1. Field of the Invention
The present invention relates to a selection support technique for components of a golf club such as a head and a shaft.
2. Description of the Related Art
There has been a growing trend among golfers to desire golf clubs more fitting to themselves. Particularly growing is the tendency to want components such as a head and a shaft fitting to the individuals on a component basis. To meet this requirement, for example, methods of recommending a head or a shaft based on a test shot result have been proposed (for example, Japanese Patent Laid-Open Nos. 2012-16582 and 2012-95850).
There exist many types of components circulating in the market, and a plurality of types of indices are used to evaluate their characteristics. Hence, a method capable of efficiently recommending a component fitting to a golfer is demanded.
It is an object of the present invention to provide a mechanism capable of efficiently recommending a component fitting to a golfer.
According to the present invention, for example, there is provided a selection support apparatus comprising: a characteristic data acquisition unit configured to acquire a plurality of types of characteristic data representing a swing characteristic of a testing golfer based on a test shot result of a golf club; a calculation unit configured to calculate each of recommended values for the testing golfer in association with a plurality of types of characteristic values that characterize a component of a golf club based on the plurality of types of characteristic data; and a selection unit configured to select, based on the recommended values and component information representing a correspondence between components and the plurality of types of characteristic values, a recommended component from components listed in the component information.
Further features of the present invention will become apparent from the following description of exemplary embodiments (with reference to the attached drawings).
<First Embodiment>
The selection support apparatus 1 is formed from, for example, a general server computer, and includes a CPU 11, a storage unit 12, and a communication interface 13. The storage unit 12 includes, for example, a RAM, a ROM, a hard disk, and the like. The CPU 11 executes programs stored in the storage unit 12 and, particularly, executes processing associated with selection support of components of a golf club (to be described later). The communication interface 13 is an interface configured to perform data communication with another apparatus (for example, the portable terminal 4 or personal computer 5) via the network 2.
The storage unit 12 stores component information 12a about components of golf clubs. There are various types of golf clubs, and examples are wood type golf clubs such as drivers, utility type (hybrid type) golf clubs, iron type golf clubs, and putters. Examples of components are a head, shaft, grip, and ferrule.
Note that the component information 12a may wholly or partially be stored in a server 3 communicable via the network 2. In this case, the selection support apparatus 1 can access the server 3 via the network 2 and acquire the component information 12a.
The selection support apparatus 1 provides information of components of golf clubs according to the swing characteristic of a testing golfer based on the test shot results of golf clubs. A system for measuring the swing characteristic can have any arrangement. In this embodiment, measurement systems M1 and M2 will be exemplified.
The measurement system M1 includes the portable terminal 4 and a sensor 41 and is suitable for a golfer to personally measure the swing characteristic. The portable terminal 4 is, for example, a smartphone, and has a short distance wireless communication function for the sensor 41 and a wireless communication function via the network 2. The sensor 41 is, for example, a 9-axis sensor (three axes for acceleration, three axes for angular velocity, and three axes for orientation) that is attached to a golf club 6 and measures the three-dimensional behavior of it. The golf club 6 includes a head 61 and a shaft 62. The sensor 41 is attached to, for example, the shaft 62. A golfer conducts a test shot session using the golf club 6 with the sensor 41 in a driving range or the like. The sensor 41 measures the behavior and transmits a plurality of types of characteristic data as a measurement result to the portable terminal 4. The portable terminal 4 directly holds the received characteristic data or converts it to characteristic data of a predetermined format processable on the side of the selection support apparatus 1.
The measurement system M2 includes the personal computer 5 and a plurality of image capturing apparatuses 51 and is suitable to measure the swing characteristic at a golf shop or the like. The personal computer 5 has a function of processing images captured by the image capturing apparatuses 51 and a wireless communication function via the network 2. The image capturing apparatuses 51 are, for example, video cameras. A golfer conducts a test shot session using the golf club 6 in a test shot room or the like. In the test shot room or the like, the plurality of image capturing apparatuses 51 capture the testing golfer from a number of directions and capture the three-dimensional behavior of the golf club 6. The captured images are received and analyzed by the personal computer 5 as characteristic data and converted into a plurality of types of characteristic data of having a predetermined format processable on the side of the selection support apparatus 1.
Examples of the characteristic data are a head speed, swing distance difference, swing angle difference, impact face angle, head track in the impact zone, and face change rate in the impact zone. The head speed is the speed of a head immediately before impact, as is widely known, and can be the index of the swing characteristic of a testing golfer associated with the capability of gaining carry.
The swing distance difference and the swing angle difference are characteristics associated with the head track during a swing.
The swing distance difference can be defined as, for example, a difference D1 between a track BS of the head 61 in a backswing and a track DS of the head 61 in a downswing when the track of the head 61 of the golf club 6 during a swing is projected onto the Y-Z plane, as shown in
The swing angle difference can be defined as, for example, a difference D2 between an angle θfs of a track FS of the head 61 in a follow swing with respect to the horizontal plane and an angle θds of the track DS of the head 61 in a downswing with respect to the horizontal plane when the track of the head 61 of the golf club 6 during a swing is projected onto the X-Z plane, as shown in
As the difference D2 becomes large to the positive side (as the angle θfs becomes large relative to the angle θds), the shot tends to be a hook shot. To the contrary, as the difference D2 becomes large to the negative side (as the angle θfs becomes small relative to the angle θds), the shot tends to be a slice shot.
