This application includes material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent disclosure, as it appears in the Patent and Trademark Office files or records, but otherwise reserves all copyright rights whatsoever.
The present invention relates in general to the field of therapeutic treatment. In particular, the present invention provides for a novel class of chemical compounds with selective and non-selective kappa opioid receptor antagonist properties. The disclosed compounds have potential to be used in patients with certain opioid and substance abuse as well as chronic pain.
None.
Opioid receptors are inhibitory receptors with opioids as ligands. Opioid receptors are widely distributed in the brain and are also found throughout the spinal cord. There are 3 major subtypes of opioid receptors know as delta, kappa, and mu opioid receptors. These receptors are the targets of opium derived drugs known as opioids. Opioids are used for pain relief and anesthesia. Since opioids can produce strong feelings of euphoria, they are commonly used in a recreational setting, and are subject to abuse and addiction. In 2014 almost 2 million Americans abused and were dependent on prescription opioids, and in 2016 64,000 people died of an overdose of opioids. There is a major need for solutions to the increase in opioid usage.
Opioid receptor antagonists are a class of drugs that work by antagonizing or inhibiting the function of opioid receptors. These drugs work by competitively binding to the ligand receptor site of opioid receptors. This competitive inhibition does not allow opioid drugs to bind and thus, they have no effect. Certain opioid antagonists have such a high affinity for opioid receptors that they will displace the opioid drug from the receptor reversing its effect. There are several opioid antagonists currently used in the clinical setting. Naloxone and naltrexone are among the most common and are effective at treating opioid overdose and mitigating the effects of opioids and may be used to treat opioid dependency. However, due to limitation and drawbacks of current treatments, including side effects, there remains a need in the art to develop superior alternatives to current drugs on the market.
Moreover, opioids represent the most extensive category of abused substances in the United States, and the number of fatalities caused by these drugs exceeds those associated with all other drug overdoses combined. The administration of naltrexone, a potent pan-opioid receptor antagonist, to an individual dependent on opioids can trigger opioid withdrawal and induce severe side effects. There is a pressing demand for opioid antagonists that do not produce opioid withdrawal effects.
Drug addiction is a chronic and relapsing disease of the central nervous system (CNS), resulting in compulsive seeking and use despite physical, social, and psychological harm to the user. It directly contributes to an estimated annual cost of over $190 billion from lost work productivity, health care costs, and crime in the United States. Prescription opioid painkillers and heroin represent the largest class of abused agents in the U.S., and deaths from these drugs now exceed all other drug overdose deaths. The three approved medications for opioid addiction, methadone, buprenorphine, and naltrexone, are opioid receptor ligands. Methadone and buprenorphrine, full and partial Mu Opioid Receptor (MOR) agonists respectively. Primarily due to their relatively extended half-life, these compounds can induce dependence on their own, and discontinuing their use can trigger withdrawal symptoms, potentially leading to opioid relapse. Naltrexone, a potent non-selective opioid receptor antagonist, can precipitate opioid withdrawal symptoms when administered to an opioid-dependent individual, resulting in severe side effects such as agitation, nausea, vomiting, pain, and diarrhea. Recent studies have highlighted the potential of selective Kappa Opioid Receptor (KOR) antagonists in reversing or preventing the formation of addiction linked to the use of traditional opioid analgesics, which are primarily MOR agonists. These findings suggest a promising avenue for treating opioid addiction with a lower risk of dependence and relapse.
Thus, a non-selective opioid or selective kappa-opioid functional antagonist may be useful therapeutically as an opioid withdrawal medication.
The present invention addresses failings in the art by providing class of selective kappa opioid receptor antagonists, particularly, two structurally dissimilar opioid ligands that selectively inhibit the kappa opioid receptor (KOR). Literature has suggested that KOR antagonists may be helpful in the treatment of addiction, withdrawal symptoms and pain, and many psychological disorders. There are currently several different KOR antagonists that are being studied and participating in clinical trials. In addition, the present invention provides for methods for a therapeutic treatment that utilizes such compounds as opioid receptor antagonists.
