, c, b}


217
70055
Ag6Ge10P12
0.501
166
δ1(a) = 1.0
{c, d, e, g}


217
417101
Nb3Sb2Te5
0.783
158
δ1(b) = 1.0
{c, d, e}


220
66831
In3O8P2
3.522
268
δ1(a) = 1.0
{c, d, e}


225
186057
Fe2Ge1Ti1
0.074
24
δ1(d) = −1.0
{a, c, b}


225
65508
H6B6Cs2
4.158
42
δ1(a) = −1.0
{c, e}


225
65507
H6B6K2
4.930
42
δ1(a) = −1.0
{c, e}


227
238013
Ag2Mo1O4
2.161
104
δ1(c) = −2.0, δ2(c) = −3.0
{a, d, e}


227
238014
Ag2Mo1O4
1.912
104
δ1(c) = −2.0, δ2(c) = −3.0
{a, d, e}


227
28891
Ag2Mo1O4
1.799
104
δ1(c) = −2.0, δ2(c) = −3.0
{a, d, e}


227
36187
Ag2Mo1O4
0.558
104
δ1(c) = −2.0, δ2(c) = −3.0
{a, d, e}


227
73581
Ag6K2S4
1.397
216
δ1(c) = 1.0, δ2(c) = 1.0
{f, d, e}


227
28372
Al1Cs1O2
4.582
48
δ1(d) = 1.0, δ2(d) = 1.0
{a, c, b}


227
262975
Al1K1O2
3.288
48
δ1(d) = 1.0, δ2(d) = 1.0
{a, c, b}


227
28373
Al1O2Rb1
3.769
48
δ1(d) = 1.0, δ2(d) = 1.0
{a, c, b}


227
183382
Al2Cd1O4
2.878
84
δ1(b) = −1.0
{a, d, e}


227
43025
Al2Cd1S4
2.363
84
δ1(b) = −1.0
{a, d, e}


227
51423
Al2Cd1Se4
1.594
84
δ1(b) = −1.0
{a, d, e}


227
51424
Al2Cd1Se4
1.181
84
δ1(b) = −1.0
{a, d, e}


227
606347
Al2Cd1Se4
1.522
84
δ1(a) = −1.0
{c, e, b}


227
608160
Al2Hg1S4
1.611
84
δ1(a) = −1.0
{c, e, b}


227
183397
Al2Hg1Se4
0.303
84
δ1(b) = −1.0
{a, d, e}


227
608163
Al2Hg1Se4
0.585
84
δ1(a) = −1.0
{c, e, b}


227
163268
Al2O4Zn1
4.093
84
δ1(b) = −1.0
{a, d, e}


227
185609
Al2O4Zn1
3.815
84
δ1(b) = −1.0
{a, d, e}


227
185709
Al2O4Zn1
4.092
84
δ1(b) = −1.0
{a, d, e}


227
187878
Al2O4Zn1
4.093
84
δ1(b) = −1.0
{a, d, e}


227
196109
Al2O4Zn1
4.090
84
δ1(b) = −1.0
{a, d, e}


227
24494
Al2O4Zn1
3.359
84
δ1(b) = −1.0
{a, d, e}


227
26849
Al2O4Zn1
4.098
84
δ1(b) = −1.0
{a, d, e}


227
26856
Al2O4Zn1
4.033
84
δ1(b) = −1.0
{a, d, e}


227
290016
Al2O4Zn1
4.400
84
δ1(b) = −1.0
{a, d, e}


227
290666
Al2O4Zn1
3.460
84
δ1(b) = −1.0
{a, d, e}


227
290967
Al2O4Zn1
4.102
84
δ1(b) = −1.0
{a, d, e}


227
56118
Al2O4Zn1
3.839
84
δ1(b) = −1.0
{a, d, e}


227
609005
Al2O4Zn1
3.834
84
δ1(b) = −1.0
{a, d, e}


227
94155
Al2O4Zn1
4.042
84
δ1(b) = −1.0
{a, d, e}


227
94156
Al2O4Zn1
4.049
84
δ1(a) = −1.0
{c, e, b}


227
94157
Al2O4Zn1
4.046
84
δ1(a) = −1.0
{c, e, b}


227
94158
Al2O4Zn1
4.061
84
δ1(b) = −1.0
{a, d, e}


227
94159
Al2O4Zn1
4.088
84
δ1(b) = −1.0
{a, d, e}


227
94160
Al2O4Zn1
4.114
84
δ1(b) = −1.0
{a, d, e}


227
94161
Al2O4Zn1
4.148
84
δ1(b) = −1.0
{a, d, e}


227
94162
Al2O4Zn1
4.197
84
δ1(b) = −1.0
{a, d, e}


227
94163
Al2O4Zn1
4.237
84
δ1(b) = −1.0
{a, d, e}


227
94164
Al2O4Zn1
4.294
84
δ1(a) = −1.0
{c, e, b}


227
94165
Al2O4Zn1
4.373
84
δ1(b) = −1.0
{a, d, e}


227
94166
Al2O4Zn1
4.421
84
δ1(b) = −1.0
{a, d, e}


227
94167
Al2O4Zn1
4.467
84
δ1(b) = −1.0
{a, d, e}


227
94168
Al2O4Zn1
4.492
84
δ1(b) = −1.0
{a, d, e}


227
94169
Al2O4Zn1
4.525
84
δ1(b) = −1.0
{a, d, e}


227
94170
Al2O4Zn1
4.536
84
δ1(b) = −1.0
{a, d, e}


227
94171
Al2O4Zn1
4.552
84
δ1(b) = −1.0
{a, d, e}


227
94172
Al2O4Zn1
4.538
84
δ1(b) = −1.0
{a, d, e}


227
94173
Al2O4Zn1
4.598
84
δ1(b) = −1.0
{a, d, e}


227
94174
Al2O4Zn1
4.640
84
δ1(a) = −1.0
{c, e, b}


227
94175
Al2O4Zn1
4.674
84
δ1(b) = −1.0
{a, d, e}


227
94176
Al2O4Zn1
4.723
84
δ1(a) = −1.0
{c, e, b}


227
94177
Al2O4Zn1
4.754
84
δ1(b) = −1.0
{a, d, e}


227
94178
Al2O4Zn1
4.792
84
δ1(b) = −1.0
{a, d, e}


227
94179
Al2O4Zn1
4.827
84
δ1(a) = −1.0
{c, e, b}


227
94180
Al2O4Zn1
4.870
84
δ1(b) = −1.0
{a, d, e}


227
94181
Al2O4Zn1
4.926
84
δ1(b) = −1.0
{a, d, e}


227
94182
Al2O4Zn1
5.012
84
δ1(b) = −1.0
{a, d, e}


227
94183
Al2O4Zn1
5.069
84
δ1(a) = −1.0
{c, e, b}


227
15377
Al2S4Zn1
2.159
84
δ1(a) = −1.0
{c, e, b}


227
35380
Al2S4Zn1
2.484
84
δ1(b) = −1.0
{a, d, e}


227
44889
Al2S4Zn1
2.452
84
δ1(b) = −1.0
{a, d, e}


227
609270
Al2S4Zn1
2.507
84
δ1(a) = −1.0
{c, e, b}


227
609272
Al2S4Zn1
2.504
84
δ1(a) = −1.0
{c, e, b}


227
609276
Al2S4Zn1
2.505
84
δ1(a) = −1.0
{c, e, b}


227
609283
Al2S4Zn1
2.505
84
δ1(a) = −1.0
{c, e, b}


227
76278
Al2S4Zn1
2.455
84
δ1(b) = −1.0
{a, d, e}


227
609325
Al2Se4Zn1
1.461
84
δ1(a) = −1.0
{c, e, b}


227
238638
As4He2O6
4.164
120
δ2(d) = −1.0
{f, c, e}


227
238639
As4He2O6
4.249
120
δ2(d) = −1.0
{f, c, e}


227
238640
As4He2O6
4.306
120
δ2(d) = −1.0
{f, c, e}


227
66868
Ba2Ge4S10
2.131
192
δ1(c) = 1.0, δ2(c) = 1.0
{f, d, e}


227
159739
Cd1Ga2O4
1.568
84
δ1(b) = −1.0
{a, d, e}


227
159740
Cd1In2O4
0.950
84
δ1(b) = −1.0
{a, d, e}


227
4118
Cd1In2O4
1.124
84
δ1(b) = −1.0
{a, d, e}


227
108215
Cd1In2S4
1.475
84
δ1(a) = −1.0
{c, e, b}


227
601181
Cd1In2S4
1.393
84
δ1(a) = −1.0
{c, e, b}


227
620025
Cd1In2S4
1.401
84
δ1(a) = −1.0
{c, e, b}


227
620027
Cd1In2S4
1.365
84
δ1(a) = −1.0
{c, e, b}


227
620029
Cd1In2S4
1.394
84
δ1(a) = −1.0
{c, e, b}


227
52811
Cd1In2Se4
0.282
84
δ1(b) = −1.0
{a, d, e}


227
37410
Cd1Lu2S4
0.961
172
δ1(b) = −1.0, δ1(c) = 3.0, δ2(c) = 6.0
{a, d, e}


227
620127
Cd1Lu2S4
1.009
172
δ1(a) = −1.0, δ1(d) = 3.0, δ2(d) = 6.0
{c, e, b}


227
620129
Cd1Lu2Se4
0.465
172
δ1(a) = −1.0, δ1(d) = 3.0, δ2(d) = 6.0
{c, e, b}


227
262941
Cd1O4Rh2
0.856
108
δ1(b) = −1.0, δ1(c) = −1.0, δ2(c) = −2.0
{a, d, e}


227
28954
Cd1O4Rh2
0.846
108
δ1(b) = −1.0, δ1(c) = −1.0, δ2(c) = −2.0
{a, d, e}


227
620332
Cd1S4Sc2
0.865
84
δ1(a) = −1.0
{c, e, b}


227
94994
Cd1S4Sc2
0.862
84
δ1(b) = −1.0
{a, d, e}


227
620370
Cd1S4Y2
1.048
116
δ1(a) = −1.0, δ1(d) = 1.0, δ2(d) = 1.0
{c, e, b}


227
620371
Cd1S4Y2
1.048
116
δ1(a) = −1.0, δ1(d) = 1.0, δ2(d) = 1.0
{c, e, b}


227
620411
Cd1Sc2Se4
0.264
84
δ1(a) = −1.0
{c, e, b}


227
620457
Cd1Se4Y2
0.451
116
δ1(a) = −1.0, δ1(d) = 1.0, δ2(d) = 1.0
{c, e, b}


227
161025
Cd2O4Si1
1.423
104
δ1(c) = −2.0, δ2(c) = −3.0
{a, d, e}


227
191508
Cd2O4Si1
1.255
104
δ1(c) = −2.0, δ2(c) = −3.0
{a, d, e}


227
187040
Cd2O4Sn1
0.880
104
δ1(c) = −2.0, δ2(c) = −3.0
{a, d, e}


227
202743
Cl4Li2Zn1
4.212
84
δ1(b) = −1.0
{a, d, e}


227
402398
Cl4Li2Zn1
4.236
84
δ1(b) = −1.0
{a, d, e}


227
72546
Cs1N2Nb1
1.813
64
δ1(d) = 1.0, δ2(d) = 1.0
{a, c, b}


227
187290
Ga2O4Zn1
2.515
84
δ1(b) = −1.0
{a, d, e}


227
290017
Ga2O4Zn1
2.751
84
δ1(b) = −1.0
{a, d, e}


227
290667
Ga2O4Zn1
1.975
84
δ1(b) = −1.0
{a, d, e}


227
432270
Ga2O4Zn1
2.659
84
δ1(b) = −1.0
{a, d, e}


227
81105
Ga2O4Zn1
2.670
84
δ1(a) = −1.0
{c, e, b}


227
81106
Ga2O4Zn1
2.670
84
δ1(a) = −1.0
{c, e, b}


227
81107
Ga2O4Zn1
2.652
84
δ1(b) = −1.0
{a, d, e}


227
81108
Ga2O4Zn1
2.657
84
δ1(b) = −1.0
{a, d, e}


227
81109
Ga2O4Zn1
2.668
84
δ1(b) = −1.0
{a, d, e}


227
81110
Ga2O4Zn1
2.650
84
δ1(b) = −1.0
{a, d, e}


227
81111
Ga2O4Zn1
2.652
84
δ1(b) = −1.0
{a, d, e}


227
81112
Ga2O4Zn1
2.628
84
δ1(b) = −1.0
{a, d, e}


227
81113
Ga2O4Zn1
2.631
84
δ1(b) = −1.0
{a, d, e}


227
9394
Ga2O4Zn1
2.676
84
δ1(b) = −1.0
{a, d, e}


227
56081
Hg1In2S4
0.736
84
δ1(b) = −1.0
{a, d, e}


227
290668
In2O4Zn1
1.132
84
δ1(b) = −1.0
{a, d, e}


227
15637
In2O4Zn1
0.559
84
δ1(a) = −1.0
{c, e, b}


227
81811
In2O4Zn1
1.318
84
δ1(b) = −1.0
{a, d, e}


227
44679
K8Sb4Sn1
0.214
192
δ1(d) = 1.0, δ2(d) = 1.0
{f, c, a, e}


227
37420
Lu2Mg1S4
1.542
152
δ1(d) = 3.0, δ2(d) = 6.0
{c, e, b}


227
44912
Lu2Mg1Se4
1.224
152
δ1(c) = 3.0, δ2(c) = 6.0
{a, d, e}


227
109299
Mg1O4Rh2
1.150
88
δ1(c) = −1.0, δ2(c) = −2.0
{a, d, e}


227
76052
Mg1Se4Y2
1.062
96
δ1(c) = 1.0, δ2(c) = 1.0
{a, d, e}


227
109298
O4Rh2Zn1
0.899
108
δ1(b) = −1.0, δ1(c) = −1.0, δ2(c) = −2.0
{a, d, e}


227
161024
O4Si1Zn2
2.925
104
δ1(c) = −2.0, δ2(c) = −3.0
{a, d, e}


227
167193
O4Si1Zn2
2.825
104
δ1(c) = −2.0, δ2(c) = −3.0
{a, d, e}


227
191507
O4Si1Zn2
2.619
104
δ1(c) = −2.0, δ2(c) = −3.0
{a, d, e}


227
187039
O4Sn1Zn2
0.493
104
δ1(c) = −2.0, δ2(c) = −3.0
{a, d, e}


227
650850
S4Sc2Zn1
0.523
84
δ1(a) = −1.0
{c, e, b}


227
650852
S4Sc2Zn1
0.520
84
δ1(a) = −1.0
{c, e, b}


227
651411
S4Y2Zn1
0.485
116
δ1(a) = −1.0, δ1(d) = 1.0, δ2(d) = 1.0
