This description relates generally to selection of tiles or icons and more specifically to the selection of tiles and icons in a virtualized display window.
The display of files and documents within a graphical directory structure will be familiar to users of operating systems such as Microsoft Windows, by Microsoft Corporation of Redmond Wash. In operating systems such as these the user accesses files, such as photos, through an application such as the Windows Explorer application. In these applications the users navigate to a desired directory location and when they reach the desired directory location all of the associated icons for the files are loaded and rendered into the window. Depending on the size of the directory and number of file icons that are to be displayed the process of rendering these images into the application can be time consuming. However, once the images have been loaded into the application the user can scroll or otherwise navigate through the directory. In some instances the user will desire to select a number of the files to perform an operation on (moving files, copying files, etc.). Typically, when selecting files the user draws a box around the files and this box indicates to the underlying application which files have been selected. Once the files have been selected the user performs the desired action on the group of files.
The following presents a simplified summary of the disclosure in order to provide a basic understanding to the reader. This summary is not an extensive overview of the disclosure and it does not identify key/critical elements of the invention or delineate the scope of the invention. Its sole purpose is to present some concepts disclosed herein in a simplified form as a prelude to the more detailed description that is presented later.
The present example provides a system and method for selecting items or tiles when they are displayed using a virtualized display window. The system uses the row relative coordinates of each tile to determine whether those tiles were selected by the user. As the user scrolls or moves off of the originally displayed window, information related to the unrealized tiles that were once realized is stored so that selection of unrealized tiles is possible. Typically, the user will select tiles by indicating a starting point and drawing a rectangle to the desired ending point. In some embodiments this information is stored even when no scrolling occurs. Information related to the tiles that are intersected by the rectangle or enclosed in the rectangle are stored for use in the selection process in case those tiles are unrealized during the selection process. Once the tiles have been selected the user can perform operations on the selected tiles in a customary fashion.
Many of the attendant features will be more readily appreciated as the same becomes better understood by reference to the following detailed description considered in connection with the accompanying drawings.
The present description will be better understood from the following detailed description read in light of the accompanying drawings, wherein:
Like reference numerals are used to designate like parts in the accompanying drawings.
The detailed description provided below in connection with the appended drawings is intended as a description of the present examples and is not intended to represent the only forms in which the present example may be constructed or utilized. The description sets forth the functions of the example and the sequence of steps for constructing and operating the example. However, the same or equivalent functions and sequences may be accomplished by different examples.
Display window 130 is a display that includes a number of different tiles and/or icons that are representative of files, applications or folders. In contrast to traditional display windows the display window 130 of the present embodiments uses a virtualized list of the files for displaying the files. A more detailed description of this virtualization is discussed in more detail below. However, briefly in the virtualized list of the present embodiments, only that number of tiles that fit in the display window 130 are rendered into memory (or realized). The remaining tiles, i.e. the ones not visible in the display window 130, in the virtualized list are not rendered and removed from the memory (unrealized). As tiles need to become visible they are rendered and the tiles that are no longer visible are no longer rendered.
Display window 130 has the ability to display more than tiles 201-212. Those tiles not displayed in display window 130 can be accessed through the use of a scroll bar 240. In contrast to current scroll bars that use the position of the scroll bar to determine which pixels will be visible at the top of the display window 130, the scrollbar 240 position is determined using a fractional line coordinates. The fractional line coordinates are then mapped to anchor and target variables to determine the position of the tiles on the display window 130.
Input device 410 is a component of a computer system that allows the user to select or point on the user interface. In one embodiment the input device 410 is a pointing device, such as mouse or electronic pen. However, other types of input devices or methods can be used to allow the user to select points within the display window 130.
The user interface display component 420 is component or module of the system 400 that manages how the display window 130 and its contents are displayed on the user interface. User interface 420 includes a virtualization module 425. The virtualization module 425 obtains from the tile database 430 information related to the tiles that are to be displayed on the display window 130. This information includes at least, in one embodiment, the size of each tile that is associated with the display window. Based on the size of the tiles and the number of the tiles that are to be displayed in the display window 130 the virtualization module 425 determines the arrangement of the tiles in the display window 130. In one embodiment, the virtualization module uses a predetermined width of the display window 130. This predetermined width of the display window 130 assists the virtualization module 425 in arranging and determining the location of the tiles in the display window 130. In an alternative embodiment, the virtualization module uses a predetermined height for the display window 130. However, for purposes of this discussion it will be assumed that the virtualization module 425 is using a predetermined width for the display window.