The novel compounds of the present invention were unexpectedly found to be selective antagonists of kappa opioid receptors, while exhibiting little or no binding at delta or mu receptors. Thus, in one aspect, the present invention provides a pharmaceutical formulation comprising an effective amount of a compound (see
In another aspect, the present invention provides a pharmaceutical formulation comprising an effective amount of a compound Formula II, (see
In another aspect, the present invention provides a pharmaceutical formulation comprising an effective amount of a compound of the novel class of Formula III (see
In another aspect, the present invention provides a pharmaceutical formulation comprising an effective amount of a compound of the novel class of Formula IV (see
The present invention also provides a method for blocking kappa opioid receptors in mammalian tissue comprising contacting said receptors in vivo or in vitro with an effective amount of the compound of any of Formulas I-IV, preferably in combination with a pharmaceutically acceptable vehicle. Therefore, the compound of any of Formulas I-IV which exhibit kappa receptor antagonist activity may also be therapeutically useful in conditions where selective blockage of kappa receptors is desired. This includes blockage of the appetite response, blockage of paralysis due to spinal trauma and a variety of other physiological activities that may be mediated through kappa receptors. The novel compounds of the present invention also show the ability to cross the blood-brain-barrier (BBB) where many opioid receptors are present. This novel class of compounds has the potential to be a powerful new treatment to combat conditions such as general opioid abuse, addiction, alcohol dependence, neuropathic pain, and other chronic pain conditions. The novel class of compounds are further able to serve as a pain reducer and do not induce addiction. Moreover, when giving in combination with current opioid analgesics, they significantly decrease opioid-seeking behavior.
It is therefore and object of the present invention to provide the compound of any of Formulas I-IV, VI-XIII, XV-XXXVII, XXXVIII-LIII, and LIV-LXVI. In one aspect of the present invention, said compounds have immunosuppressive capabilities. The KOR antagonist compounds of the present invention offer a new class of selective antagonists that are structurally different from known compounds. In addition, it may offer an increase in the duration of action of the drug since it exhibits a longer half-life.
In another aspect, said compound is capable of having at least 50% of the administered amount cross the blood-brain barrier (BBB) of a patient. In another aspect, said compound is capable of having at least 80% of the administered amount cross the BBB of a patient. In yet another aspect, said compound does not cross the BBB of a patient, instead acting peripherally to treat cancer chemotherapy-induced pain and allodynia. The compound of the present invention is effective to treat addiction, alcohol dependence, opioid abuse treatment, neurological disorders, neuropathic pain, and combinations thereof, and is capable of inhibition of the CNS receptor known as the kappa (κ) opioid receptor. The compound of the present invention is further effective to block or reduce the tolerance of said mammal to an opioid receptor agonist, such as morphine, methadone, codeine, diacetyl morphine, morphine-N-oxide, oxymorphone, oxycodone, hydromorphone, hydrocodone, meperidine, heterocodeine, fentanyl, sufentanil, levo-acetylmethadol, alfentanil, levorphanol, tilidine, diphenoxylate, hydroxymorphone, noroxymorphone, metopon, propoxyphene, and the pharmaceutically acceptable salts thereof.
In another aspect of the present invention, a method is provided for treating a disorder selected from the group consisting of addiction, alcohol dependence, opioid abuse treatment, neurological disorders, neuropathic pain, and combinations thereof, comprising administering to a patient a therapeutically effective amount of a compound of any of Formulas I-IV, Formulas VI-XIII, Formulas XV-XXXVII, Formulas XXXVIII-LIII, Formulas LIV-LXVI, or a pharmaceutically acceptable salt thereof or isotopic variants thereof, stereoisomers or tautomers thereof. In another aspect a method for of treating a mammal is provided comprising the step of: administering to a patient a therapeutically effective amount of a compound of any of Formulas I-IV, Formulas VI-XIII, Formulas XV-XXXVII, Formulas XXXVIII-LIII, Formulas LIV-LXVI, or a pharmaceutically acceptable salt thereof or isotopic variants thereof, stereoisomers or tautomers thereof, wherein said therapeutically effective amount is effective as an antagonist to one or more opioid receptors.