{c, e, b}


227
652188
Se4Y2Zn1
0.103
116
δ1(a) = −1.0, δ1(d) = 1.0, δ2(d) = 1.0
{c, e, b}


2
170639
Ag1Bi1P2S6
0.927
124
δ1(c) = 1.0, δ1(f) = 1.0
{i}


2
154804
As1Cl3F6S3
0.122
172
δ1(d) = −1.0, δ1(h) = −1.0
{i}


2
75451
As1Cl3F6S3
0.122
172
δ1(d) = −1.0, δ1(h) = −1.0
{i}


2
291309
As2Cd1Ge1K1
0.740
140
δ1(c) = 1.0, δ1(g) = 1.0
{i}


2
291310
As2Cd1Ge1Rb1
0.771
140
δ1(c) = 1.0, δ1(g) = 1.0
{i}


2
410759
B18Cs4Hg2Se18
2.059
222
δ1(f) = −1.0
{i}


2
410758
B18Hg2Rb4Se18
2.086
222
δ1(f) = −1.0
{i}


2
237524
B3Cu1Li3O7
0.400
130
δ1(b) = −1.0
{i}


2
401906
Br10O1Ta2Te4
0.915
110
δ1(a) = 1.0
{h, i}


2
171405
C10H18Cu2N2O10
0.538
150
δ1(c) = −1.0
{i}


2
172423
C10H18Cu2N2O10
0.541
150
δ1(h) = −1.0
{i}


2
172424
C10H18N2O10Rh2
1.707
146
δ1(a) = 1.0
{i}


2
98942
C1F3Hg1O3S1
3.051
122
δ1(b) = 1.0
{i}


2
161194
C1H5Eu1O7P1
0.518
146
δ1(b) = 1.0
{i}


2
161195
C1H5Nd1O7P1
0.152
140
δ1(b) = 1.0
{i}


2
161196
C1H5O7P1Pr1
0.040
138
δ1(b) = 1.0
{i}


2
158855
C2H10Ga2Ge4N2O12
3.729
122
δ1(e) = 1.0
{i}


2
174167
C2H26B12N8
5.034
110
δ1(d) = −1.0
{i}


2
159351
C2H6Ca1O7
3.625
116
δ1(c) = 1.0, δ1(h) = 1.0
{i}


2
77096
C2H6Ca1O7
3.388
116
δ1(c) = 1.0, δ1(h) = 1.0
{i}


2
250237
C2H6K2O13S1U1
1.335
260
δ1(a) = 1.0, δ1(e) = 1.0
{i}


2
172777
C2H6O12U2
1.938
114
δ1(g) = 1.0
{i}


2
110471
C2H8Br3Cu1N1O1
0.004
118
δ1(f) = −1.0
{i}


2
249780
C2H8In2O14Se2
3.400
118
δ1(a) = 1.0
{i}


2
250206
C3H7F1N1O5Sn1
2.841
130
δ1(b) = 1.0
{i}


2
237040
C4H11N1O10
3.140
184
δ1(d) = 1.0, δ1(e) = 1.0
{i}


2
237041
C4H11N1O10
3.252
184
δ1(d) = 1.0, δ1(e) = 1.0
{i}


2
249174
C4H11N1O10
2.925
184
δ1(f) = 1.0, δ1(h) = 1.0
{i}


2
59807
C4H12Ba2N2O10S2
2.863
130
δ1(f) = 1.0
{i}


2
203234
C4H12Fe1O6S4
0.730
96
δ1(b) = −1.0
{a, i}


2
183813
C4H12N6O14Se2U2
1.785
182
δ1(b) = 1.0
{i}


2
109495
C4H14F3N1O2V1
0.005
146
δ1(d) = 1.0
{i}


2
110428
C4H16C16Cu2N2
0.017
212
δ1(a) = −1.0, δ1(g) = −1.0
{i}


2
30930
C4H7Cs1O10
1.762
184
δ1(d) = 1.0, δ1(e) = 1.0
{i}


2
246803
C4H7K1O10
2.279
184
δ1(d) = 1.0, δ1(e) = 1.0
{i}


2
195083
C5H10N1O6
2.451
142
δ1(c) = 1.0
{i}


2
109824
C6F6Na4O12Sn4
2.367
158
δ1(d) = 1.0
{i}


2
168722
C6H12Fe1N8O8
1.122
132
δ1(f) = 1.0
{h, i}


2
159906
C6H4Na4Np2O18
0.009
170
δ1(c) = 1.0
{i}


2
152170
C8H20N6O18S2U2
1.485
230
δ1(d) = 1.0
{i}


2
109491
C8H28F6N2O4V2
0.035
146
δ1(g) = 1.0
{i}


2
110165
C8H28F6N2O4V2
0.035
146
δ1(g) = 1.0
{i}


2
170794
C8H4K6N8O6Os2S2
2.351
194
δ1(f) = 1.0
{i}


2
36
C8I2Mo2O8
0.664
212
δ1(a) = 1.0, δ1(h) = 1.0
{i}


2
47102
Cl10Mo2N4S4
0.516
126
δ1(c) = 1.0
{i}


2
49920
Cl10Nb2O1Te4
1.136
126
δ1(a) = 1.0
{h, i}


2
72781
Cl2N4O12S10
1.127
166
δ1(a) = −1.0
{i}


2
241454
Cs2P2Se6Zn1
1.925
152
δ1(a) = 1.0, δ1(b) = 1.0
{i}


2
62966
Cu1O9Se3Sr2
0.076
206
δ1(g) = −1.0
{i}


2
240930
Cu2Na2O11Si4
0.068
106
δ1(d) = −1.0
{b, i}


2
174513
F2N2O4Xe1
2.623
56
δ1(h) = 1.0
{a, i}


2
173748
F2O7Te2V2
0.063
78
δ1(g) = 1.0
{c, i}


2
97067
H10F8In2N2O2
4.719
94
δ1(a) = 1.0
{i}


2
32507
H12I8Mg1O6
1.203
106
δ1(f) = 1.0
{a, i}


2
1834
H12Mg1O12S2
5.456
98
δ1(h) = 1.0
{a, i}


2
1836
H12O12S2Zn1
4.242
108
δ1(h) = 1.0
{a, i}


2
412799
H14Hg2O14Te2
3.271
134
δ1(f) = 1.0
{a, i, g}


2
73623
H14N4O8S2
4.941
94
δ1(b) = 1.0
{i}


2
168493
H16B12Na2O14S6
2.216
174
δ1(f) = −1.0
{i}


2
424875
H18O12Se4Sn1Sr2
0.652
138
δ1(g) = 1.0
{c, i}


2
409556
H24Li2N8Te2
1.237
78
δ1(e) = 1.0
{i}


2
67549
H26B20K4O4
0.573
146
δ1(c) = 1.0
{i}


2
170179
H32N14Se6Sn2
1.865
146
δ1(a) = 1.0
{i}


2
49621
H34Cl4Cr2N8O6
0.290
150
δ1(a) = −1.0
{i}


2
154123
H4Cu2Na2O13Si4
0.087
122
δ1(a) = −1.0
{f, i}


2
414048
H4Cu2Na2O13Si4
0.083
122
δ1(d) = −1.0
{b, i}


2
49614
H6B2F8N2
7.541
78
δ1(a) = 1.0
{i}


2
423683
H6Cs2O12P4
4.742
116
δ1(b) = 1.0, δ1(c) = 1.0
{i}


2
429157
H6F22N2Sb4
4.826
190
δ1(b) = 1.0
{i}


2
423682
H6O12P4Rb2
5.425
116
δ1(b) = 1.0, δ1(c) = 1.0
{i}


2
79097
H8Na6O14P4
3.552
118
δ1(d) = 1.0
{i}


2
87486
K4Mn1Mo3O12
0.021
266
δ1(a) = 1.0
{f, b, i}


2
16879
K4N2O14S4
0.440
154
δ1(h) = −1.0
{i}


2
431529
Lu1Na1P2S6
2.550
144
δ1(c) = 1.0, δ1(:0 = 1.0
{i}


2
431532
Na1P2S6Tb1
0.075
132
δ1(a) = 1.0, δ1(h) = 1.0
{i}


2
431533
Na1P2S6Y1
2.548
116
δ1(b) = 1.0, δ1(e) = 1.0
{i}


2
241453
P2Rb2Se6Zn1
1.904
152
δ1(a) = 1.0, δ1(b) = 1.0
{i}


11
249033
C4H3Cs1O14U2
1.822
280
δ1(b) = 1.0, δ1(c) = 1.0
{f, e}


11
249031
C4H5K1O15U2
1.810
296
δ1(a) = 1.0, δ1(d) = 1.0
{f, e}


11
249032
C4H5O15Rb1U2
1.777
296
δ1(a) = 1.0, δ1(d) = 1.0
{f, e}


11
32656
Cs2Cu2O19S18
0.351
372
δ1(a) = −1.0
{f, d, e}


11
99599
Cu2Ge4O13Sc2
0.176
244
δ1(a) = −1.0
{f, e}


11
99600
Cu2Ge4O13Sc2
0.172
244
δ1(a) = −1.0
{f, e}


11
99601
Cu2Ge4O13Sc2
0.168
244
δ1(a) = −1.0
{f, e}


11
99602
Cu2Ge4O13Sc2
0.169
244
δ1(a) = −1.0
{f, e}


11
99603
Cu2Ge4O13Sc2
0.165
244
δ1(a) = −1.0
{f, e}


11
406200
K3P5Ru1Se10
0.934
240
δ1(b) = 1.0
{f, e}


12
171256
Ag2Br6Hg7P8
0.911
188
δ1(d) = −1.0
{c, j, e, i}


12
171257
Ag2Hg7I6P8
0.820
188
δ1(d) = −1.0
{c, i, e, i}


12
165322
Au2K2P2Se6
1.085
86
δ1(c) = −1.0
{j, i, g}


12
423802
Au2La4O2P4
0.100
98
δ1(d) = −1.0
{i}


12
171216
Au2P2Se6Tl2
1.035
74
δ1(c) = −1.0
{j, i, g}


12
99805
C2Cl2O4Pb2
2.742
54
δ1(d) = −1.0
{h, j, i}


12
261774
C2H2Ag1O9S1Tb1
0.094
200
δ1(a) = −1.0, δ1(d) = −1.0
{h, j, i}


12
95291
C2H4Ca2Cl2O6
3.535
66
δ1(d) = −1.0
{h, j, i, g}


12
425117
C2H6N2Rb2
3.945
84
δ1(b) = 1.0, δ1(c) = 1.0
{j, i}


12
151090
C4H6B12Cs2I12N2
1.842
170
δ1(b) = 1.0
{h, j, i}


12
172053
C4H8N2O4
2.933
58
δ1(a) = 1.0
{h, j, i}


12
172054
C4H8N2O4
2.932
58
δ1(d) = 1.0
{j, i, g}


12
163689
H20B12Li2O4
5.312
82
δ1(a) = 1.0
{h, j, i}


12
163690
H20B12Li2O4
5.403
82
δ1(a) = 1.0
{h, j, i}


12
248034
In1K2P2S7
2.052
146
δ1(a) = −1.0
{j, i, g}


12
195314
La2P4S14Tl4
2.035
138
δ1(d) = −1.0
{j, i}


13
109996
C8H12Ag2N4O4
2.370
220
δ1(d) = 1.0
{a, f, e, g}


14
431760
Ag1As1K1S2
1.748
148
δ1(d) = 1.0
{e}


14
165596
Ag1Cu1O1P1
0.083
204
δ1(b) = −1.0
{e}


14
165361
Ag2Cs2P2Se6
1.621
172
δ1(a) = 1.0
{e}


14
84733
Ag2O8P2V1
0.014
340
δ1(c) = 1.0
{e}


14
195332
Ag2P2Se6Tl2
1.371
296
δ1(a) = 1.0, δ1(d) = 1.0
{e}


14
91551
Al1As1Cu1O5
0.315
196
δ1(b) = −1.0
{e}


14
196430
Al1Cu1O8P2Rb1
0.096
324
δ1(c) = −1.0
{e}


14
38378
Al2Br6N2S2
1.889
140
δ1(b) = 1.0
{e}


14
82802
Al2Br6N2Se2
1.939
140
δ1(a) = 1.0
{e}


14
4043
As1F6N2S3
1.346
300
δ1(a) = −1.0
{e}


14
421269
Ba1La1Sb2Se6
0.493
268
δ1(a) = 1.0
{e}


14
153066
Ba1Mo2O16P4
0.034
276
δ1(a) = 1.0
{d, e}


14
61132
C10F4Mn2O8
2.675
260
δ1(c) = 1.0
{e}


14
65278
C12Bi2O12Ru4
1.144
324
δ1(c) = 1.0
{e}


14
69074
C12Bi2O12Ru4
1.144
324
δ1(c) = 1.0
{e}


14
50969
C1O6P1Sn2
2.261
212
δ1(d) = 1.0
{e}


14
420263
C2As2F12N2Te4
1.673
272
δ1(a) = 1.0, δ1(d) = 1.0
{e}


14
279638
C2Cl10N2Sb2
2.333
196
δ1(a) = 1.0
{e}


14
26526
C2Cu1O6Tl2
0.107
244
δ1(b) = 1.0
{e}


14
66367
C2F6N4O6S4Se4
1.443
308
δ1(c) = −1.0
{e}


14
72782
C2F6N4O6S8
1.205
308
δ1(d) = −1.0
{e}


14
39364
C2H1Cs1O4
0.236
168
δ1(c) = 1.0, δ1(d) = 1.0
{e}


14
246301
C2H2Na2O6
3.406
96
δ1(a) = 1.0, δ1(c) = 1.0
{e}


14
39365
C2H4Cs2O6
3.725
132
δ1(d) = 1.0
{e}


14
409803
C2H4F6O6S2Si2
5.851
220
δ1(c) = 1.0
{e}


14
150181
C2H4Fe4O12P2
0.208
276
δ1(d) = 1.0
{e}


14
59806
C2H4O14P2Zn4
3.513
308
δ1(c) = 1.0
{e}


14
425116
C2H6K2N2
3.955
84
δ1(d) = −1.0
{e}


14
253542
C2H6K4N8O10
3.512
300
δ1(d) = 1.0
{e}


14
239363
C3H2Na1O7Zn1
3.272
276
δ1(a) = 1.0
{e}


14
162709
C3H3Ba1O7
2.840
268
δ1(b) = 1.0
{e}


14
432232
C4H12Cl8Nb2S2
0.729
244
δ1(b) = 1.0
{e}


14
281782
C4H18B2P2
5.866
100
δ1(c) = 1.0
{e}


14
109774
C4H2Fe2O6
0.266
140
δ1(c) = −1.0
{e}


14
251788
C4H2O8Tl2
2.322
144
δ1(c) = 1.0, δ1(d) = 1.0
{e}


14
243750
C6H10O6Sn1
2.784
148
δ1(c) = −1.0
{a, e}


14
260040
C6H4Mg2Na2O14
3.678
236
δ1(d) = 1.0
{e}


14
174509
C6O16Rb2U2
1.709
332