The virtualization module uses the size of the tiles along with the predetermined width to arrange the tiles. This predetermined width is generally expressed in terms of pixels. However, other methods for defining the width of the display window can be used. The virtualization module 425 determines how many tiles can be placed in the display window 130 based on the size of the tiles. First the virtualization module identifies the width of each tile in the tile database 230 for the display window 130. Using these widths the virtualization module 425 determines the number of tiles that can fit within a row. Next the virtualization module 235 determines the height of each tile assigned to a row. The row height is then assigned based on the tallest tile in the group. In one embodiment the tiles are arranged such that the top of each tile in the row is at the same relative line height for the row. If the tiles are not of the same height a jagged bottom is seen by the user on display 130. An example of the jagged bottom is illustrated in
Tile database 230 is a database that stores data related to tiles in display window 130. In one embodiment, each level within a display window has a separate table within the database. Alternatively the tiles that are displayed in a given display window are identified by a window identifier in the database. Data stored in database 230 for each tile, can include, the size of the tile to be displayed, an icon or image associated with the tile, a link to the content represented by the tile, a unique identifier for the tile. However, other information related to the tile may also be included in tile database 230.
When the user interacts with display window 130 to navigate through the various tiles of the display window, a signal is passed from the window 130 to the user interface display component 420. When the window is first opened the UI display component 420 determines the viewing size of the window. This information is passed to the virtualization module 425 which determines how many rows can be displayed in the current window configuration. The virtualization module 425 uses the stored row heights in this determination. Once the number of rows that can be displayed on the display window 130 have been determined, the virtualization module 425 communicates with the tile database 430 and renders the determined tiles according to the row/column arrangement discussed above. As this is the first rendering of the tiles, the scroll bar is disposed at the top of the window and the first set of rows are displayed. Those tiles associated with rows that are not currently in view are not rendered, or otherwise available in memory.
The user can then scroll through the display window to see the rows that are not currently visible. As the user scrolls the user interface display component receives indications as to the location of the scroll bar and passes this information to the virtualization module. The virtualization module uses this information to determine what rows are visible given the scroll bar position. Based on this determined position of the scroll bar the virtualization module obtains from the tile database the tiles that are now visible, and causes those tiles to be rendered on the display window 130, as discussed above. Further, the virtualization module removes or deallocates those tiles which are no longer visible in the display window.
Selection manager 440 is a component of the system 400 that manages the selection of tiles in the display window 130 according to one embodiment. The selection manager 440 determines which tiles the user has selected when the user, for example draws a rectangle around tiles in the display window 130.
The hit-test module 450 is a module that determines whether a specific tile falls within the drawn rectangle. The hit-test module 450 performs a vertical hit-test against each tile in a given row. The vertical hit-test determines which tiles in the row can be intersected by the rectangle 520. In particular the hit-test module determines whether each tile is above, below or inside the vertical component of the row relative coordinate of the starting point 510. A similar operation is performed on the tiles of the row associated with the ending point 610 (
At step 710 the user opens display window 130. For example the user may open Windows Explorer or other graphical file navigation system. However, in some embodiments the opening of display window 130 may simply be moving from one level to another within the associated application.
Once the window is opened the user interface display component 420 and the virtualization module 425 determines the tiles that can be displayed in display window 130. As shown in
Following the rendering of the tiles 201-212 in display window 130, the user may desire to select some of the tiles displayed in the window 130. For example the user may desire to copy the tiles to another location or to delete these tiles from the system. In order to achieve this selection, in one embodiment, the user uses the pointing device 410 to select a starting point 510 and begins to draw a rectangle 520 that includes the tiles the user desires to select. This is illustrated at step 720.