In another aspect the compounds of the present invention comprise an aqueous solution and one or more pharmaceutically acceptable excipients, additives, carriers or adjuvants. In another aspect the compound further comprises one or more excipients, carriers, additives, adjuvants, or binders in a tablet or capsule.
In another aspect a compound of the present invention is administered via an oral, intraperitoneal, intravascular, peripheral circulation, subcutaneous, intraorbital, ophthalmic, intraspinal, intracisternal, topical, infusion, implant, aerosol, inhalation, scarification, intracapsular, intramuscular, intranasal, buccal, transdermal, pulmonary, rectal, or vaginal route.
The present invention further addresses failings in the art by providing a non-selective opioid receptor ligand with similar affinity profiles to MOR, Delta Opioid Receptor (DOR), and KOR. In some embodiments, the present invention includes a compound is based on a tricyclic system containing a diketopiperazine (DKP) moiety. There present invention further discloses a series of analogs with modifications around the DKP scaffold were designed to optimize the observed affinity of the non-selective opioid receptor ligand.
Specifically, the present invention addresses failings in the art by providing compositions of derivatives capable of serving as a non-selective opioid receptor antagonist, as well as methods for a therapeutic treatment that utilizes such compounds as opioid receptor antagonists.
Thus, in one aspect, the present invention provides a pharmaceutical formulation comprising an effective amount of a compound (see
In some aspects, the novel compounds of the present invention are derivatives with the presence of a disulfide bridge and function via generation of reactive oxygen species (ROS) and mixed disulfide formation. The novel compounds of the present invention also show the ability to cross the blood-brain-barrier (BBB) where many opioid receptors are present. This novel class of compounds has the potential to be a powerful new treatment to combat conditions such as general opioid abuse, alcohol dependence, neuropathic pain, fibromyalgia, and other chronic pain conditions, including but not limited to pain associated with various cancers.
It is therefore and object of the present invention to provide derivative compounds of Formula V. In one aspect of the present invention, the opioid antagonist compounds of the present invention offer a new class of antagonists that are structurally different from known compounds. In addition, it may offer an increase in the duration of action of the drug since such derivative compounds exhibit a longer half-life.
In one aspect, the present invention provides a compound of substituted derivatives, or a pharmaceutically acceptable salt thereof.
In one aspect, the present invention provides a pharmaceutical composition including a therapeutically effective amount of the substituted derivatives, or a pharmaceutically acceptable salt thereof, isotopic variants, stereoisomers or tautomers thereof.
In one aspect, the present invention provides a pharmaceutical composition including an effective amount of the substituted derivatives sufficient as a non-selective antagonist of opioid receptors.
In one aspect, the present invention is effective to treat alcohol dependence, opioid abuse treatment, neurological disorders, neuropathic pain, and fibromyalgia.
In one aspect, the present invention is effective to block or reduce the tolerance of said human to an opioid receptor agonist.
The foregoing and other objects, features, and advantages of the disclosure will be apparent from the following description of embodiments as illustrated in the accompanying drawings, in which reference characters refer to the same parts throughout the various views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating principles of the disclosure:
While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts, goods, or services. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the disclosure and do not delimit the scope of the disclosure.
All publications and patent applications mentioned in the specification are indicative of the level of skill of those skilled in the art to which this disclosure pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, which form a part hereof, and which show, by way of illustration, specific example embodiments. Subject matter may, however, be embodied in a variety of different forms and, therefore, covered or claimed subject matter is intended to be construed as not being limited to any example embodiments set forth herein; example embodiments are provided merely to be illustrative. Likewise, a reasonably broad scope for claimed or covered subject matter is intended. Among other things, for example, subject matter may be embodied as methods, compositions, or systems. Accordingly, embodiments may, for example, take the form of methods, compositions, compounds, materials, or any combination thereof. The following detailed description is, therefore, not intended to be taken in a limiting sense.