δ1(b) = 1.0
{e}


14
82090
Cd1Mo1O6P1
1.506
236
δ1(a) = 1.0
{e}


14
50959
Cd1P2Rb2Se6
2.029
152
δ1(c) = 1.0
{d, e}


14
15320
Cl12Mo2O4P2
0.046
260
δ1(c) = 1.0
{e}


14
249982
Cs2O12P2U2
0.042
204
δ1(a) = −1.0
{c, e}


14
280814
Cs4O2S10V2
1.477
236
δ1(d) = 1.0
{e}


14
171220
Cu1P1Se3Tl1
1.369
148
δ1(d) = 1.0
{e}


14
195339
Cu2P2S6Tl2
1.707
148
δ1(c) = 1.0
{e}


14
195340
Cu2P2Se6Tl2
1.377
148
δ1(a) = 1.0
{e}


14
31789
F2N4O6S8
1.119
236
δ1(c) = −1.0
{e}


14
15285
Fe1I1N2O2
0.335
296
δ1(a) = 1.0, δ1(b) = 1.0
{e}


14
300226
Fe1K2P2S6
0.463
144
δ1(d) = 1.0
{c, e}


14
657803
Fe1K2P2S6
0.463
144
δ1(d) = 1.0
{c, e}


14
165358
Fe1K2P2Se6
0.343
144
δ1(b) = 1.0
{a, e}


14
62320
Fe2K1O8P2
0.007
332
δ1(c) = 1.0
{e}


14
61783
H10Br2N2O2
4.032
92
δ1(d) = 1.0
{e}


14
61784
H10Br2N2O2
4.066
92
δ1(d) = 1.0
{e}


14
14169
H10N2O8P2
5.896
156
δ1(c) = 1.0
{e}


14
2913
H10N2O8P2
5.805
156
δ1(d) = 1.0
{e}


14
6211
H12N4O4P2
1.665
132
δ1(c) = 1.0
{e}


14
417327
H12O6P2Rb4S6
3.433
260
δ1(a) = 1.0
{e}


14
190007
H14Ni1O12P2
0.009
212
δ1(c) = 1.0
{e, b}


14
422482
H2Hg6N4O14
2.566
356
δ1(b) = 1.0
{e}


14
429411
H2O6P2Tl2
2.837
108
δ1(b) = 1.0
{e}


14
236184
H3K1O6P2
5.649
232
δ1(a) = 1.0, δ1(c) = 1.0
{e}


14
59361
H5O7P1V1
0.076
228
δ1(b) = 1.0
{e}


14
68557
H5O7P1V1
0.046
228
δ1(c) = 1.0
{e}


14
413072
H6Cs2N2P4
1.927
108
δ1(a) = 1.0
{e}


14
417326
H8K4O4P2S6
2.964
228
δ1(b) = 1.0
{e}


14
418251
H8Li4O12P2
3.883
188
δ1(c) = 1.0
{e}


14
50960
Hg1K2P2Se6
1.574
304
δ1(a) = 1.0, δ1(b) = 1.0
{e}


14
413168
K2Mg1P2Se6
2.113
132
δ1(d) = 1.0
{c, e}


14
241452
K2P2Se6Zn1
1.972
304
δ1(c) = 1.0, δ1(d) = 1.0
{e}


14
246133
Li2O8P2V1
0.076
260
δ1(a) = 1.0
{e}


14
411191
Mo2O16P4Sr1
0.030
276
δ1(c) = 1.0
{b, e}


14
67597
Na2O8P2V1
0.052
260
δ1(a) = 1.0
{e}


14
419533
Ni1O10P2V2
0.047
180
δ1(c) = 1.0
{a, e}


15
195333
Ag3P4S12Tl5
1.590
280
δ1(a) = 1.0, δ1(c) = 1.0
{f, e}


15
180003
Ba1In2O14P4
4.434
240
δ1(c) = −2.0
{a, d, e, f}


15
417616
Ba1La2O14Te5
3.306
292
δ1(d) = −2.0
{f, c, e}


15
421965
Ba1O8P2Th1
4.941
160
δ1(d) = −2.0
{f, c, e}


15
260737
Ba2Gd2O13Si4
0.007
300
δ1(b) = 1.0
{f, e}


15
195682
Bi2Cl8Hg3Te2
2.605
228
δ1(c) = 5.0
{f, d}


15
237619
Bi2Cl8Hg3Te2
2.696
228
δ1(d) = 5.0
{f, c}


15
410623
C1Ag2Cl1N1O4S1
2.633
272
δ1(d) = 5.0
{f, c, e}


15
65697
C2Ag1N2Na1
2.744
60
δ1(c) = 5.0
{f, d, e}


15
109946
C2F6Na2O4Sb2
3.146
172
δ1(a) = 1.0
{f}


15
249312
C2H2Cs2O5
3.533
116
δ1(d) = 1.0
{f, e}


15
249313
C2H2Cs2O5
3.452
116
δ1(d) = 1.0
{f, e}


15
249314
C2H2Cs2O5
3.487
116
δ1(c) = 1.0
{f, e}


15
249315
C2H2Cs2O5
3.527
116
δ1(c) = 1.0
{f, e}


15
246782
C2H2K2O5
3.548
116
δ1(d) = 1.0
{f, e}


15
246783
C2H2K2O5
3.544
116
δ1(d) = 1.0
{f, e}


15
246300
C2H2K2O6
3.507
128
δ1(c) = 1.0
{f}


15
240494
C2H2O5Rb2
3.592
116
δ1(d) = 1.0
{f, e}


15
9561
C2H4B2O2
3.994
60
δ1(b) = 1.0
{f}


15
260020
C2H6Fe1N2O4
0.732
112
δ1(b) = 1.0
{f, e}


15
400123
C2H8Cl3Cu1N1
0.036
212
δ1(b) = −1.0
{f}


15
2730
C2H8I2N4S2
1.994
124
δ1(d) = −1.0
{f, c, e}


15
23342
C2N2O6S2
3.823
132
δ1(a) = 1.0
{f}


15
240771
C4H12Mg1O6S4
1.819
180
δ1(d) = −1.0
{f, e}


15
110427
C4H16Cl6Cu2N2
0.037
212
δ1(b) = −1.0
{f}


15
110707
C4H16F4Mn1N1O2
0.056
168
δ1(c) = 2.0
{f, d, e}


15
248038
C4H4O10Th1
3.482
184
δ1(a) = 1.0, δ1(b) = 1.0
{f, e}


15
162708
C4H6Ba1O10
2.349
184
δ1(b) = 1.0, δ1(c) = 1.0
{f, e}


15
110011
C4H6Cd1O2S4
2.313
140
δ1(c) = 5.0
{f, d}


15
151153
C4H6Na2O7
2.611
132
δ1(d) = −1.0
{f, e}


15
109771
C4H6O7Sr1
2.899
148
δ1(c) = −1.0
{f, e}


15
162987
C4H8Cd1Cl2N2
0.335
120
δ1(d) = −1.0
{f, e}


15
249614
C4H8O12Th1
3.308
216
δ1(a) = 1.0, δ1(c) = 1.0
{f, e}


15
109772
C4H8O8Zn1
2.643
168
δ1(a) = −1.0
{f, c}


15
64628
C6H6Ag3Co1N8
3.012
224
δ1(d) = 3.0
{f, c, e}


15
200237
Cd3Na2O10Si3
2.709
220
δ1(d) = 5.0
{f, c, e}


15
28416
Cd3Na2O10Si3
2.709
220
δ1(d) = 5.0
{f, c, e}


15
426510
Cl3Na2O12Te4Y3
3.511
304
δ1(c) = −2.0
{f, d, e}


15
401295
Cu1Mo2O8Sb1
0.797
152
δ1(d) = 5.0
{f, c, e}


15
48002
Eu1O8Rb1S2
0.526
172
δ1(d) = −2.0
{f, c, e}


15
2047
F9K5O4U2
0.183
320
δ1(d) = −2.0
{f, c, e}


15
60091
F9K5O4U2
2.021
320
δ1(d) = −2.0
{f, c, e}


15
423945
H14Na3Np1O12
1.242
208
δ1(d) = −2.0
{f, c, e}


15
202650
H2F4K1Mn1O1
0.005
208
δ1(d) = 2.0
{f, c, e}


15
63104
H2F4K1Mn1O1
0.012
208
δ1(c) = 2.0
{f, d, e}


15
71838
H2F4Mn1O1Rb1
0.020
208
δ1(c) = 2.0
{f, d, e}


15
165406
H4Ca2O13P3V1
0.063
212
δ1(c) = 1.0
{f, d, e}


15
28219
H4F4O2Rb1V1
0.410
116
δ1(c) = 1.0
{f, d, e}


15
91139
H8Ni1O10V2
0.014
176
δ1(c) = 4.0
{f, d}


15
238682
Hg1In1S3Tl1
1.550
144
δ1(d) = 5.0
{f, c, e}


15
195303
Hg1O7P2Pd1
1.419
148
δ1(d) = 5.0
{a, c, f, e}


15
420533
Hg1O7P2Pd1
1.413
148
δ1(d) = 5.0
{a, c, f, e}


15
60099
K2Rb2Re6S13
1.332
312
δ1(a) = 1.0
{f, e}


15
35463
K4Mo8O52P12
0.008
228
δ1(c) = −2.0
{f, d, e}


15
281062
O14Sr3Te4U1
1.780
304
δ1(d) = −2.0
{f, c, e}


57
411520
As2Cl3Hg3Tl1
1.158
280
δ1(b) = 1.0
{a, c, d, e}


57
411521
Br3Hg3Sb2Tl1
0.999
280
δ1(b) = 1.0
{a, c, d, e}


58
260478
H8Cs4O4P2Se6
1.820
228
δ1(c) = −1.0
{a, h, b, g}


58
260477
H8O4P2Rb4Se6
1.629
228
δ1(d) = −1.0
{a, h, b, g}


58
72103
La2O8S2Ta3
0.776
388
δ1(b) = −1.0
{h, e, g}


61
280667
Cl1N2S1Se2
1.446
280
δ1(b) = −1.0
{c}


61
412247
Cr2Li4N6Sr2
0.921
264
δ1(a) = 1.0
{c}


61
23312
H6F6N2Si1
6.775
248
δ1(b) = 1.0
{a, c}


61
35702
H6F6N2Si1
7.315
248
δ1(b) = 1.0
{a, c}


62
28552
H6F1N1O2
3.682
120
δ1(b) = 1.0
{c, d}


62
40979
H6F5N2Sb1
3.322
224
δ1(b) = 1.0
{c, d}


63
427778
As6Ba4Cd3Li2
0.308
216
δ1(b) = −1.0
{f, c}


63
427777
Ba4Cd3Li2P6
0.453
216
δ1(b) = −1.0
{f, c}


64
241962
C4H12Cl8Nb2Se2
0.567
244
δ1(a) = −1.0
{f, g}


64
260476
H8K4O4P2Se6
2.003
228
δ1(a) = −1.0
{f, e, g}


71
99953
Ba1O7Sr1Ta2
2.207
144
δ1(d) = 2.0
{c, l, j, b, i, g}


71
410590
Br9Cs5Nb2S4
1.692
158
δ1(a) = −1.0, δ1(b) = 2.0
{c, m, l, n, d, i}


71
418796
Br9Nb2S4Tl5
1.618
128
δ1(b) = −1.0
{c, m, l, n, j, d}


71
291278
Cl8Cs5I1S4U2
0.066
160
δ1(d) = 2.0
{a, m, l, n, b, i}


71
410591
Cl9Cs5Nb2S4
1.588
158
δ1(a) = −1.0, δ1(b) = 2.0
{c, m, l, n, d, i}


71
417942
Cl9Nb2S4Tl5
1.532
128
δ1(a) = −1.0, δ1(b) = 2.0
{c, m, l, n, d, i}


71
249327
F1K1Nb2O6Sr1
1.932
176
δ1(c) = 2.0
{a, l, j, h, d, i}


71
56744
H1La2Li1O3
1.800
42
δ1(c) = 2.0
{a, d, b, i}


71
95059
La1O11Sr2Ta3
2.690
112
δ1(c) = 2.0
{a, l, j, b, d, i}


74
171492
C4N4Pt1Rb2
2.115
128
δ1(b) = 2.0
{c, a, e, f, h}


74
9710
Cs1F3Mo1O2
3.342
96
δ1(a) = 2.0
{c, e, i, h}


74
245171
H4Al1F5O2Zn1
3.457
132
δ1(b) = −5.0
{a, j, e, d, i}


74
97289
K1Na2O15Si6Y1
5.053
272
δ1(d) = 2.0
{j, e, b, h, i, g}


74
185292
La1Nb2O7Rb1
1.999
176
δ1(c) = 2.0
{a, h, e, g}


74
72741
Li2O7P2Pd1
1.415
128
δ1(a) = −4.0
{c, j, e, h, g}


74
195302
O14P4Pd3Tl2
1.149
280
δ1(c) = −4.0
{a, j, e, h, d, i}


82
4102
C4Cd1Hg1N4S4
1.960
84
δ1(d) = −1.0
{a, c, g}


82
170700
C4Cd1Hg1N4Se4
2.464
84
δ1(d) = −1.0
{a, c, g}


82
249203
C4Cd1Hg1N4Se4
2.425
84
δ1(d) = −1.0
{a, c, g}


82
280039
C4Cd1N4S4Zn1
3.589
84
δ1(c) = −1.0
{a, d, g}


82
88970
C4Cd1N4S4Zn1
3.589
84
δ1(c) = −1.0
{a, d, g}


82
171416
C4Cd1N4Se4Zn1
3.178
84
δ1(c) = −1.0
{a, d, g}


82
249202
C4Cd1N4Se4Zn1
3.115
84
δ1(d) = −1.0
{c, b, g}


82
31359
C4Co1Cs1O4
3.715
58
δ1(d) = −1.0
{a, c, g}


82
31360
C4Co1Cs1O4
3.620
58
δ1(d) = −1.0
{a, c, g}


82
280028
C4Hg1N4S4Zn1
2.679
84
δ1(c) = −1.0
{d, b, g}


82
188764
C4Hg1N4Se4Zn1
2.460
84
δ1(d) = −1.0
{a, c, g}


85
24677
Cl1K2Na1O6S2
5.077
296
δ1(d) = 1.0
{a, c, b, g}


87
78029
Ba1O7Si2V1
0.098
130
δ2(b) = −1.0
{h, d, e, i}


88
99956
C4H8In1K1O12
3.650
216
δ1(d) = 1.0
{a, f, b}


88
261929
C4H8K1Lu1O12
3.445
260
δ1(d) = 1.0
{f, a, b}


124
170216
C8K1O8Y1
2.139
200
δ1(e) = 1.0
{a, c, n}


128
24676
Cl2K5Na1O12S4
5.229
312
δ1(c) = −1.0
{a, e, b, h, i, g}


139
412833
Br4Cs2I2Pd1
0.677
70
δ2(b) = −1.0