As described above, the swing distance difference and the swing angle difference can be the indices of the swing characteristic of a testing golfer. Note that the above-described definitions of the swing distance difference and the swing angle difference are merely examples, and can also be defined by another criterion.
The impact face angle, the head track in the impact zone, and the face change rate in the impact zone will be described next with reference to
Referring to
The head track in the impact zone indicates a moving direction d of the head 61 in the impact zone and is represented by, in this case, an angle θh made by the Y direction and the moving direction of the head 61 on the X-Y plane. The moving direction of the head 61 can be defined as, for example, a direction in which the impact position Y1 and the position of the head 61 at the position Y2 are connected. The larger the angle θh is, the stronger the outside-in or inside-out tendency is.
The face change rate in the impact zone indicates the change rate of the orientation of the face 61a with respect to the moving direction d of the head 61 in the impact zone. First, an orientation D3 of the face 61a with respect to the moving direction d of the head 61 is defined as D3=θfa−θh. The orientations D3 are calculated at a plurality of positions of the impact zone and plotted on a coordinate plane whose coordinate axes represent the orientation D3 and the position of the head 61 in the Y direction, respectively, as shown in
As described above, the impact face angle, the head track in the impact zone, and the face change rate in the impact zone can be the indices of the swing characteristic of a testing golfer.
Note that out of these characteristic data, characteristic data that need to be calculated from measured values at the time of test shot session, such as the face change rate in the impact zone, can be calculated either on the side of the portable terminal 4 or the personal computer 5 or on the side of the selection support apparatus 1.
Referring back to
Examples of the characteristic values of a shaft are a flexural rigidity, flexural rigidity distribution, flex, torque, and weight. The flexural rigidity is the product of the Young's modulus of a shaft material and the geometrical moment of inertia of the shaft. The flexural rigidity distribution is data representing the flexural rigidity of each portion of a shaft. The flex indicates the hardness of a shaft and is generally categorized stepwise as S, R, X, and the like.
Examples of the characteristic values of a head are a center-of-gravity angle, center-of-gravity distance, center-of-gravity depth, center-of-gravity height, moment of inertia, lie angle, loft angle, head volume, and head weight.
Some terms will be explained, although details are known well. The center-of-gravity angle is the angle made by the vertical direction and the face when a golf club is held to be rotatable about its shaft that is supported horizontally.
The center-of-gravity depth is represented by a length L2 of a perpendicular V from the center-of-gravity position CG of the head to the face 61a, as shown in
The moment of inertia is the moment of inertia about the axis passing through the center-of-gravity position CG of the head. There are three different ways to set the axis. In this case, the moment of inertia is set about a vertical axis concerning ease of face rotation, unless otherwise specified.
In this embodiment, the plurality of types of characteristic data acquired in step S1 are substituted into a predetermined formula, thereby calculating the recommended values for the testing golfer in association with the plurality of types of characteristic values. In this case, using α and β as coefficients, the recommended values are calculated by
recommended value=characteristic data×α+β (1)
By this calculation method, the recommended values can be obtained relatively easily.
A case where a head is defined as a selection target, and a recommended head is selected based on two types of characteristic values, the center-of-gravity angle and the moment of inertia, will be described. In this case, the impact face angle and the face change rate in the impact zone are used as characteristic data.
Let H1 be the recommended value of the center-of-gravity angle. The recommended value H1 can be calculated based on the relationship to the impact face angle by, for example,
H1 (deg)=impact face angle (deg)×0.8+25
This equation indicates that the larger the impact face angle is, the larger the center-of-gravity angle of a head to be recommended is.
Let H2 be the recommended value of the moment of inertia. The recommended value H2 can be calculated based on the relationship to the face change rate in the impact zone by, for example,
H2 (g·cm2)=face change rate (deg/m)×(−20)+4400
This equation indicates that the higher the face change rate is, the smaller the moment of inertia of a head to be recommended is.
Referring to
Referring back to
In this embodiment, a head having characteristic values closest to the recommended values H1 and H2 is selected as a recommended head. The closeness of characteristic values can be discriminated using, as a reference, a distance on multidimensional coordinates with characteristic values plotted along the coordinate axes. Conceptually speaking, recommended components defined by the recommended values are plotted, and components are also plotted. The distances between them are calculated.
The example of
Note that although one component is recommended in this embodiment, a plurality of components may be recommended. For example, top-two components may be selected.
The formula used to calculate the distance of each component in the component information 12a from a characteristic value can be set based on the Pythagorean theorem as, for example,
distance=√[{(characteristic value 1−recommended value 1)/γ}2+{(characteristic value 2−recommended value 2)/δ}2]
where γ and δ are weighting coefficients. In a head for a driver, the center-of-gravity angle (deg) and the moment of inertia (g·cm2) are generally about 15 to 30 (deg) and about 3,000 to 6,000 (g·cm2), respectively, and have a numerical value difference of two orders of magnitude. Hence, to equally handle the two types of characteristic values when calculating the distance, for example, γ=1, and δ=100 are set. Conversely, priority can be given to some types of characteristic values by setting γ and δ.