Throughout the specification and claims, terms may have nuanced meanings suggested or implied in context beyond an explicitly stated meaning. Likewise, the phrase “in one embodiment” as used herein does not necessarily refer to the same embodiment and the phrase “in another embodiment” as used herein does not necessarily refer to a different embodiment. It is intended, for example, that claimed subject matter include combinations of example embodiments in whole or in part.
In general, terminology may be understood at least in part from usage in context. For example, terms, such as “and”, “or”, or “and/or,” as used herein may include a variety of meanings that may depend at least in part upon the context in which such terms are used. Typically, “or” if used to associate a list, such as A, B or C, is intended to mean A, B, and C, here used in the inclusive sense, as well as A, B or C, here used in the exclusive sense. In addition, the term “one or more” as used herein, depending at least in part upon context, may be used to describe any feature, structure, or characteristic in a singular sense or may be used to describe combinations of features, structures or characteristics in a plural sense. Similarly, terms, such as “a,” “an,” or “the,” again, may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context. In addition, the term “based on” may be understood as not necessarily intended to convey an exclusive set of factors and may, instead, allow for existence of additional factors not necessarily expressly described, again, depending at least in part on context.
Various terms are used to refer to particular system components. Different companies may refer to a component by different names—this document does not intend to distinguish between components that differ in name but not function. In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . .” Also, the term “couple” or “couples” is intended to mean either an indirect or a direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection or through an indirect connection via other devices and connections.
The term “treating” refers to reversing, alleviating, or inhibiting the progress of a disease, or one or more symptoms of such disease, to which such term applies. Depending on the condition of the subject, the term also refers to preventing a disease, and includes preventing the onset of a disease, or preventing the symptoms associated with a disease. A treatment may be either performed in an acute or chronic way. The term also refers to reducing the severity of a disease or symptoms associated with such disease prior to affliction with the disease. Such prevention or reduction of the severity of a disease prior to affliction refers to administration of a compound or composition of the present invention to a subject that is not at the time of administration afflicted with the disease. “Preventing” also refers to preventing the recurrence of a disease or of one or more symptoms associated with such disease. “Treatment” and “therapeutically,” refer to the act of treating, as “treating” is defined above.
The terms “subject”, “individual”, or “patient” are used interchangeably herein and refer to an animal preferably a warm-blooded animal such as a mammal. Mammal includes without limitation any members of the Mammalia. In general, the terms refer to a human. The terms also include domestic animals bred for food or as pets, including equines, bovines, sheep, poultry, fish, porcines, canines, felines, and zoo animals, goats, apes (e.g. gorilla or chimpanzee), and rodents such as rats and mice.
Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in this specification are approximations that can vary depending upon the desired properties sought to be obtained by the presently disclosed subject matter.
The compounds Formula I and Formula II can exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like. The solvated forms may be considered equivalent to the unsolvated forms for the purposes of the present invention.
“Therapeutically effective amount” relates to the amount or dose of an active compound of either Formula I, Formula II, Formula VII, Formula VIII, Formula IX, Formula X, Formula XIII, or a composition comprising the same, that will lead to one or more desired effects, in particular, one or more therapeutic effects, more particularly beneficial effects. A therapeutically effective amount of a substance can vary according to factors such as the disease state, age, sex, and weight of the subject, and the ability of the substance to elicit a desired response in the subject. A dosage regimen may be adjusted to provide the optimum therapeutic response (e.g. sustained beneficial effects). For example, several divided doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation.
The term “pharmaceutically acceptable” salt, carrier, excipient, or vehicle refers to a medium which does not interfere with the effectiveness or activity of an active ingredient and which is not toxic to the hosts to which it is administered. A carrier, excipient, or vehicle includes diluents, binders, adhesives, lubricants, disintegrates, bulking agents, wetting or emulsifying agents, pH buffering agents, and miscellaneous materials such as absorbents that may be needed in order to prepare a particular composition. Examples of carriers etc. include but are not limited to a salt formulation, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The use of such media and agents for an active substance is well known in the art.