{a, h, d, e}


139
412835
Br4I2Pd1Rb2
0.622
70
δ2(b) = −1.0
{a, h, d, e}


139
412834
Cl4Cs2I2Pd1
0.832
70
δ2(b) = −1.0
{a, h, d, e}


140
409487
Ba4Bi3K1O1
0.573
140
δ1(d) = −1.0
{c, a, l, b, h}


140
410747
Ba1K1O1Sb3
0.993
140
δ1(d) = −1.0
{c, a, l, b, h}


140
415036
Ba4O1Rb1Sb3
0.874
140
δ1(d) = −1.0
{c, a, l, b, h}


141
251540
As2Cs2O8Th1
3.808
176
δ1(d) = 2.0
{c, e, b, h}


141
173150
Ce1K2O8P2
1.417
176
δ1(c) = 2.0
{a, h, d, e}


141
249887
Cl2Cs2N2O6Pb1
2.275
164
δ1(b) = 1.0
{a, h, e}


148
63544
As1K1Ni1O4
0.112
96
δ1(b) = 1.0, δ2(b) = 1.0
{f, c}


148
63353
As1Na1Ni1O4
0.100
80
δ1(b) = 1.0, δ2(b) = 1.0
{f, c}


148
27014
As2Ba1Ni2O8
0.008
88
δ1(b) = 1.0, δ2(b) = 1.0
{a, c, f}


148
280167
Ba1Ni2O8P2
0.011
88
δ2(a) = 1.0, δ1(e) = 1.0
{f, c, b}


148
249686
C4H4Cd1O6
2.767
204
δ1(e) = −1.0
{f, d}


148
408324
Ca2Li6Mn2N6
0.136
54
δ1(a) = 1.0
{f, c}


163
236385
Br15Cs2La1O3Ta6
1.011
364
δ1(e) = 2.0
{f, c, h, i}


163
80424
Br15Cs2La1O3Ta6
1.019
364
δ1(e) = 2.0
{f, c, h, i}


163
65661
Cl18Cs1Lu1Nb6
0.922
476
δ1(e) = 4.0
{c, d, i}


164
109713
C8H24Cl18N2Nb6
0.484
270
δ2(a) = −1.0, δ1(c) = 1.0
{d, j, i, g}


166
416475
Ce1O1P1Zn1
0.006
70
δ2(a) = −1.0
{c}


166
414584
H12B12Br1Cs3
5.017
82
δ2(a) = 1.0
{h, b, e}


166
414581
H12B12Br1K3
4.797
82
δ2(a) = 1.0
{h, b, e}


166
414583
H12B12Br1Rb3
5.273
82
δ2(a) = 1.0
{h, b, e}


166
414586
H12B12Cl1Cs3
5.374
82
δ2(a) = 1.0
{h, b, e}


166
414585
H12B12Cl1Rb3
5.436
82
δ2(a) = 1.0
{h, b, e}


166
98622
H12B12Cs3I1
4.630
82
δ2(a) = 1.0
{h, b, e}


166
98619
H12B12I1K3
4.959
82
δ2(a) = 1.0
{h, b, e}


166
98620
H12B12I1Rb3
4.544
82
δ2(a) = 1.0
{h, b, e}


194
97530
As2Ba6Na2O17Ru2
0.058
380
δ1(d) = 2.0
{a, e, b, k, f, h}


194
245668
Ba5Br2O9Ru2
0.006
268
δ1(b) = 2.0
{e, k, f, h, d}


194
97524
Ba6Na2O17Ru2V2
0.074
380
δ1(d) = 2.0
{a, e, b, k, f, h}


194
97526
Ba6Na2O17Ru2V2
0.136
380
δ1(d) = 2.0
{a, e, b, k, f, h}


203
20169
C4Fe2Na6O16S1
0.616
280
δ1(d) = −1.0, δ2(d) = −2.0
{c, b, e, f, g}


215
62225
Cs3Mo4O16P3
0.092
162
δ1(b) = 1.0
{c, d, e, i}


217
52575
Ag3Ge3P6Sn2
0.061
166
δ1(a) = 1.0
{c, d, e, g}


217
52595
Ag3P6Si3Sn2
0.159
166
δ1(a) = 1.0
{c, d, e, g}


227
168524
C4Cd1K2N4
6.317
132
δ1(b) = −1.0, δ1(c) = 1.0,
{a, d, e}







δ2(c) = 1.0


227
23994
C4Cd1K2N4
4.678
132
δ1(b) = −1.0, δ1(c) = 1.0,
{a, d, e}







δ2(c) = 1.0


227
23995
C4Hg1K2N4
4.597
132
δ1(b) = −1.0, δ1(c) = 1.0,
{a, d, e}







δ2(c) = 1.0


227
62084
C4Hg1K2N4
5.920
132
δ1(b) = −1.0, δ1(c) = 1.0,
{a, d, e}







δ2(c) = 1.0


227
14368
C4K2N4Zn1
6.135
132
δ1(b) = −1.0, δ1(c) = 1.0,
{a, d, e}







δ2(c) = 1.0


227
23993
C4K2N4Zn1
4.963
132
δ1(b) = −1.0, δ1(c) = 1.0,
{a, d, e}







δ2(c) = 1.0








Claims
  • 1. A method for making a catalyst with at least one metallic surface state, comprising: a) identifying all topological insulators in an Inorganic Crystal Structure Database (“ICSD”),b) calculating Real Space Invariants of valence bands for all these topological insulatorsc) identifying in all these topological insulators Wyckoff Positions where irreducible Wannier Charge Centers (WCCs) are localized, and thend) selecting as potentially catalytic active compound a topological insulator wherein the Wyckoff Position of WCCs is not occupied by any atom (=Wyckoff Position of obstructed WCCs, =WPOAI) of the topological insulator,e) synthesizing a crystal of the selected potentially catalytic active compound either so that the crystal is grown in a predefined crystallographic direction (characterized by its Miller indices (h,k,l)) which exposes at least one metallic surface state; or cutting the crystal in a predefined crystallographic direction (characterized by its Miller indices (h,k,l)), so that the at least one metallic surface state is exposed,wherein the predefined crystallographic direction is the direction of a normal vector (h,k,l) of a surface plane f(x, y, z)=0 which cuts through the Wyckoff Position of obstructed WCCs (WPOAI), but stays away from the Wyckoff Position(s) of atoms of the selected topological insulator (=occupied Wyckoff Position(s), =WPOCC), which condition is fulfilled when:
  • 2. The method of claim 1, wherein the topological insulator is a topological trivial insulator.
  • 3. The method of claim 1, wherein instead of steps a) through d) the potentially catalytic active compound is selected from the list consisting of: Ba1P8, I4P2, Mn1P4, Nb2Se9, Os1P4, P3Ru1, P4Ru1, P5Re2, Re1S2, Re1Se2, S2Tc1, Lu1P5, P5Y1, As1Ge1, As1Si1, Ba1P3, Bi1S2, Bi1Se2, Br4Nb1, Br6Si2, C22F14, C2Ca1, Ca5P8, Cl3Mo1, Cl3Y2, Cl4Nb1, Cl4Ta1, Cs5Te3, Ga1Te1, Ge1P1, Hg1O2, In1Se1, K1Sb2, Na1P2, O2Rb2, P3Sr1, Rb1Sb2, Ag1P2, As2Co1, As2Ir1, As2La1, As2Rh1, Au1O1, B2F4, B4Mn1, Ca1O2, Cd1P4, Co1P2, Cs1Te4, Cs2I8, Cu1P2, Fe1P4, Fe1S1, Ga2I3, Hg2N6, Ir1N2, Ir1P2, Ir1Sb2, La1P7, La1S2, La1Se2, Li2O2, Mg1P4, N2O4, N2S2, O2Tc1, P2Rh1, P7Pb1, Rh1Sb2, Rh1Si1, Sb1Zn1, Ba1S2, Ba1Se2, C2Ba1, C2Sr1, I6Pt2, Ni1P2, O2Si1, P2Pd1, S2Yb1, S4V1, Se3Tl2, Se9V2, Te3Tl2, As3Ca4, Cs2Te2, K2O2, Rb2Te2, As2Fe1, As2Os1, As2Ru1, C1N1, Fe1P2, Fe1S2, Fe1Sb2, Fe1Se2, In1S1, N2Pt1, Os1P2, Os1Sb2, P2Ru1, Ru1Sb2, Ru1Te2, Ge3Os2, Ge3Ru2, Os2Si3, Ru2Si3, As1Cd1, As1Zn1, B2Cl4, C2N2, Cd1Sb1, Cl1O2, P4Re1, P4Tc1, Pd1S2, B2Fe1, Na1P5, P3Re1, P3Tc1, Ba5P4, Ba5Sb4, K1Tl1, Ba1O2, F3La1, As6Cs4, As6Rb4, Cs4P6, K4P6, P6Rb4, Al2Ru1, Ga2Os1, Ga2Ru1, C2Li2, C2Na2, Cs2O2, Cs2S2, Rb2S2, B3Si1, H6Ru1, O64Si32, K5Te3, B10F12, Li1Si1, C1N2, Cs1In3, Ga3K1, Ga3Rb1, H8Si1, C2Mg1, Fe1Ga3, Ga3Os1, Ga3Ru1, In3Ru1, Li2S2, B4Os1, Cl2Zn1, Hg1I2, Hg2I4, Al2Os1, As1Ca2, Bi1Ca2, Br1Hg1, Br2Hg2, Cl2Hg2, F2Hg2, Ga3K2, Hg1I1, Hg2I2, In3Rb2, O2Sr1, Ba1Te2, O2Zn1, S2Sr1, Au1Br1, Au1Cl1, O3U1, Br12Zr6, Cl12Zr6, I12Zr6, I6Si2, As1B6, As2Bi2, B12P2, B12Si3, B6O1, B6P1, Br8Nb3, C1B4, C3B12, Ga1S1, I8Nb3, Cr1N2, Ga1Se1, Mo1N2, N2W1, Ca1P1, Ca2P2, K2S2, K2Se2, Na2O2, Na2S2, P1Sr1, C2Os1, Hf1N2, K2Te2, Mo1S2, Mo1Se2, Mo1Te2, Na1S1, Na2Se2, S2W1, Se2W1, Te2W1, As2Pt1, Cd1O2, Cd1S2, Cd1Se2, Fe1Te2, Mg1O2, Mg1Se2, Mg1Te2, N2Pd1, Os1S2, Os1Se2, Os1Te2, P2Pt1, Ru1S2, Ru1Se2, S2Zn1, Se2Zn1, Ag1Br1, Ag1Cl1, Ag1I1, B4Fe1, Be5Pt1, Br1Cu1, Cd1S1, Cd1Se1, Cd1Te1, Cl1Cu1, Cu1I1, Cu5Tb1, O1Zn1, S1Sn1, S1Zn1, Se1Zn1, Te1Zn1, B6Ca1, B6Si1, B6Sr1 and B1Li1, Al2Cd2Cl8, Al4Cl14Te4, As1Fe1S1, Au1Br8Te1, B18Cs8S18, B18Rb8S18, B18Rb8Se18, B8Br6P4, Bi2Br8Te4, Bi4Cl16Te14, Bi6Cl20Te4, Br12Ta2Te4, Br1Mo1Te4, Br2Nb1S2, Br2Nb1Se2, C22Co6O18, C2I10La6, C2O4Pb1, Cl12Ta2Te4, Cl18P2Re2, Cl2Nb1Se2, Cl5O4Re2, Cl6Hf1Te4, Cl8Ga2Hg2, Cs1Sb2Se4, Cs2S6Sn2, Cs2S8Sb4, Cs2Se6Sn2, Cs4P2Se10, Cu4P3Se4, F12I4Sb2, F12Sb2Te4, Ge1Li1Te2, Ge2Te6Tl6, Hg1O3V1, Hg2P2S6, I12Nb2Te8, I1Ta1Te4, In2O5P1, K2O8S2, K2Sb4Se8, La6O18Re4, Li1Mo1S2, Mo4N14Sr10, Na2O8S2, Rb2Sb4Se8, Si2Te6Tl6, As2Ga2Sr1, C2Ca1O4, Al2Na7Sb5, Ba3P6Si4, Bi9I3Rh2, Cl7Nb3Se5, Ir2Se5Sn1, K4P8Te4, Al1O4W1, As1Cl2Hg2, As2F12I4, As3Ba2Cd2, As3Sr2Zn2, Ba5Cr1N5, Bi4Br2Ru1, Br10Te4Zr2, C1B2O2, C1N1Th1, C2Br2Gd2, C2La2O2, C4Cs2O4, C4Li2O4, C4O4Rb2, Cd1P1S3, Cd2P2S6, Cd6Sb12Sr11, Cl2Hg2P1, Cl2Nb1S2, Fe1P1S3, Fe2P2S6, Ge1K3S3, Ge2K6S6, Ge2K6Se6, Hg6O7Si2, I2O1Ta1, K6Si2Te6, Mg1P1S3, Na4P2S6, Ni1P1S3, Ni1P1Se3, Ni2P2S6, P1S3Zn1, P2S6V2, P2S6Zn2, P6S18Zn4, Hg2Mo2O7, Hg2O4S1, Hg2O4Se1, Hg4O7P2, K2Mo8O16, Ag5Ge1O4, As1Cd2Cl2, As1Fe1Se1, As1Fe1Te1, As1Ru1Te1, As2Cs4Te6, As2F12Hg4, As2Hg6O10, As2Hg6O8, Ba1P3Pt2, Ba2P2S6, Ba2P2Se6, Ba6P6Sn2, Bi1Os1Se1, Br14Ga4Te4, Br3Hg2Te1, C1D1K1O3, C2Ag2O4, C2Cd1O4, C2H6O6, C2Li2O4, C2Na2O4, C2O4Tl2, C2O4Zn1, C4Na2O4, Ca1Mo5O8, Ca2P2S6, Ca2P2Se6, Cd2Cl2P1, Cl14Ga4Te4, Cl3Cu1K1, Cl3Mo1S2, Cl7O3Re2, Co1K2O2, Cs1O5V2, Cs2O8S2, Cs2Se6Te2, Cu1La2S4, Fe1P1S1, Fe1P1Se1, Fe1S1Sb1, Fe1Sb1Se1, Fe1Sb1Te1, Ge2Na6Se6, Ge2Na6Te6, H4B2O4, Hg1O4Re1, Hg2N2O4, Hg4N2O8, Hg6O8P2, I1Nb2Te6, In4P6S18, K4O8P2, K6Se6Sn2, K6Sn2Te6, Mo5O8Sr1, Na6Si2Te6, Os1P1S1, Os1P1Se1, Os1S1Sb1, Os1Sb1Se1, Os1Sb1Te1, P1Pb1Se3, P1Ru1S1, P1Ru1Se1, P1Se3Sn1, P2Pb2S6, P2Pb2Se6, P2S6Sn2, P2S6Sr2, P2Se6Sn2, P2Se6Sr2, P2Se6Tl4, Ru1S1Sb1, Ru1Sb1Se1, Ru1Sb1Te1, Ag2O2Pb1, As1F6I5, As3Br1Cd2, As3Br1Hg2, As3Cd2I1, As6Ba1Pt4, As6Pt4Sr1, Au1C11O2, Au1Cl4Cs1, Au1Cl4Rb1, Au1Cl4Tl1, Au1F4Li1, Au1Li1S1, B2Li2Se5, Bi3Cl1O4, Br1Cd2P3, Br2Hg2O6, C2O4Sn1, C4Ag2O4, Cd2Cl1P3, Cd2I1P3, Cd2O12P4, Cl1Hg2O1, Cl1Hg2P3, Cl2Hg4O2, Cl4Os1Sc4, Cs1F7Sb2, Cs2Re3Se6, Cs4Re6S13, Cs4Re6Se13, Cs4S13Tc6, Cs4Se13Tc6, Cs6Ge2Se6, Cs6Ge2Te6, Cs6Sn2Te6, Cu2O2Pb1, Cu2Re3Se6, Fe2O12P4, Ge2K6Te6, Hg2P2Se6, K2Re3S6, K2Re3Se6, K4Re6Se12, K4Si2Tc6, K4Se12Tc6, Mn2Mo1P12, Na2Nb4O11, Na2Re3S6, Na2Re3Se6, O3Si1Sr1, O4Pd1S1, O4Pt1S1, O7P2Pd2, P6Pt4Sr1, Rb2Re3S6, Rb2Re3Se6, Rb4Re6Si2, Rb4Re6S13, Rb4Re6Se12, Rb4S13Tc6, Rb4Se12Tc6, Re3S6Tl2, Re3Se6Tl2, Re6Se12Tl4, Br11Cs1Nb4, Br11Nb4Rb1, Cl11Cs1Nb4, Cl11Nb4Rb1, Al2Ca5Sb6, Al2Cl8Se4, As6Ca5Ga2, Ba1Nb8O14, Ba3O1Sb2, Ba5In2Sb6, C2K2O4, C2O4Rb2, Ca5In2Sb6, In2Sb6Sr5, Nb8O14Sr1, Ag5O4Si1, Br1Hg2P3, Nb2Ni1O6, O9P2V2, Al2Cl8Te4, Au1O4S1, Cl2N4S6, Co1Ge1Te1, Cu1O3Se1, Cu1P2Se1, Ge1Rh1Te1, O6P2Tl4, Pt1Sb1Si1, Al1K1Sb4, Al1P3Si1, As1La1Te1, As2Hg4O7, Ba1P4Te2, Cs2Ge1Te4, Cs2Sn1Te4, Ga1K1Sb4, H2B1Li1, La1Mn1S3, La1P1S1, P1S1Y1, P2Ru2Th1, I1K4P21, I1P21Rb4, B12Li2Si2, B2Ba1Se6, In9K1Na3, La2O2S2, Na4P2Se6, Nb1P2S8, F6Pa1Rb1, Au1Na1S1, Cs2Ni3S4, Cs2Ni3Se4, Cs2Pd3Se4, Cs2Pt3S4, Cs2Pt3Se4, Li2O4U1, Na2O4U1, Ni3Rb2S4, Pt3Rb2S4, Au1Cs1F4, Au5Cs7O2, Au5O2Rb7, Br3Cs1Li2, Cl2I2Ta1, Cl3Cs1Li2, Hf2N2S1, Li2Ni1O2, Na2O3Ti1, Na2O4Pd3, O3Pd1Sr2, Al1B14Li1, Ba1Ce1O3, C2B13Li1, Cu11K3Te16, O4P1Rh1, O4Si1Zn2, P2S6Th1, P2S6Zr1, Ba9Br34O1Pr6, Bi4I2Ru1, La4O10Re2, Br2Cs1F1, C2Ag1K1, C2Au1Cs1, C2Au1K1, C2Au1Na1, C2Au1Rb1, C2Cu1Rb1, C2Ag1Cs1, C2Cu1K1, Cl3O1W1, I3O1W1, Li6O4Zn1, Cl6Hf1Se4, Cl6Se4Zr1, Br2Cs2F2, Cs2I6Pd1, C4Ba1O4, Ag3Cu1S2, Ba1Cu2O2, Ba1O7U2, C4O4Pb1, Cd1In2O4, Cl2O1Pd2, Cu2O2Sr1, Al1Si1Te3, B12Br12Cs2, B12Cl12Cs2, B12Cs2I12, Cd2P2Se6, Cs8O1Tl8, Fe1P1Se3, Fe2P2Se6, Mg2P2Se6, Nb6O12Ti2, As2Hg2O6, Ca1O6Os2, O6Ru2Sr1, C2Cs2Pd1, C2Cs2Pt1, C2K2Pd1, C2K2Pt1, C2Na2Pd1, C2Na2Pt1, C2Pd1Rb2, C2Pt1Rb2, H2B2Ca1, Mg3Nb6O11, O2Pr2S1, O2Pr2Se1, B9Mg1N1, Cs4O1Tl2, F1Gd1O1, H8F4N2, Br9Os2Rb3, C9Fe2O9, Mo1S1Se1, Ag2I10Tl6, Ba5O10Ru2, Ca1Ga2P2, Ca1In2P2, Cl9Cs3Ru2, Cl9Cs3Ti2, Cs3F9Fe2, Cs3I9Zr2, In2P2Sr1, K1Nb1S2, K1Nb1Se2, Li1Nb1O2, Li1Nb1S2, Na1Nb1O2, Na1Nb1S2, Na1Nb1Se2, H12B12Cs2, H12B12K2, H12B12Rb2, H12B12Tl2, H20B12N2, As1Rb3Se16, K3P1Se16, H6Cl2N2, F6O2Pt1, Ag1Cu4Tb1, Au1Sc1Sn1, Bi1Co1Zr1, Bi1Lu1Ni1, Bi1Ni1Sc1, Bi1Ni1Y1, Co1Sb1Ti1, Cu1Rb1Te1, Fe1Nb1Sb1, Fe1Sb1V1, Ge1Pt1Ti1, Hf1Ni1Sn1, Hf1Pd1Sn1, Lu1Ni1Sb1, Nb1Ru1Sb1, Ni1Sb1Sc1, Ni1Sb1Y1, Ni1Sn1Ti1, Ni1Sn1Zr1, O4S1Zn1, Pd1Sb1Sc1, Pt1Sb1Sc1, Pt1Sb1Y1, Pt1Sn1Ti1, Rh1Sb1Th1, Ru1Sb1Ta1, Ru1Sb1V1, Ag6Ge10P12, Nb3Sb2Te5, In3O8P2, Fe2Ge1Ti1, H6B6Cs2, H6B6K2, Ag2Mo1O4, Ag6K2S4, Al1Cs1O2, Al1K1O2, Al1O2Rb1, Al2Cd1O4, Al2Cd1S4, Al2Cd1Se4, Al2Hg1S4, Al2Hg1Se4, Al2O4Zn1, Al2S4Zn1, Al2Se4Zn1, As4He2O6, Ba2Ge4S10, Cd1Ga2O4, Cd1In2S4, Cd1In2Se4, Cd1Lu2S4, Cd1Lu2Se4, Cd1O4Rh2, Cd1S4Sc2, Cd1S4Y2, Cd1Sc2Se4, Cd1Se4Y2, Cd2O4Si1, Cd2O4Sn1, Cl4Li2Zn1, Cs1N2Nb1, Ga2O4Zn1, Hg1In2S4, In2O4Zn1, In2S4Zn1, K8Sb4Sn1, Lu2Mg1S4, Lu2Mg1Se4, Mg1O4Rh2, Mg1Se4Y2, O4Rh2Zn1, O4Sn1Zn2, S4Sc2Zn1, S4Y2Zn1, Se4Y2Zn1,Ag1Bi1P2S6, As1Cl3F6S3, As2Cd1Ge1K1, As2Cd1Ge1Rb1, Bi8Cs4Hg2Se18, B18Hg2Rb4Se18, B3Cu1Li3O7, Br10O1Ta2Te4, C10H18Cu2N2O10, C10H18N2O10Rh2, C1F3Hg1O3S1, C1H5Eu1O7P1, C1H5Nd1O7P1, C1H5O7P1Pr1, C2H10Ga2Ge4N2O12, C2H26B12N8, C2H6Ca1O7, C2H6K2O13S1U1, C2H6O12U2, C2H8Br3Cu1N1O1, C2H8In2O14Se2, C3H7F1N1O5Sn1, C4H11N1O10, C4H12Ba2N2O10S2, C4H12Fe1O6S4, C4H12N6O14Se2U2, C4H14F3N1O2V1, C4H16Cl6Cu2N2, C4H7Cs1O10, C4H7K1O10, C5H10N1O6, C6F6Na4O12Sn4, C6H12Fe1N8O8, C6H4Na4Np2O18, C8H20N6O18S2U2, C8H28F6N2O4V2, C8H4K6N8O6Os2S2, C8O2Mo2O8, Cl10Mo2N4S4, Cl10Nb2O1Te4, Cl2N4O12S10, Cs2P2Se6Zn1, Cu1O9Se3Sr2, Cu2Na2O11Si4, F2N2O4Xe1, F2O7Te2V2, H10F8In2N2O2, H12I8Mg1O6, H12Mg1O12S2, H12O12S2Zn1, H14Hg2O14Te2, H14N4O8S2, H16B12Na2O14S6, H18O2Se4Sn1Sr2, H24Li2N8Te2, H26B20K4O4, H32N14Se6Sn2, H34Cl4Cr2N8O6, H4Cu2Na2O13Si4, H6B2F8N2, H6Cs2O12P4, H6F22N2Sb4, H6O12P4Rb2, H8Na6O14P4, K4Mn1Mo3O12, K4N2O14S4, Lu1Na1P2S6, Na1P2S6Tb1, Na1P2S6Y1, P2Rb2Se6Zn1, C4H3Cs1O14U2, C4H5K1O15U2, C4H5O15Rb1U2, Cs2Cu2O19S18, Cu2Ge4O13Sc2, K3P5Ru1Se10, Ag2Br6Hg7P8, Ag2Hg7I6P8, Au2K2P2Se6, Au2La4O2P4, Au2P2Se6Tl2, C2Cl2O4Pb2, C2H2Ag1O9S1Tb1, C2H4Ca2Cl2O6, C2H6N2Rb2, C4H6B12Cs2I12N2, C4H8N2O4, H20B12Li2O4, In1K2P2S7, La2P4S14Tl4, C8H12Ag2N4O4, Ag1As1K1S2, Ag1Cu1O4P1, Ag2Cs2P2Se6, Ag2O8P2V1, Ag2P2Se6Tl2, Al1As1Cu1O5, Al1Cu1O8P2Rb1, Al2Br6N2S2, Al2Br6N2Se2, As1F6N2S3, Ba1La1Sb2Se6, Ba1Mo2O16P4, C10F4Mn2O8, Cl2Bi2O12Ru4, C1O6P1Sn2, C2As2F12N2Te4, C2Cl10N2Sb2, C2Cu1O6Tl2, C2F6N4O6S4Se4, C2F6N4O6S8, C2H1Cs1O4, C2H2Na2O6, C2H4Cs2O6, C2H4F6O6S2Si2, C2H4Fe4O14P2, C2H4O14P2Zn4, C2H6K2N2, C2H6K4N8O10, C3H2Na1O7Zn1, C3H3Ba1O7, C4H12Cl8Nb2S2, C4H18B2P2, C4H2Fe2O6, C4H2O8Tl2, C6H10O6Sn1, C6H4Mg2Na2O14, C6O16Rb2U2, Cd1Mo1O6P1, Cd1P2Rb2Se6, Cl12Mo2O4P2, Cs2O12P2U2, Cs4O2S10V2, Cu1P1Se3Tl1, Cu2P2S6Tl2, Cu2P2Se6Tl2, F2N4O6S8, Fe1I1N2O2, Fe1K2P2S6, Fe1K2P2Se6, Fe2K1O8P2, H10Br2N2O2, H10N2O8P2, H12N4O4P2, H12O6P2Rb4S6, H14Ni1O12P2, H2Hg6N4O14, H2O6P2Tl2, H3K1O6P2, H5O7P1V1, H6Cs2N2P4, H8K4O4P2S6, H8Li4O12P2, Hg1K2P2Se6, K2Mg1P2Se6, K2P2Se6Zn1, Li2O8P2V1, Mo2O16P4Sr1, Na2O8P2V1, Ni1O10P2V2, Ag3P4Si2Tl5, Ba1In2O14P4, Ba1La2O14Te5, Ba1O8P2Th1, Ba2Gd2O13Si4, Bi2Cl8Hg3Te2, C1Ag2Cl1N1O4S1, C2Ag1N2Na1, C2F6Na2O4Sb2, C2H2Cs2O5, C2H2K2O5, C2H2K2O6, C2H2O5Rb2, C2H4B2O2, C2H6Fe1N2O4, C2H8Cl3Cu1N1, C2H8I2N4S2, C2N2O6S2, C4H12Mg1O6S4, C4H16F4Mn1N1O2, C4H4O10Th1, C4H6Ba1O10, C4H6Cd1O2S4, C4H6Na2O7, C4H6O7Sr1, C4H8Cd1Cl2N2, C4H8O12Th1, C4H8O8Zn1, C6H6Ag3Co1N8, Cd3Na2O10Si3, Cl3Na2O12Te4Y3, Cu1Mo2O8Sb1, Eu1O8Rb1S2, F9K5O4U2, H14Na3Np1O12, H2F4K1Mn1O1, H2F4Mn1O1Rb1, H4Ca2O13P3V1, H4F4O2Rb1V1, H8Ni1O10V2, Hg1In1S3Tl1, Hg1O7P2Pd1, K2Rb2Re6S13, K4Mo8O52P12, O14Sr3Te4U1, As2Cl3Hg3Tl1, Br3Hg3Sb2Tl1, H8Cs4O4P2Se6, H8O4P2Rb4Se6, La2O8S2Ta3, Cl1N2S1Se2, Cr2Li4N6Sr2, H6F6N2Si1, H6F1N1O2, H6F5N2Sb1, As6Ba4Cd3Li2, Ba4Cd3Li2P6, C4H12Cl8Nb2Se2, H8K4O4P2Se6, Ba1O7Sr1Ta2, Br9Cs5Nb2S4, Br9Nb2S4Tl5, Cl8Cs5I1S4U2, Cl9Cs5Nb2S4, Cl9Nb2S4Tl5, F1K1Nb2O6Sr1, H1La2Li1O3, La1O11Sr2Ta3, C4N4Pt1Rb2, Cs1F3Mo1O2, H4Al1F5O2Zn1, K1Na2O15Si6Y1, La1Nb2O7Rb1, Li2O7P2Pd1, O14P4Pd3Tl2, C4Cd1Hg1N4S4, C4Cd1Hg1N4Se4, C4Cd1N4S4Zn1, C4Cd1N4Se4Zn1, C4Co1Cs1O4, C4Hg1N4S4Zn1, C4Hg1N4Se4Zn1, Cl1K2Na1O6S2, Ba1O7Si2V1, C4H8In1K1O12, C4H8K1Lu1O12, C8K1O8Y1, Cl2K5Na1O12S4, Br4Cs2I2Pd1, Br4I2Pd1Rb2, Cl4Cs2I2Pd1, Ba4Bi3K1O1, Ba4K1O1Sb3, Ba4O1Rb1Sb3, As2Cs2O8Th1, Ce1K2O8P2, Cl2Cs2N2O6Pb1, As1K1Ni1O4, As1Na1Ni1O4, As2Ba1Ni2O8, Ba1Ni2O8P2, C4H4Cd1O6, Ca2Li6Mn2N6, Br15Cs2La1O3Ta6, Cl18Cs1Lu11Nb6, C8H24Cl18N2Nb6, Ce1O1P1Zn1, H12B12Br1Cs3, H12B12Br1K3, H12B12Br1Rb3, H12B12Cl1Cs3, H12B12Cl1Rb3, H12B12Cs3I1, H12B12I1K3, H12B12I1Rb3, As2Ba6Na2O17Ru2, Ba5Br2O9Ru2, Ba6Na2O17Ru2V2, C4Fe2Na6O16S1, Cs3Mo4O16P3, Ag3Ge3P6Sn2, Ag3P6Si3Sn2, C4Cd1K2N4, C4Hg1K2N4 and C4K2N4Zn1.