Once the starting point 510 is selected, system 400 through the selection manager 440 determines the row-relative coordinates of the starting point. This is illustrated by step 725. Once the row-relative coordinates are determined, the selection manager 440 passes the row relative coordinates to the hit-test module 450, which determines the locations of the tiles relative to the starting point 510. In one embodiment the hit-test module determines if the tiles are above, below or inside the vertical component of the row relative coordinate. This is illustrated at step 730 In the embodiment illustrated in
Next the user moves the pointing device 410 to an ending point 610. The ending point 610 is in one embodiment the opposite corner from the starting point 510 when the rectangle 520 is formed. As the user moves the pointing device 410, they may be presented with a rectangle 520 that allows them to see what tiles will be selected by the rectangle 520. The moving of the pointing device 410 to the ending point 610 is illustrated at step 735. At step 737 the virtualization module 425 determines if the user is moving the ending point 610 outside of the original window display. In other words, is the user attempting to include tiles that are not currently realized. If the user is attempting to select un-realized tiles, the virtualization module 425 renders the new tiles as was discussed above. This is illustrated at step 740.
As tiles that were previously realized are no longer visible, those tiles are no longer rendered in the system. However, in order to maintain information related to the selected tiles that are no longer rendered the selection manger 440 retains some information related to these tiles. In one embodiment, the selection manager 440 retains the tile's ID and its horizontal row relative coordinates. This information allows the selection manger 440 and the hit-test module 450 to determine if the tiles are unselected if the user moves the ending point 610 without having to realize or render those tiles again. The process of remembering and storing these unrealized tiles is illustrated at step 745.
At step 750 the row relative coordinates for the ending point 610 are determined. At step 755 the system 400 determines the location of the tiles associated with the row associated with the row relative coordinate of the ending point 610. This process is similar to steps 730 and 735 above. In the embodiment illustrated in
Once the starting and ending points have been determined by the user, the selection manger 440 determines which tiles are inside the rectangle 520 and have thus been selected by the user. This is illustrated at step 760. At this step the selection manager 440 determines the relationship between the starting point 510 and the ending point 610 to determine if the tiles above/below the row relative coordinate should be selected. The selection manager 440 also determines based on the horizontal component of the row relative coordinate which tiles in rows falling between are also included in the selection. Once the selection manager 440 determines which tiles are selected, the user performs the desired operation at step 765.
The computing device 800 can be any general or special purpose computer now known or to become known capable of performing the steps and/or performing the functions described herein, either in software, hardware, firmware, or a combination thereof.
In its most basic configuration, computing device 800 typically includes at least one central processing unit (CPU) 802 and memory 804. Depending on the exact configuration and type of computing device, memory 804 may be volatile (such as RAM), non-volatile (such as ROM, flash memory, etc.) or some combination of the two. Additionally, computing device 800 may also have additional features/functionality. For example, computing device 800 may include multiple CPU's. The described methods may be executed in any manner by any processing unit in computing device 800. For example, the described process may be executed by both multiple CPU's in parallel.
Computing device 800 may also include additional storage (removable and/or non-removable) including, but not limited to, magnetic or optical disks or tape. Such additional storage is illustrated in
Computing device 800 may also contain communications device(s) 812 that allow the device to communicate with other devices. Communications device(s) 812 is an example of communication media. Communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. The term computer-readable media as used herein includes both computer storage media and communication media. The described methods may be encoded in any computer-readable media in any form, such as data, computer-executable instructions, and the like.
Computing device 800 may also have input device(s) 810 such as keyboard, mouse, pen, voice input device, touch input device, etc. Output device(s) 808 such as a display, speakers, printer, etc. may also be included. All these devices are well known in the art and need not be discussed at length.
Those skilled in the art will realize that storage devices utilized to store program instructions can be distributed across a network. For example a remote computer may store an example of the process described as software. A local or terminal computer may access the remote computer and download a part or all of the software to run the program. Alternatively the local computer may download pieces of the software as needed, or distributively process by executing some software instructions at the local terminal and some at the remote computer (or computer network). Those skilled in the art will also realize that by utilizing conventional techniques known to those skilled in the art that all, or a portion of the software instructions may be carried out by a dedicated circuit, such as a DSP, programmable logic array, or the like.