In one embodiment of the present invention, each of Formulas I-IV are compounds with the ability to penetrate the blood brain barrier and inhibit kappa opioid receptors selectively at the level of up to 90% at 10 uM concentration. In some embodiments, these compounds are being effluxed from the brain and exert their pharmacological effects peripherally, rather than centrally. In such an embodiment, this peripheral action can be particularly useful in treating cancer chemotherapy-induced pain. Active analogs also have no signs of toxicity when administered to animals (rats) and have moderate to excellent enzymatic stability, suggesting its use in oral form, when applicable. In vivo studies have shown that the compounds of the present invention have reduced pain markers by 40-50% and this result is observed starting 30 minutes after administration of compounds.
Converging evidence from recent research strongly suggests that enhanced kappa opioid receptor (KOR) signaling in brain circuits promotes aversiveness and hypersensitivity in chronic pain, whereas systemically administered kappa-antagonists have analgesic effects. Moreover, kappa antagonists were shown to inhibit the addictive effect of mu opioid receptor (MOR) agonists and alleviate symptoms of opioid-induced addiction; attenuate alcohol seeking and withdrawal anxiety. Current literature suggests that includes clinical and basic research reports a strong connection between post-traumatic stress disorder and opioid/alcohol abuse. Moreover, evidence supports that similar association exists between brain injury and substance abuse. In this case, an overdose often leads to a higher incidence of brain injury, and patients with traumatic brain disorders are more likely to develop a substance abuse disorder. Therefore, KOR antagonists are envisioned to have significant clinical potential as a non-addictive pain management tool and as modulators of drug-seeking behavior.
Opioid receptors belong to the large superfamily of seven transmembrane-spanning G protein-coupled receptors (GPCRs). As a class, GPCRs are of fundamental physiological importance in mediating the actions of the majority of known neurotransmitters and hormones. They are activated endogenously produced opioid peptides and by exogenously administered opiate compounds. Many of these exogenous compounds are used for pain relief and anesthesia, and these, often, give off strong feelings of euphoria. This strong euphoria makes them a common drug that can be abused in a recreational setting. The effects of this opioid crisis led to more than 115 Americans death per day due to opioid related overdoses, devastating families and communities across the country.
The present invention presents three analog classes of compounds with the ability to penetrate the blood brain barrier (BBB) and inhibit kappa opioid receptors (KOR) selectively or have peripheral distribution and the ability to selectively inhibit KOR. The active analogs have shown little to no signs of toxicity in laboratory tests that have been performed in rats, and these analogs have shown strong enzymatic stability that suggests its possible use in oral form. These compounds are shown to work as pain reducers that do not induce addiction. They could replace existing opioid analgesics or could be given in combination with current opioid analgesics to significantly decrease opioid-seeking behavior. These active compounds could also work to solve depression, alcohol seeking behavior and opioid withdrawal symptoms.
The present invention thus presents two structurally novel KOR antagonists with non-opioid pharmacophores. These compounds were confirmed to inhibit kappa opioid receptors selectively, with Ki values of 274 nM and 924 nM, with up to 90% of KOR being inhibited. In addition, BBB permeability of these chemical ligands is confirmed in vitro, and lack of toxicity in rat neurons and bEnd3 cells. Additional experimentation presents pharmacological activity using the well-established spinal nerve ligation (SNL) model of neuropathic pain in rats, where inhibitory effects of KOR antagonism were found on emotional-affective pain responses (audible and ultrasonic vocalization) and hypersensitivity (electronic von Frey test).
Turning to
In one embodiment, R2 is a chemical group selected from a group consisting of: hydrogen, halogen, hydroxy, alkyloxy, alkyl ester, amine, alkylamine, dialkylamine, thio, thioalkyl, and alkyl.
In one embodiment, R3 is a chemical group selected from a group consisting of: hydrogen, benzyl, substituted benzyl, methyl, alkyl carbamate, alkyl, prenyl, and cycloalkyl.
In one embodiment, R4 is a chemical group selected from a group consisting of: hydrogen, alkyl, acetyl, cycloalkyl, benzyl, and substituted benzyl.