  • 4. A method for converting a compound, which has been selected by a method comprising a. identifying all topological insulators in an Inorganic Crystal Structure Database (“ICSD”),b. calculating Real Space Invariants of valence bands for all these topological insulators,c. identifying in all these topological insulators Wyckoff Positions where irreducible Wannier Charge Centers (WCCs) are localized, and thend. selecting as potentially catalytic active compound a topological insulator wherein the Wyckoff Position of WCCs is not occupied by any atom (=Wyckoff Position of obstructed WCCs, =WPOAI) of the topological insulator, or,which has been selected from the list consisting of:Ba1P8, I4P2, Mn1P4, Nb2Se9, Os1P4, P3Ru1, P4Ru1, P5Re2, Re1S2, Re1Se2, S2Tc1, Lu1P5, P5Y1, As1Ge1, As1Si1, Ba1P3, Bi1S2, Bi1Se2, Br4Nb1, Br6Si2, C22F14, C2Ca1, Ca5P8, Cl3Mo1, Cl3Y2, Cl4Nb1, Cl4Ta1, Cs5Te3, Ga1Te1, Ge1P1, Hg1O2, In1Se1, K1Sb2, Na1P2, O2Rb2, P3Sr1, Rb1Sb2, Ag1P2, As2Co1, As2Ir1, As2La1, As2Rh1, Au1O1, B2F4, B4Mn1, Ca1O2, Cd1P4, Co1P2, Cs1Te4, Cs2I8, Cu1P2, Fe1P4, Fe1S1, Ga2I3, Hg2N6, Ir1N2, Ir1P2, Ir1Sb2, La1P7, La1S2, La1Se2, Li2O2, Mg1P4, N2O4, N2S2, O2Tc1, P2Rh1, P7Pb1, Rh1Sb2, Rh1Si1, Sb1Zn1, Ba1S2, Ba1Se2, C2Ba1, C2Sr1, I6Pt2, Ni1P2, O2Si1, P2Pd1, S2Yb1, S4V1, Se3Tl2, Se9V2, Te3Tl2, As3Ca4, Cs2Te2, K2O2, Rb2Te2, As2Fe1, As2Os1, As2Ru1, C1N1, Fe1P2, Fe1S2, Fe1Sb2, Fe1Se2, In1S1, N2Pt1, Os1P2, Os1Sb2, P2Ru1, Ru1Sb2, Ru1Te2, Ge3Os2, Ge3Ru2, Os2Si3, Ru2Si3, As1Cd1, As1Zn1, B2Cl4, C2N2, Cd1Sb1, Cl1O2, P4Re1, P4Tc1, Pd1S2, B2Fe1, Na1P5, P3Re1, P3Tc1, Ba5P4, Ba5Sb4, K1Tl1, Ba1O2, F3La1, As6Cs4, As6Rb4, Cs4P6, K4P6, P6Rb4, Al2Ru1, Ga2Os1, Ga2Ru1, C2Li2, C2Na2, Cs2O2, Cs2S2, Rb2S2, B3Si1, H6Ru1, O64Si32, K5Te3, B10F12, Li1Si1, C1N2, Cs1In3, Ga3K1, Ga3Rb1, H8Si1, C2Mg1, Fe1Ga3, Ga3Os1, Ga3Ru1, In3Ru1, Li2S2, B4Os1, Cl2Zn1, Hg1I2, Hg2I4, Al2Os1, As1Ca2, Bi1Ca2, Br1Hg1, Br2Hg2, Cl2Hg2, F2Hg2, Ga3K2, Hg1I1, Hg2I2, In3Rb2, O2Sr1, Ba1Te2, O2Zn1, S2Sr1, Au1Br1, Au1Cl1, O3U1, Br12Zr6, Cl12Zr6, I12Zr6, I6Si2, As1B6, As2B12, B12P2, B12Si3, B6O1, B6P1, Br8Nb3, C1B4, C3B12, Ga1S1, I8Nb3, Cr1N2, Ga1Se1, Mo1N2, N2W1, Ca1P1, Ca2P2, K2S2, K2Se2, Na2O2, Na2S2, P1Sr1, C2Os1, Hf1N2, K2Te2, Mo1S2, Mo1Se2, Mo1Te2, Na1S1, Na2Se2, S2W1, Se2W1, Te2W1, As2Pt1, Cd1O2, Cd1S2, Cd1Se2, Fe1Te2, Mg1O2, Mg1Se2, Mg1Te2, N2Pd1, Os1S2, Os1Se2, Os1Te2, P2Pt1, Ru1S2, Ru1Se2, S2Zn1, Se2Zn1, Ag1Br1, Ag1Cl1, Ag1I1, B4Fe1, Be5Pt1, Br1Cu1, Cd1S1, Cd1Se1, Cd1Te1, Cl1Cu1, Cu1I1, Cu5Tb1, O1Zn1, S1Sn1, S1Zn1, Se1Zn1, Te1Zn1, B6Ca1, B6Si1, B6Sr1 and B1Li1, Al2Cd2Cl8, Al4Cl14Te4, As1Fe1S1, Au1Br8Te1, B18Cs8Si8, B18Rb8S1, B18Rb8Se18, B8Br6P4, Bi2Br8Te4, Bi4Cl16Te14, Bi6Cl20Te4, Br12Ta2Te4, Br1Mo1Te4, Br2Nb1S2, Br2Nb1Se2, C22Co6O18, C2I10La6, C2O4Pb1, Cl12Ta2Te4, Cl18P2Re2, Cl2Nb1Se2, Cl5O4Re2, Cl6Hf1Te4, Cl8Ga2Hg2, Cs1Sb2Se4, Cs2S6Sn2, Cs2S8Sb4, Cs2Se6Sn2, Cs4P2Se10, Cu4P3Se4, F12I4Sb2, F12Sb2Te4, Ge1Li1Te2, Ge2Te6Tl6, Hg1O3V1, Hg2P2S6, I12Nb2Te8, I1Ta1Te4, In2O5P1, K2O8S2, K2Sb4Se8, La6O18Re4, Li1Mo1S2, Mo4N14Sr10, Na2O8S2, Rb2Sb4Se8, Si2Te6Tl6, As2Ga2Sr1, C2Ca1O4, Al2Na7Sb5, Ba3P6Si4, Bi9I3Rh2, Cl7Nb3Se5, Ir2Se5Sn1, K4P8Te4, Al1O4W1, As1Cl2Hg2, As2F12I4, As3Ba2Cd2, As3Sr2Zn2, Ba5Cr1N5, Bi4Br2Ru1, Br10Te4Zr2, C1B2O2, C1N1Th1, C2Br2Gd2, C2La2O2, C4Cs2O4, C4Li2O4, C4O4Rb2, Cd1P1S3, Cd2P2S6, Cd6Sb12Sr11, Cl2Hg2P1, Cl2Nb1S2, Fe1P1S3, Fe2P2S6, Ge1K3S3, Ge2K6S6, Ge2K6Se6, Hg6O7Si2, I2O1Ta1, K6Si2Te6, Mg1P1S3, Na4P2S6, Ni1P1S3, Ni1P1Se3, Ni2P2S6, P1S3Zn1, P2S6V2, P2S6Zn2, P6Si8Zn4, Hg2Mo2O7, Hg2O4S1, Hg2O4Se1, Hg4O7P2, K2Mo8O16, Ag5Ge1O4, As1Cd2Cl2, As1Fe1Se1, As1Fe1Te1, As1Ru1Te1, As2Cs4Te6, As2F12Hg4, As2Hg6O10, As2Hg6O8, Ba1P3Pt2, Ba2P2S6, Ba2P2Se6, Ba6P6Sn2, Bi1Os1Se1, Br14Ga4Te4, Br3Hg2Te1, C1D1K1O3, C2Ag2O4, C2Cd1O4, C2H6O6, C2Li2O4, C2Na2O4, C2O4Tl2, C2O4Zn1, C4Na2O4, Ca1Mo5O8, Ca2P2S6, Ca2P2Se6, Cd2Cl2P1, Cl14Ga4Te4, Cl3Cu1K1, Cl3Mo1S2, Cl7O3Re2, Co1K2O2, Cs1O5V2, Cs2O8S2, Cs2Se6Te2, Cu1La2S4, Fe1P1S1, Fe1P1Se1, Fe1S1Sb1, Fe1Sb1Se1, Fe1Sb1Te1, Ge2Na6Se6, Ge2Na6Te6, H4B2O4, Hg1O4Re1, Hg2N2O4, Hg4N2O8, Hg6O8P2, I1Nb2Te6, In4P6S18, K4O8P2, K6Se6Sn2, K6Sn2Te6, Mo5O8Sr1, Na6Si2Te6, Os1P1S1, Os1P1Se1, Os1S1Sb1, Os1Sb1Se1, Os1Sb1Te1, P1Pb1Se3, P1Ru1S1, P1Ru1Se1, P1Se3Sn1, P2Pb2S6, P2Pb2Se6, P2S6Sn2, P2S6Sr2, P2Se6Sn2, P2Se6Sr2, P2Se6Tl4, Ru1S1Sb1, Ru1Sb1Se1, Ru1Sb1Te1, Ag2O2Pb1, As1F6I5, As3Br1Cd2, As3Br1Hg2, As3Cd2I1, As6Ba1Pt4, As6Pt4Sr1, Au1Cl1O2, Au1Cl4Cs1, Au1Cl4Rb1, Au1Cl4Tl1, Au1F4Li1, Au1Li1S1, B2Li2Se5, Bi3Cl1O4, Br1Cd2P3, Br2Hg2O6, C2O4Sn1, C4Ag2O4, Cd2Cl1P3, Cd2I1P3, Cd2O12P4, Cl1Hg2O1, Cl1Hg2P3, Cl2Hg4O2, Cl4Os1Sc4, Cs1F7Sb2, Cs2Re3Se6, Cs4Re6S13, Cs4Re6Se13, Cs4S13Tc6, Cs4Se13Tc6, Cs6Ge2Se6, Cs6Ge2Te6, Cs6Sn2Te6, Cu2O2Pb1, Cu2Re3Se6, Fe2O12P4, Ge2K6Te6, Hg2P2Se6, K2Re3S6, K2Re3Se6, K4Re6Se12, K4Si2Tc6, K4Se12Tc6, Mn2Mo1P12, Na2Nb4O11, Na2Re3S6, Na2Re3Se6, O3Si1Sr1, O4Pd1S1, O4Pt1S1, O7P2Pd2, P6Pt4Sr1, Rb2Re3S6, Rb2Re3Se6, Rb4Re6Si2, Rb4Re6S13, Rb4Re6Se12, Rb4S13Tc6, Rb4Se12Tc6, Re3S6Tl2, Re3Se6Tl2, Re6Se12Tl4, Br11Cs1Nb4, Br11Nb4Rb1, Cl11Cs1Nb4, Cl11Nb4Rb1, Al2Ca5Sb6, Al2Cl8Se4, As6Ca5Ga2, Ba1Nb8O14, Ba3O1Sb2, Ba5In2Sb6, C2K2O4, C2O4Rb2, Ca5In2Sb6, In2Sb6Sr5, Nb8O14Sr1, Ag5O4Si1, Br1Hg2P3, Nb2Ni1O6, O9P2V2, Al2Cl8Te4, Au1O4S1, Cl2N4S6, Co1Ge1Te1, Cu1O3Se1, Cu1P2Se1, Ge1Rh1Te1, O6P2Tl4, Pt1Sb1Si1, Al1K1Sb4, Al1P3Si1, As1La1Te1, As2Hg4O7, Ba1P4Te2, Cs2Ge1Te4, Cs2Sn1Te4, Ga1K1Sb4, H2B1Li1, La1Mn1S3, La1P1S1, P1S1Y1, P2Ru2Th1, I1K4P21, I1P21Rb4, B12Li2Si2, B2Ba1Se6, In9K1Na3, La2O2S2, Na4P2Se6, Nb1P2S8, F6Pa1Rb1, Au1Na1S1, Cs2Ni3S4, Cs2Ni3Se4, Cs2Pd3Se4, Cs2Pt3S4, Cs2Pt3Se4, Li2O4U1, Na2O4U1, Ni3Rb2S4, Pt3Rb2S4, Au1Cs1F4, Au5Cs7O2, Au5O2Rb7, Br3Cs1Li2, Cl2I2Ta1, Cl3Cs1Li2, Hf2N2S1, Li2Ni1O2, Na2O3Ti1, Na2O4Pd3, O3Pd1Sr2, Al1B14Li1, Ba1Ce1O3, C2B13Li1, Cu11K3Te16, O4P1Rh1, O4Si1Zn2, P2S6Th1, P2S6Zr1, Ba9Br34O1Pr6, Bi4I2Ru1, La4O10Re2, Br2Cs1F1, C2Ag1K1, C2Au1Cs1, C2Au1K1, C2Au1Na1, C2Au1Rb1, C2Cu1Rb1, C2Ag1Cs1, C2Cu1K1, Cl3O1W1, I3O1W1, Li6O4Zn1, Cl6Hf1Se4, Cl6Se4Zr1, Br2Cs2F2, Cs2I6Pd1, C4Ba1O4, Ag3Cu1S2, Ba1Cu2O2, Ba1O7U2, C4O4Pb1, Cd1In2O4, Cl2O1Pd2, Cu2O2Sr1, Al1Si1Te3, B12Br12Cs2, B12Cl12Cs2, B12Cs2I12, Cd2P2Se6, Cs8O1Tl8, Fe1P1Se3, Fe2P2Se6, Mg2P2Se6, Nb6O12Ti2, As2Hg2O6, Ca1O6Os2, O6Ru2Sr1, C2Cs2Pd1, C2Cs2Pt1, C2K2Pd1, C2K2Pt1, C2Na2Pd1, C2Na2Pt1, C2Pd1Rb2, C2Pt1Rb2, H2B2Ca1, Mg3Nb6O11, O2Pr2S1, O2Pr2Se1, B9Mg1N1, Cs4O1Tl2, F1Gd1O1, H8F4N2, Br9Os2Rb3, C9Fe2O9, Mo1S1Se1, Ag2I10Tl6, Ba5O10Ru2, Ca1Ga2P2, Ca1In2P2, Cl9Cs3Ru2, Cl9Cs3Ti2, Cs3F9Fe2, Cs3I9Zr2, In2P2Sr1, K1Nb1S2, K1Nb1Se2, Li1Nb1O2, Li1Nb1S2, Na1Nb1O2, Na1Nb1S2, Na1Nb1Se2, H12B12Cs2, H12B12K2, H12B12Rb2, H12B12Tl2, H20B12N2, As1Rb3Se16, K3P1Se16, H6Cl2N2, F6O2Pt1, Ag1Cu4Tb1, Au1Sc1Sn1, Bi1Co1Zr1, Bi1Lu1Ni1, Bi1Ni1Sc1, Bi1Ni1Y1, Co1Sb1Ti1, Cu1Rb1Te1, Fe1Nb1Sb1, Fe1Sb1V1, Ge1Pt1Ti1, Hf1Ni1Sn1, Hf1Pd1Sn1, Lu1Ni1Sb1, Nb1Ru1Sb1, Ni1Sb1Sc1, Ni1Sb1Y1, Ni1Sn1Ti1, Ni1Sn1Zr1, O4S1Zn1, Pd1Sb1Sc1, Pt1Sb1Sc1, Pt1Sb1Y1, Pt1Sn1Ti1, Rh1Sb1Th1, Ru1Sb1Ta1, Ru1Sb1V1, Ag6Ge10P12, Nb3Sb2Te5, In3O8P2, Fe2Ge1Ti1, H6B6Cs2, H6B6K2, Ag2Mo1O4, Ag6K2S4, Al1Cs1O2, Al1K1O2, Al1O2Rb1, Al2Cd1O4, Al2Cd1S4, Al2Cd1Se4, Al2Hg1S4, Al2Hg1Se4, Al2O4Zn1, Al2S4Zn1, Al2Se4Zn1, As4He2O6, Ba2Ge4S10, Cd1Ga2O4, Cd1In2S4, Cd1In2Se4, Cd1Lu2S4, Cd1Lu2Se4, Cd1O4Rh2, Cd1S4Sc2, Cd1S4Y2, Cd1Sc2Se4, Cd1Se4Y2, Cd2O4Si1, Cd2O4Sn1, Cl4Li2Zn1, Cs1N2Nb1, Ga2O4Zn1, Hg1In2S4, In2O4Zn1, In2S4Zn1, K8Sb4Sn1, Lu2Mg1S4, Lu2Mg1Se4, Mg1O4Rh2, Mg1Se4Y2, O4Rh2Zn1, O4Sn1Zn2, S4Sc2Zn1, S4Y2Zn1, Se4Y2Zn1,Ag1Bi1P2S6, As1Cl3F6S3, As2Cd1Ge1K1, As2Cd1Ge1Rb1, B18Cs4Hg2Se18, B18Hg2Rb4Se18, B3Cu1Li3O7, Br10O1Ta2Te4, C10H18Cu2N2O10, C10H18N2O10Rh2, C1F3Hg1O3S1, C1H5Eu1O7P1, C1H5Nd1O7P1, C1H5O7P1Pr1, C2H10Ga2Ge4N2O12, C2H26B12N8, C2H6Ca1O7, C2H6K2O13S1U1, C2H6O12U2, C2H8Br3Cu1N1O1, C2H8In2O14Se2, C3H7F1N1O5Sn1, C4H11N1O10, C4H12Ba2N2O10S2, C4H12Fe1O6S4, C4H12N6O14Se2U2, C4H14F3N1O2V1, C4H16Cl6Cu2N2, C4H7Cs1O10, C4H7K1O10, C5H10N1O6, C6F6Na4O12Sn4, C6H12Fe1N8O8, C6H4Na4Np2O18, C8H20N6O18S2U2, C8H28F6N2O4V2, C8H4K6N8O6Os2S2, C8I2Mo2O8, Cl10Mo2N4S4, Cl10Nb2O1Te4, Cl2N4O12S10, Cs2P2Se6Zn1, Cu1O9Se3Sr2, Cu2Na2O11Si4, F2N2O4Xe1, F2O7Te2V2, H10F8In2N2O2, H12I8Mg1O6, H12Mg1O12S2, H12O12S2Zn1, H14Hg2O14Te2, H14N4O8S2, H16B12Na2O14S6, H18O12Se4Sn1Sr2, H24Li2N8Te2, H26B20K4O4, H32N14Se6Sn2, H34Cl4Cr2N8O6, H4Cu2Na2O13Si4, H6B2F8N2, H6Cs2O12P4, H6F22N2Sb4, H6O12P4Rb2, H8Na6O14P4, K4Mn1Mo3O12, K4N2O14S4, Lu1Na1P2S6, Na1P2S6Tb1, Na1P2S6Y1, P2Rb2Se6Zn1, C4H3Cs1O14U2, C4H5K1O15U2, C4H5O15Rb1U2, Cs2Cu2O19Si8, Cu2Ge4O13Sc2, K3P5Ru1Se10, Ag2Br6Hg7P8, Ag2Hg7I6P8, Au