Referring back to
Processing of one unit thus ends. The golfer (testing golfer) who has requested recommended component selection is given the information of a component fitting to him/her.
Note that in this embodiment, a server-client system including the selection support apparatus 1 as a server and the portable terminal 4 and the personal computer 5 as clients has been described. However, a standalone system may be formed by imparting the functions of the selection support apparatus 1 to the portable terminal 4 or the personal computer 5. In this case, the portable terminal 4 or the personal computer 5 executes the same processing as that shown in
In this embodiment, a case where a head is selected has mainly been exemplified. However, another component such as a shaft can also be selected in accordance with the same procedure as described above, as a matter of course. Recommended components can be presented for not only one type of component but also a plurality of types of components (for example, head and shaft).
A recommended component is selected based on two types of characteristic values (center-of-gravity angle and moment of inertia). However, it may be selected based on three or more types of characteristic values. Each of the recommended values H1 and H2 is calculated from one type of characteristic data (impact face angle or face change rate in the impact zone). However, one recommended value may be calculated from a plurality of types of characteristic data.
<Second Embodiment>
In the first embodiment, a recommended component of a golf club is selected. However, an arrangement for selecting a recommended golf club including a selected recommended component and presenting it to a golfer can also be employed.
In step S15, the CPU specifies a recommended golf club including a recommended component selected in step S14. For example, when a recommended head is selected in step S14, a shaft, a grip, and the like to be combined with the recommended head are selected, thereby specifying a recommended golf club. Other components to be combined with the recommended component selected in step S14 may be defined in component information 12a and selected. For example, head types and shafts corresponding to them can be defined in the component information 12a, and a shaft corresponding to a recommended head can be selected. Alternatively, head types and commercially available golf clubs including them may be defined in the component information 12a, and a commercially available golf club corresponding to a recommended head may be selected. In this case, one or a plurality of recommended golf clubs can be selected.
In step S16, the selection results in steps S14 and S15 are output. As in the processing of step S5 of the first embodiment, the selection results can be transmitted to a portable terminal 4 or a personal computer 5 of the request source.
<Third Embodiment>
In the processing example shown in
The processes of steps S21 to S24 are the same as in steps S1 to S4 of the processing of the first embodiment shown in
Note that in this embodiment, the recommended components are selected one by one. However, a plurality of recommended components (for example, recommended head and recommended shaft) may simultaneously be selected by parallel processing.
In step S26, the CPU specifies a recommended golf club. In this case, the CPU specifies a golf club including the recommended head and the recommended shaft selected in step S24 as a recommended golf club. To select other components such as a grip, the same method as the selection method described concerning step S15 of
In step S27, the selection results in steps S24 and S26 are output. As in the processing of step S5 of the first embodiment, the selection results can be transmitted to a portable terminal 4 or a personal computer 5 of the request source.
<Other Embodiments>
In the above-described embodiments, a recommended component or a recommended golf club is presented to a golfer. However, the selection support apparatus 1 may receive an order of purchase.
The selection support apparatus 1 can store and manage the test shot results of a golfer. This allows the golfer to compare past test shot results with a current test shot result or compare past recommended components or recommended golf clubs with a current recommended component or recommended golf club.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2013-116192, filed May 31, 2013, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2013-116192 | May 2013 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6083123 | Wood | Jul 2000 | A |
7871333 | Davenport | Jan 2011 | B1 |
8210960 | Davenport | Jul 2012 | B1 |
8574100 | Hasegawa et al. | Nov 2013 | B2 |
20050215336 | Ueda et al. | Sep 2005 | A1 |
20100151956 | Swartz et al. | Jun 2010 | A1 |
20110230273 | Niegowski et al. | Sep 2011 | A1 |
20110230274 | Lafortune et al. | Sep 2011 | A1 |
20110300959 | Hasegawa et al. | Dec 2011 | A1 |
20120108353 | Kamino et al. | May 2012 | A1 |
20120108363 | Hasegawa et al. | May 2012 | A1 |
20120108364 | Hasegawa et al. | May 2012 | A1 |
20120136464 | Saito et al. | May 2012 | A1 |
20130143685 | Margoles et al. | Jun 2013 | A1 |
20130260909 | Margoles et al. | Oct 2013 | A1 |
20130288829 | Kimizuka et al. | Oct 2013 | A1 |
20140357426 | Ishikawa | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
2010-155074 | Jul 2010 | JP |
2012-016582 | Jan 2012 | JP |
2012-095826 | May 2012 | JP |
2012-095844 | May 2012 | JP |
2012-095850 | May 2012 | JP |
2012-110594 | Jun 2012 | JP |
Entry |
---|
“Swingweight” published on or before Jan. 5, 2012 and printed from URL<http://web.archive.org/web/20120105071648/http://advancedballstriking.com/Swing—weights.pdf>,. |
Number | Date | Country | |
---|---|---|---|
20140357427 A1 | Dec 2014 | US |