In one embodiment, R5 is a chemical group selected from a group consisting of: alkyl, alkyl ester of carboxylic acid, alkyl ether, alkylamide, amine, monoalkylamine, dialkyl amine, cycloalkyl, and hydrogen.
In one embodiment, R6 is a chemical group selected from a group consisting of: hydrogen, alkyl ether, halogen, alkyl, amine, monoalkylamine, and dialkyl amine.
In one embodiment, R1 is a chemical group selected from a group consisting of: hydrogen, halogen, nitro, alkyl, aliphatic, cycloalkyl, trifluoroalkyl, substituted phenyl, carboxylic acid, alkyl ester of carboxylic acid, and acetyl.
In one embodiment, R2 is a chemical group selected from a group consisting of: hydrogen, halogen, hydroxy, alkyloxy, alkyl ester, amine, alkylamine, dialkylamine, thio, thioalkyl, and alkyl.
In one embodiment, R3 is a chemical group selected from a group consisting of: hydrogen, benzyl, substituted benzyl, methyl, alkyl carbamate, alkyl, prenyl, and cycloalkyl.
In one embodiment, R4 is a chemical group selected from a group consisting of: hydrogen, alkyl, acetyl, cycloalkyl, benzyl, and substituted benzyl.
In one embodiment, R5 is a chemical group selected from a group consisting of: alkyl, alkyl ester of carboxylic acid, alkyl ether, alkylamide, amine, monoalkylamine, dialkyl amine, cycloalkyl, and hydrogen.
In one embodiment, R6 is a chemical group selected from a group consisting of: hydrogen, alkyl ether, halogen, alkyl, amine, monoalkylamine, and dialkyl amine.
In another embodiment, both Formula III and Formula IV are capable of maintaining KOR antagonist properties in the nanomolar range.
Turning to
These compounds of the present invention are shown to inhibit pain response 20-40% (when different pain markers are assessed). Additionally, PK analysis was performed of the class II parent compound (Formula IV) in rats. The observed data are set forth in Table 1, below.
It is therefore an embodiment of the present invention to provide novel compounds of Formula I and Formula II, and derivatives thereof, or pharmaceutically acceptable salts thereof, which are presented for treating certain disorders in a patient, such as addiction, alcohol dependence, opioid abuse treatment, neurological disorders, and neuropathic pain. It is another embodiment of the present invention to provide pharmaceutically acceptable compositions comprising compounds of Formula I and Formula II, and a pharmaceutically acceptable carrier.
Another embodiment of the present invention relates to a method for providing neuroprotection in a mammal in need of such treatment. The method comprises administering to the mammal a therapeutically effective amount of a compound of any of Formulas I-IV or a pharmaceutically acceptable salt thereof. In another embodiment, the present invention provides a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention or a pharmaceutically acceptable salt thereof in combination with one or more pharmaceutically acceptable carriers. The composition is preferably useful for the treatment of the disease conditions described above.
Further, the present invention provides the use of a compound of Formulas I-IV or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment of the disease conditions described above.
In another embodiment, the compounds, compositions, and methods disclosed herein therefore may be utilized to prevent and/or treat a disease such as alcohol dependence, opioid abuse treatment, neurological disorders, neuropathic pain, and fibromyalgia, among other conditions mediated by one or more opioid receptors.
In an illustrative embodiment of the present invention, Formula I and Formula II, were evaluated for selective activity of the KOR. Turning to Table 2, inhibitory data is provided for the KOR. Inhibition data is provided as inhibitor constant, Ki, is the concentration required to produce half-maximum inhibition. This quantitative measure indicates how much of a particular drug or other substance (inhibitor) is needed to inhibit a given biological process (or component of a process, i.e. an enzyme, cell, cell receptor or microorganism) by half. The values are typically expressed as molar (micro- and nano-) concentrations.
In one embodiment, compound of the present invention Either Formula I or Formula II, are shown Table 1 to show inhibition with regard to various receptors, including opioid receptors μ (MOR), σ (DOR), and κ (KOR).