2K2P2Se6, Au2La4O2P4, Au2P2Se6Tl2, C2Cl2O4Pb2, C2H2Ag1O9S1Tb1, C2H4Ca2Cl2O6, C2H6N2Rb2, C4H6B12Cs2I12N2, C4H8N2O4, H20B12Li2O4, In1K2P2S7, La2P4S14Tl4, C8H12Ag2N4O4, Ag1As1K1S2, Ag1Cu1O4P1, Ag2Cs2P2Se6, Ag2O8P2V1, Ag2P2Se6Tl2, Al1As1Cu1O5, Al1Cu1O8P2Rb1, Al2Br6N2S2, Al2Br6N2Se2, As1F6N2S3, Ba1La1Sb2Se6, Ba1Mo2O16P4, C10F4Mn2O8, Cl2Bi2O12Ru4, C1O6P1Sn2, C2As2F12N2Te4, C2Cl10N2Sb2, C2Cu1O6Tl2, C2F6N4O6S4Se4, C2F6N4O6S8, C2H1Cs1O4, C2H2Na2O6, C2H4Cs2O6, C2H4F6O6S2Si2, C2H4Fe4O14P2, C2H4O14P2Zn4, C2H6K2N2, C2H6K4N8O10, C3H2Na1O7Zn1, C3H3Ba1O7, C4H12Cl8Nb2S2, C4H18B2P2, C4H2Fe2O6, C4H2O8Tl2, C6H10O6Sn1, C6H4Mg2Na2O14, C6O16Rb2U2, Cd1Mo1O6P1, Cd1P2Rb2Se6, Cl12Mo2O4P2, Cs2O12P2U2, Cs4O2S10V2, Cu1P1Se3Tl1, Cu2P2S6Tl2, Cu2P2Se6Tl2, F2N4O6S8, Fe1I1N2O2, Fe1K2P2S6, Fe1K2P2Se6, Fe2K1O8P2, H10Br2N2O2, H10N2O8P2, H12N4O4P2, H12O6P2Rb4S6, H14Ni1O12P2, H2Hg6N4O14, H2O6P2Tl2, H3K1O6P2, H5O7P1V1, H6Cs2N2P4, H8K4O4P2S6, H8Li4O12P2, Hg1K2P2Se6, K2Mg1P2Se6, K2P2Se6Zn1, Li2O8P2V1, Mo2O16P4Sr1, Na2O8P2V1, Ni1O10P2V2, Ag3P4Si2Tl5, Ba1In2O14P4, Ba1La2O14Te5, Ba1O8P2Th1, Ba2Gd2O13Si4, Bi2Cl8Hg3Te2, C1Ag2Cl1N1O4S1, C2Ag1N2Na1, C2F6Na2O4Sb2, C2H2Cs2O5, C2H2K2O5, C2H2K2O6, C2H2O5Rb2, C2H4B2O2, C2H6Fe1N2O4, C2H8Cl3Cu1N1, C2H8I2N4S2, C2N2O6S2, C4H12Mg1O6S4, C4H16F4Mn1N1O2, C4H4O10Th1, C4H6Ba1O10, C4H6Cd1O2S4, C4H6Na2O7, C4H6O7Sr1, C4H8Cd1Cl2N2, C4H8O12Th1, C4H8O8Zn1, C6H6Ag3Co1N8, Cd3Na2O10Si3, Cl3Na2O12Te4Y3, Cu1Mo2O8Sb1, Eu1O8Rb1S2, F9K5O4U2, H14Na3Np1O12, H2F4K1Mn1O1, H2F4Mn1O1Rb1, H4Ca2O13P3V1, H4F4O2Rb1V1, H8Ni1O10V2, Hg1In1S3Tl1, Hg1O7P2Pd1, K2Rb2Re6S13, K4Mo8O52P12, O14Sr3Te4U1, As2Cl3Hg3Tl1, Br3Hg3Sb2Tl1, H8Cs4O4P2Se6, H8O4P2Rb4Se6, La2O8S2Ta3, Cl1N2S1Se2, Cr2Li4N6Sr2, H6F6N2Si1, H6F1N1O2, H6F5N2Sb1, As6Ba4Cd3Li2, Ba4Cd3Li2P6, C4H12Cl8Nb2Se2, H8K4O4P2Se6, Ba1O7Sr1Ta2, Br9Cs5Nb2S4, Br9Nb2S4Tl5, Cl8Cs5I1S4U2, Cl9Cs5Nb2S4, Cl9Nb2S4Tl5, F1K1Nb2O6Sr1, H1La2Li1O3, La1O11Sr2Ta3, C4N4Pt1Rb2, Cs1F3Mo1O2, H4Al1F5O2Zn1, K1Na2O15Si6Y1, La1Nb2O7Rb1, Li2O7P2Pd1, O14P4Pd3Tl2, C4Cd1Hg1N4S4, C4Cd1Hg1N4Se4, C4Cd1N4S4Zn1, C4Cd1N4Se4Zn1, C4CO1Cs1O4, C4Hg1N4S4Zn1, C4Hg1N4Se4Zn1, Cl1K2Na1O6S2, Ba1O7Si2V1, C4H8In1K1O12, C4H8K1Lu1O12, C8K1O8Y1, Cl2K5Na1O12S4, Br4Cs2I2Pd1, Br4I2Pd1Rb2, Cl4Cs2I2Pd1, Ba4Bi3K1O1, Ba4K1O1Sb3, Ba4O1Rb1Sb3, As2Cs2O8Th1, Ce1K2O8P2, Cl2Cs2N2O6Pb1, As1K1Ni1O4, As1Na1Ni1O4, As2Ba1Ni2O8, Ba1Ni2O8P2, C4H4Cd1O6, Ca2Li6Mn2N6, Br15Cs2La1O3Ta6, Cl18Cs1Lu1Nb6, C8H24Cl18N2Nb6, Ce1O1P1Zn1, H12B12Br1Cs3, H12B12Br1K3, H12B12Br1Rb3, H12B12Cl1Cs3, H12B12Cl1Rb3, H12B12Cs3I1, H12B12I1K3, H12B12I1Rb3, As2Ba6Na2O17Ru2, Ba5Br2O9Ru2, Ba6Na2O17Ru2V2, C4Fe2Na6O16S1, Cs3Mo4O16P3, Ag3Ge3P6Sn2, Ag3P6Si3Sn2, C4Cd1K2N4, C4Hg1K2N4 and C4K2N4Zn1,and which compound does not provide a surface with at least one metal surface state, into a compound which provides a surface with at least one metal surface state, by cutting or growing a crystal of this compound in a predefined crystallographic direction thereby revealing the at least one metal surface state, wherein the predefined crystallographic direction is the direction of the normal vector (h,k,l) of the surface plane f(x, y, z)=0 which cuts through the Wyckoff Position of obstructed WCCs (=WPOAI), but stays away from the Wyckoff Position(s) of the atoms of the selected topological insulator (=occupied Wyckoff Position(s), =WPOCC), which condition is fulfilled when:
  • 5. The method according to claim 1, wherein the topological insulator compound is characterized by an indirect band gap in the bulk of 0.001 to 7.000 eV.
  • 6. The method according to claim 1, wherein the metal surface state is located within 0.3 to 0.7 e-Volts above or below the Fermi level.
  • 7. A catalyst selected from a list consisting of the following compounds: Ba1P8, I4P2, Mn1P4, Nb2Se9, Os1P4, P3Ru1, P4Ru1, P5Re2, Re1S2, Re1Se2, S2Tc1, Lu1P5, P5Y1, As1Ge1, As1Si1, Ba1P3, Bi1S2, Bi1Se2, Br4Nb1, Br6Si2, C22F14, C2Ca1, Ca5P8, Cl3Mo1, Cl3Y2, Cl4Nb1, Cl4Ta1, Cs5Te3, Ga1Te1, Ge1P1, Hg1O2, In1Se1, K1Sb2, Na1P2, O2Rb2, P3Sr1, Rb1Sb2, Ag1P2, As2Co1, As2Ir1, As2La1, As2Rh1, Au1O1, B2F4, B4Mn1, Ca1O2, Cd1P4, Co1P2, Cs1Te4, Cs2I8, Cu1P2, Fe1P4, Fe1S1, Ga2I3, Hg2N6, Ir1N2, Ir1P2, Ir1Sb2, La1P7, La1S2, La1Se2, Li2O2, Mg1P4, N2O4, N2S2, O2Tc1, P2Rh1, P7Pb1, Rh1Sb2, Rh1Si1, Sb1Zn1, Ba1S2, Ba1Se2, C2Ba1, C2Sr1, I6Pt2, Ni1P2, O2Si1, P2Pd1, S2Yb1, S4V1, Se3Tl2, Se9V2, Te3Tl2, As3Ca4, Cs2Te2, K2O2, Rb2Te2, As2Fe1, As2Os1, As2Ru1, C1N1, Fe1P2, Fe1S2, Fe1Sb2, Fe1Se2, In1S1, N2Pt1, Os1P2, Os1Sb2, P2Ru1, Ru1Sb2, Ru1Te2, Ge3Os2, Ge3Ru2, Os2Si3, Ru2Si3, As1Cd1, As1Zn1, B2Cl4, C2N2, Cd1Sb1, Cl1O2, P4Re1, P4Tc1, Pd1S2, B2Fe1, Na1P5, P3Re1, P3Tc1, Ba5P4, Ba5Sb4, K1Tl1, Ba1O2, F3La1, As6Cs4, As6Rb4, Cs4P6, K4P6, P6Rb4, Al2Ru1, Ga2Os1, Ga2Ru1, C2Li2, C2Na2, Cs2O2, Cs2S2, Rb2S2, B3Si1, H6Ru1, O64Si32, K5Te3, B10F12, Li1Si1, C1N2, Cs1In3, Ga3K1, Ga3Rb1, H8Si1, C2Mg1, Fe1Ga3, Ga3Os1, Ga3Ru1, In3Ru1, Li2S2, B4Os1, Cl2Zn1, Hg1I2, Hg2I4, Al2Os1, As1Ca2, Bi1Ca2, Br1Hg1, Br2Hg2, Cl2Hg2, F2Hg2, Ga3K2, Hg1I1, Hg2I2, In3Rb2, O2Sr1, Ba1Te2, O2Zn1, S2Sr1, Au1Br1, Au1Cl1, O3U1, Br12Zr6, Cl12Zr6, I12Zr6, I6Si2, As1B6, As2B12, B12P2, B12Si3, B6O1, B6P1, Br8Nb3, C1B4, C3B12, Ga1S1, I8Nb3, Cr1N2, Ga1Se1, Mo1N2, N2W1, Ca1P1, Ca2P2, K2S2, K2Se2, Na2O2, Na2S2, P1Sr1, C2Os1, Hf1N2, K2Te2, Mo1S2, Mo1Se2, Mo1Te2, Na1S1, Na2Se2, S2W1, Se2W1, Te2W1, As2Pt1, Cd1O2, Cd1S2, Cd1Se2, Fe1Te2, Mg1O2, Mg1Se2, Mg1Te2, N2Pd1, Os1S2, Os1Se2, Os1Te2, P2Pt1, Ru1S2, Ru1Se2, S2Zn1, Se2Zn1, Ag1Br1, Ag1Cl1, Ag1I1, B4Fe1, Be5Pt1, Br1Cu1, Cd1S1, Cd1Se1, Cd1Te1, Cl1Cu1, Cu1I1, Cu5Tb1, O1Zn1, S1Sn1, S1Zn1, Se1Zn1, Te1Zn1, B6Ca1, B6Si1, B6Sr1 and B1Li1, Al2Cd2Cl8, Al4Cl14Te4, As1Fe1S1, Au1Br8Te1, B18Cs8S18, B18Rb8S1, B18Rb8Se18, B8Br6P4, Bi2Br8Te4, Bi4Cl16Te14, Bi6Cl20Te4, Br12Ta2Te4, Br1Mo1Te4, Br2Nb1S2, Br2Nb1Se2, C22Co6O18, C2I10La6, C2O4Pb1, Cl12Ta2Te4, Cl18P2Re2, Cl2Nb1Se2, Cl5O4Re2, Cl6Hf1Te4, Cl8Ga2Hg2, Cs1Sb2Se4, Cs2S6Sn2, Cs2S8Sb4, Cs2Se6Sn2, Cs4P2Se10, Cu4P3Se4, F12I4Sb2, F12Sb2Te4, Ge1Li1Te2, Ge2Te6Tl6, Hg1O3V1, Hg2P2S6, I12Nb2Te8, I1Ta1Te4, In2O5P1, K2O8S2, K2Sb4Se8, La6O18Re4, Li1Mo1S2, Mo4N14Sr10, Na2O8S2, Rb2Sb4Se8, Si2Te6Tl6, As2Ga2Sr1, C2Ca1O4, Al2Na7Sb5, Ba3P6Si4, Bi9I3Rh2, Cl7Nb3Se5, Ir2Se5Sn1, K4P8Te4, Al1O4W1, As1Cl2Hg2, As2F12I4, As3Ba2Cd2, As3Sr2Zn2, Ba5Cr1N5, Bi4Br2Ru1, Br10Te4Zr2, C1B2O2, C1N1Th1, C2Br2Gd2, C2La2O2, C4Cs2O4, C4Li2O4, C4O4Rb2, Cd1P1S3, Cd2P2S6, Cd6Sb12Sr11, Cl2Hg2P1, Cl2Nb1S2, Fe1P1S3, Fe2P2S6, Ge1K3S3, Ge2K6S6, Ge2K6Se6, Hg6O7Si2, I2O1Ta1, K6Si2Te6, Mg1P1S3, Na4P2S6, Ni1P1S3, Ni1P1Se3, Ni2P2S6, P1S3Zn1, P2S6V2, P2S6Zn2, P6Si8Zn4, Hg2Mo2O7, Hg2O4S1, Hg2O4Se1, Hg4O7P2, K2Mo8O16, Ag5Ge1O4, As1Cd2Cl2, As1Fe1Se1, As1Fe1Te1, As1Ru1Te1, As2Cs4Te6, As2F12Hg4, As2Hg6O10, As2Hg6O8, Ba1P3Pt2, Ba2P2S6, Ba2P2Se6, Ba6P6Sn2, Bi1Os1Se1, Br14Ga4Te4, Br3Hg2Te1, C1D1K1O3, C2Ag2O4, C2Cd1O4, C2H6O6, C2Li2O4, C2Na2O4, C2O4Tl2, C2O4Zn1, C4Na2O4, Ca1Mo5O8, Ca2P2S6, Ca2P2Se6, Cd2Cl2P1, Cl14Ga4Te4, Cl3Cu1K1, Cl3Mo1S2, Cl7O3Re2, Co1K2O2, Cs1O5V2, Cs2O8S2, Cs2Se6Te2, Cu1La2S4, Fe1P1S1, Fe1P1Se1, Fe1S1Sb1, Fe1Sb1Se1, Fe1Sb1Te1, Ge2Na6Se6, Ge2Na6Te6, H4B2O4, Hg1O4Re1, Hg2N2O4, Hg4N2O8, Hg6O8P2, I1Nb2Te6, In4P6S18, K4O8P2, K6Se6Sn2, K6Sn2Te6, Mo5O8Sr1, Na6Si2Te6, Os1P1S1, Os1P1Se1, Os1S1Sb1, Os1Sb1Se1, Os1Sb1Te1, P1Pb1Se3, P1Ru1S1, P1Ru1Se1, P1Se3Sn1, P2Pb2S6, P2Pb2Se6, P2S6Sn2, P2S6Sr2, P2Se6Sn2, P2Se6Sr2, P2Se6Tl4, Ru1S1Sb1, Ru1Sb1Se1, Ru1Sb1Te1, Ag2O2Pb1, As1F6I5, As3Br1Cd2, As3Br1Hg2, As3Cd2I1, As6Ba1Pt4, As6Pt4Sr1, Au1Cl1O2, Au1Cl4Cs1, Au1Cl4Rb1, Au1Cl4Tl1, Au1F4Li1, Au1Li1S1, B2Li2Se5, Bi3Cl1O4, Br1Cd2P3, Br2Hg2O6, C2O4Sn1, C4Ag2O4, Cd2Cl1P3, Cd2I1P3, Cd2O12P4, Cl1Hg2O1, Cl1Hg2P3, Cl2Hg4O2, Cl4Os1Sc4, Cs1F7Sb2, Cs2Re3Se6, Cs4Re6S13, Cs4Re6Se13, Cs4S13Tc6, Cs4Se13Tc6, Cs6Ge2Se6, Cs6Ge2Te6, Cs6Sn2Te6, Cu2O2Pb1, Cu2Re3Se6, Fe2O12P4, Ge2K6Te6, Hg2P2Se6, K2Re3S6, K2Re3Se6, K4Re6Se12, K4Si2Tc6, K4Se12Tc6, Mn2Mo1P12, Na2Nb4O11, Na2Re3S6, Na2Re3Se6, O3Si1Sr1, O4Pd1S1, O4Pt1S1, O7P2Pd2, P6Pt4Sr1, Rb2Re3S6, Rb2Re3Se6, Rb4Re6Si2, Rb4Re6S13, Rb4Re6Se12, Rb4S13Tc6, Rb4Se12Tc6, Re3S6Tl2, Re3Se6Tl2, Re6Se12Tl4, Br11Cs1Nb4, Br11Nb4Rb1, Cl11Cs1Nb4, Cl11Nb4Rb1, Al2Ca5Sb6, Al2Cl8Se4, As6Ca5Ga2, Ba1Nb8O14, Ba3O1Sb2, Ba5In2Sb6, C2K2O4, C2O4Rb2, Ca5In2Sb6, In2Sb6Sr5, Nb8O14Sr1, Ag5O4Si1, Br1Hg2P3, Nb2Ni1O6, O9P2V2, Al2Cl8Te4, Au1O4Si, Cl2N4S6, Co1Ge1Te1, Cu1O3Se1, Cu1P2Se1, Ge1Rh1Te1, O6P2Tl4, Pt1Sb1Si1, Al1K1Sb4, Al1P3Si1, As1La1Te1, As2Hg4O7, Ba1P4Te2, Cs2Ge1Te4, Cs2Sn1Te4, Ga1K1Sb4, H2B1Li1, La1Mn1S3, La1P1S1, P1S1Y1, P2Ru2Th1, I1K4P21, I1P21Rb4, B12Li2Si2, B2Ba1Se6, In9K1Na3, La2O2S2, Na4P2Se6, Nb1P2S8, F6Pa1Rb1, Au1Na1S1, Cs2Ni3S4, Cs2Ni3Se4, Cs2Pd3Se4, Cs2Pt3S4, Cs2Pt3Se4, Li2O4U1, Na2O4U1, Ni3Rb2S4, Pt3Rb2S4, Au1Cs1F4, Au5Cs7O2, Au5O2Rb7, Br3Cs1Li2, Cl2I2Ta1, Cl3Cs1Li2, Hf2N2S1, Li2Ni1O2, Na2O3Ti1, Na2O4Pd3, O3Pd1Sr2, Al1B14Li1, Ba1Ce1O3, C2B13Li1, Cu11K3Te16, O4P1Rh1, O4Si1Zn2, P2S6Th1, P2S6Zr1, Ba9Br34O1Pr6, Bi4I2Ru1, La4O10Re2, Br2Cs1F1, C2Ag1K1, C2Au1Cs1, C2Au1K1, C2Au1Na1, C2Au1Rb1, C2Cu1Rb1, C2Ag1Cs1, C2Cu1K1, Cl3O1W1, I3O1W1, Li6O4Zn1, Cl6Hf1Se4, Cl6Se4Zr1, Br2Cs2F2, Cs2I6Pd1, C4Ba1O4, Ag3Cu1S2, Ba1Cu2O2, Ba1O7U2, C4O4Pb1, Cd1In2O4, Cl2O1Pd2, Cu2O2Sr1, Al1Si1Te3, B12Br12Cs2, B12Cl12Cs2, B12Cs21I2, Cd2P2Se6, Cs8O1Tl8, Fe1P1Se3, Fe2P2Se6, Mg2P2Se6, Nb6O12Ti2, As2Hg2O6, Ca1O6Os2, O6Ru2Sr1, C2Cs2Pd1, C2Cs2Pt1, C2K2Pd1, C2K2Pt1, C2Na2Pd1, C2Na2Pt1, C2Pd1Rb2, C2Pt1Rb2, H2B2Ca1, Mg3Nb6O11, O2Pr2S1, O2Pr2Se1, B9Mg1N1, Cs4O1Tl2, F1Gd1O1, H8F4N2, Br9Os2Rb3, C9Fe2O9, Mo1S1Se1, Ag2I10Tl6, Ba5O10Ru2, Ca1Ga2P2, Ca1In2P2, Cl9Cs3Ru2, Cl9Cs3Ti2, Cs3F9Fe2, Cs3I9Zr2, In2P2Sr1, K1Nb1S2, K1Nb1Se2, Li1Nb1O2, Li1Nb1S2, Na1Nb1O2, Na1Nb1S2, Na1Nb1Se2, H12B12Cs2, H12B12K2, H12B12Rb2, H12B12Tl2, H20B12N2, As1Rb3Se16, K3P1Se16, H6Cl2N2, F6O2Pt1, Ag1Cu4Tb1, Au1Sc1Sn1, Bi1Co1Zr1, Bi1Lu1Ni1, Bi1Ni1Sc1, Bi1Ni1Y1, Co1Sb1Ti1, Cu1Rb1Te1, Fe1Nb1Sb1, Fe1Sb1V1, Ge1Pt1Ti1, Hf1Ni1Sn1, Hf1Pd1Sn1, Lu1Ni1Sb1, Nb1Ru1Sb1, Ni1Sb1Sc1, Ni1Sb1Y1, Ni1Sn1Ti1, Ni1Sn1Zr1, O4S1Zn1, Pd1Sb1Sc1, Pt1Sb1Sc1, Pt1Sb1Y1, Pt1Sn1Ti1, Rh1Sb1Th1, Ru1Sb1Ta1, Ru1Sb1V1, Ag6Ge10P12, Nb3Sb2Te5, In3O8P2, Fe2Ge1Ti1, H6B6Cs2, H6B6K2, Ag2Mo1O4, Ag6K2S4, Al1Cs1O2, Al1K1O2, Al1O2Rb1, Al2Cd1O4, Al2Cd1S4, Al2Cd1Se4, Al2Hg1S4, Al2Hg1Se4, Al2O4Zn1, Al2S4Zn1, Al2Se4Zn1, As4He2O6, Ba2Ge4S10, Cd1Ga2O4, Cd1In2S4, Cd1In2Se4, Cd1Lu2S4, Cd1Lu2Se4, Cd1O4Rh2, Cd1S4Sc2, Cd1S4Y2, Cd1Sc2Se4, Cd1Se4Y2, Cd2O4Si1, Cd2O4Sn1, Cl4Li2Zn1, Cs1N2Nb1, Ga2O4Zn1, Hg1In2S4, In2O4Zn1, In2S4Zn1, K8Sb4Sn1, Lu2Mg1S4, Lu2Mg1Se4, Mg1O4Rh2, Mg1Se4Y2, O4Rh2Zn1, O4Sn1Zn2, S4Sc2Zn1, S4Y2Zn1, Se4Y2Zn1,Ag1Bi1P2S6, As1Cl3F6S3, As2Cd1Ge1K1, As2Cd1Ge1Rb1, Bi8Cs4Hg2Se18, B18Hg2Rb4Se18, B3Cu1Li3O7, Br10O1Ta2Te4, C10H18Cu2N2O10, C10H18N2O10Rh2, C1F3Hg1O3S1, C1H5Eu1O7P1, C1H5Nd1O7P1, C1H5O7P1Pr1, C2H10Ga2Ge4N2O12, C2H26B12N8, C2H6Ca1O7, C2H6K2O13S1U1, C2H6O12U2, C2H8Br3Cu1N1O1, C2H8In2O14Se2, C3H7F1N1O5Sn1, C4H11N1O10, C4H12Ba2N2O10S2, C4H12Fe1O6S4, C4H12N6O14Se2U2, C4H14F3N1O2V1, C4H16Cl6Cu2N2, C4H7Cs1O10, C4H7K1O10, C5H10N1O6, C6F6Na4O12Sn4, C6H12Fe1N8O8, C6H4Na4Np2O18, C8H20N6O18S2U2, C8H28F6N2O4V2, C8H4K6N8O6Os2S2, C8I2Mo2O8, Cl10Mo2N4S4, Cl10Nb2O1Te4, Cl2N4O12S10, Cs2P2Se6Zn1, Cu1O9Se3Sr2, Cu2Na2O11Si4, F2N2O4Xe1, F2O7Te2V2, H10F8In2N2O2, H12I8Mg1O6, H12Mg1O12S2, H12O12S2Zn1, H14Hg2O14Te2, H14N4O8S2, H16B12Na2O14S6, H18O12Se4Sn1Sr2, H24Li2N8Te2, H26B20K4O4, H32N14Se6Sn2, H34Cl4Cr2N8O6, H4Cu2Na2O13Si4, H6B2F8N2, H6Cs2O12P4, H6F22N2Sb4, H6O12P4Rb2, H8Na6O14P4, K4Mn1Mo3O12, K4N2O14S4, Lu1Na1P2S6, Na1P2S6Tb1, Na1P2S6Y1, P2Rb2Se6Zn1, C4H3Cs1O14U2, C4H5K1O15U2, C4H5O15Rb1U2, Cs2Cu2O19Si8, Cu2Ge4O13Sc2, K3P5Ru1Se10, Ag2Br6Hg7P8, Ag2Hg7I6P8, Au2K2P2Se6, Au2La4O2P4, Au2P2Se6Tl2, C2Cl2O4Pb2, C2H2Ag1O9S1Tb1, C2H4Ca2Cl2O6, C2H6N2Rb2, C4H6B12Cs2I12N2, C4H8N2O4, H20B12Li2O4, In1K2P2S7, La2P4S14Tl4, C8H12Ag2N4O4, Ag1As1K1S2, Ag1Cu1O4P1, Ag2Cs2P2Se6, Ag2O8P2V1, Ag2P2Se6Tl2, Al1As1Cu1O5, Al1Cu1O8P2Rb1, Al2Br6N2S2, Al2Br6N2Se2, As1F6N2S3, Ba1La1Sb2Se6, Ba1Mo2O16P4, C10F4Mn2O8, C12Bi2O12Ru4, C1O6P1Sn2, C2As2F12N2Te4, C2Cl10N2Sb2, C2Cu1O6Tl2, C2F6N4O6S4Se4, C2F6N4O6S8, C2H1Cs1O4, C2H2Na2O6, C2H4Cs2O6, C2H4F6O6S2Si2, C2H4Fe4O14P2, C2H4O14P2Zn4, C2H6K2N2, C2H6K4N8O10, C3H2Na1O7Zn1, C3H3Ba1O7, C4H12Cl8Nb2S2, C4H18B2P2, C4H2Fe2O6, C4H2O8Tl2, C6H10O6Sn1, C6H4Mg2Na2O14, C6O16Rb2U2, Cd1Mo1O6P1, Cd1P2Rb2Se6, Cl12Mo2O4P2, Cs2O12P2U2, Cs4O2S10V2, Cu1P1Se3Tl1, Cu2P2S6Tl2, Cu2P2Se6Tl2, F2N4O6S8, Fe1I1N2O2, Fe1K2P2S6, Fe1K2P2Se6, Fe2K1O8P2, H10Br2N2O2, H10N2O8P2, H12N4O4P2, H12O6P2Rb4S6, H14Ni1O12P2, H2Hg6N4O14, H2O6P2Tl2, H3K1O6P2, H5O7P1V1, H6Cs2N2P4, H8K4O4P2S6, H8Li4O12P2, Hg1K2P2Se6, K2Mg1P2Se6, K2P2Se6Zn1, Li2O8P2V1, Mo2O16P4Sr1, Na2O8P2V1, Ni1O10P2V2, Ag3P4Si2Tl5, Ba1In2O14P4, Ba1La2O14Te5, Ba1O8P2Th1, Ba2Gd2O13Si4, Bi2Cl8Hg3Te2, C1Ag2Cl1N1O4S1, C2Ag1N2Na1, C2F6Na2O4Sb2, C2H2Cs2O5, C2H2K2O5, C2H2K2O6, C2H2O5Rb2, C2H4B2O2, C2H6Fe1N2O4, C2H8Cl3Cu1N1, C2H8I2N4S2, C2N2O6S2, C4H12Mg1O6S4, C4H16F4Mn1N1O2, C4H4O10Th1, C4H6Ba1O10, C4H6Cd1O2S4, C4H6Na2O7, C4H6O7Sr1, C4H8Cd1Cl2N2, C4H8O12Th1, C4H8O8Zn1, C6H6Ag3Co1N8, Cd3Na2O10Si3, Cl3Na2O12Te4Y3, Cu1Mo2O8Sb1, Eu1O8Rb1S2, F9K5O4U2, H14Na3Np1O12, H2F4K1Mn1O1, H2F4Mn1O1Rb1, H4Ca2O13P3V1, H4F4O2Rb1V1, H8Ni1O10V2, Hg1In1S3Tl1, Hg1O7P2Pd1, K2Rb2Re6S13, K4Mo8O52P12, O14Sr3Te4U1, As2Cl3Hg3Tl1, Br3Hg3Sb2Tl1, H8Cs4O4P2Se6, H8O4P2Rb4Se6, La2O8S2Ta3, Cl1N2S1Se2, Cr2Li4N6Sr2, H6F6N2Si1, H6F1N1O2, H6F5N2Sb1, As6Ba4Cd3Li2, Ba4Cd3Li2P6, C4H12Cl8Nb2Se2, H8K4O4P2Se6, Ba1O7Sr1Ta2, Br9Cs5Nb2S4, Br9Nb2S4Tl5, Cl8Cs5I1S4U2, Cl9Cs5Nb2S4, Cl9Nb2S4Tl5, F1K1Nb2O6Sr1, H1La2Li1O3, La1O11Sr2Ta3, C4N4Pt1Rb2, Cs1F3Mo1O2, H4Al1F5O2Zn1, K1Na2O15Si6Y1, La1Nb2O7Rb1, Li2O7P2Pd1, O14P4Pd3Tl2, C4Cd1Hg1N4S4, C4Cd1Hg1N4Se4, C4Cd1N4S4Zn1, C4Cd1N4Se4Zn1, C4CO1Cs1O4, C4Hg1N4S4Zn1, C4Hg1N4Se4Zn1, Cl1K2Na1O6S2, Ba1O7Si2V1, C4H8In1K1O12, C4H8K1Lu1O12, C8K1O8Y1, Cl2K5Na1O12S4, Br4Cs2I2Pd1, Br4I2Pd1Rb2, Cl4Cs2I2Pd1, Ba4Bi3K1O1, Ba4K1O1Sb3, Ba4O1Rb1Sb3, As2Cs2O8Th1, Ce1K2O8P2, Cl2Cs2N2O6Pb1, As1K1Ni1O4, As1Na1Ni1O4, As2Ba1Ni2O8, Ba1Ni2O8P2, C4H4Cd1O6, Ca2Li6Mn2N6, Br15Cs2La1O3Ta6, Cl18Cs1Lu1Nb6, C8H24Cl18N2Nb6, Ce1O1P1Zn1, H12B12Br1Cs3, H12Bi2Br1K3, H12B12Br1Rb3, H12B12C1Cs3, H12B2Cl1Rb3, H12B12Cs3I1, H12B12I1K3, H12B21I1Rb3, As2Ba6Na2O17Ru2, Ba5Br2O9Ru2, Ba6Na2O17Ru2V2, C4Fe2Na6O16S1, Cs3Mo4O1P3, Ag3Ge3P6Sn2, Ag3P6Si3Sn2, C4Cd1K2N4, C4Hg1K2N4 and C4K2N4Zn1,wherein a crystal of the selected compound is grown in a predefined crystallographic direction (characterized by its h,k,l-indices); or is cut in a predefined crystallographic direction (characterized by its h,k,l-indices),wherein the predefined crystallographic direction is the direction of the normal vector (h,k,l) of the surface plane f(x, y, z)=0 which cuts through the Wyckoff Position of obstructed WCCs (=WPOAI), but stays away from the Wyckoff Position(s) of the atoms of the selected topological insulator (=occupied Wyckoff Position(s), =WPOCC), which condition is fulfilled when:
  • 8. A water splitting, ammonia synthesis, CO2 reduction or oxygen reduction catalyst comprising a the catalyst of claim 7.
  • 9. The method according to claim 6, wherein the metal surface state is located within 0.4 to 0.6 eV above or below the Fermi level.
  • 10. The method according to claim 6, wherein the metal surface state is located within about 0.5 eV above or below the Fermi level.
  • 11. The water splitting, ammonia synthesis, CO2 reduction or oxygen reduction catalyst according to claim 8, wherein the water splitting catalyst is an Oxygen Evolution Reaction (“OER”) catalyst and/or a Hydrogen Evolution Reaction (“HER”) catalyst and the oxygen reduction catalyst is a fuel cell catalyst.
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2020/066076 6/10/2020 WO