In another embodiment, the synthesis of Formula I and Formula II is as follows, in accordance with
If Formula I is desired, going from
In another embodiment of the present invention, a compound of the Formula IV class was tested in an in vivo rodent study.
It is another embodiment of the present invention to provide an enantioselective synthesis method using Formulas I-IV, enhancing their pharmaceutical efficacy and specificity. This methodological embodiment can allow for the precise control over the stereochemistry of the synthesized compounds, ensuring that only the desired enantiomer is produced. This is particularly important in pharmaceutical applications, as different enantiomers of the same compound can have vastly different biological activities. By utilizing this enantioselective approach, the synthesized compounds can exhibit improved pharmacokinetic properties, reduced side effects, and increased therapeutic efficiency. Furthermore, this synthesis method could potentially streamline the manufacturing process, leading to more cost-effective production while maintaining high standards of drug purity and quality. Overall, the implementation of enantioselective synthesis represents a crucial step forward in the development and application of Formulas I-IV, offering a more targeted and effective approach to treatment.
It is another embodiment of the present invention to provide any of Formulas I-IV comprising an aqueous solution and one or more pharmaceutically acceptable excipients, additives, carriers or adjuvants. Any of Formulas I-IV may further comprise one or more excipients, carriers, additives, adjuvants, or binders in a tablet or capsule. Either Formula I or Formula II may further be administered via an oral, intraperitoneal, intravascular, peripheral circulation, subcutaneous, intraorbital, ophthalmic, intraspinal, intracisternal, topical, infusion, implant, aerosol, inhalation, scarification, intracapsular, intramuscular, intranasal, buccal, transdermal, pulmonary, rectal, or vaginal route.
The compounds of the present invention are capable of treatment in a manner selective to CNS activity and does not manipulate the activity of other CNS receptors, as other CNS drugs have a tendency to do. Therefore, the compounds of the present invention have substantially reduced toxicity profiles (i.e. depression, headache, suicidal thoughts, and the like). The compounds of the present invention are further active as low nanomolar ranges due to its potency.
The synthesis process may advance to the final step where the tricyclic DKP-based compounds can be synthesized. In some embodiments, the final step is achieved through an Ullmann cross-coupling reaction, as depicted in
In one embodiment, R1 is a chemical group selected from a group consisting of: hydrogen, alkyl, hydroxy, alkyloxy, alkyl ester, amine, alkylamine, dialkylamine, thio, thioalkyl, and alkyl.
In one embodiment, R2 is a chemical group selected from a group consisting of: hydrogen, benzyl, substituted benzyl, methyl, alkyl carbamate, alkyl, prenyl, and cycloalkyl.
In another embodiment of the present invention, a compound of the Formula V class was tested in an in vivo rodent study.
Turning to
In one embodiment, R2 is a chemical group selected from a group consisting of: hydrogen, hydroxy, alkyloxy, alkyl ester, amine, alkylamine, dialkylamine, thio, thioalkyl, and alkyl.
In one embodiment, R3 is a chemical group selected from a group consisting of: hydrogen, benzyl, substituted benzyl, methyl, alkyl carbamate, alkyl, prenyl, dialkylamide, and cycloalkyl.
In one embodiment, R4 is a chemical group selected from a group consisting of: hydrogen, alkyl, acetyl, cycloalkyl, benzyl, and substituted benzyl.
Turning to
Formula VII, Formula VIII, Formula IX, and Formula X are capable of maintaining KOR antagonist properties in the nanomolar range.
It is therefore an embodiment of the present invention to provide novel compounds of Formula VII, Formula VIII, Formula IX, and Formula X, and derivatives thereof, or pharmaceutically acceptable salts thereof, which are presented for treating certain disorders in a patient, such as addiction, alcohol dependence, opioid abuse treatment, neurological disorders, and neuropathic pain. It is another embodiment of the present invention to provide pharmaceutically acceptable compositions comprising compounds of Formula VII, Formula VIII, Formula IX, and Formula X, and a pharmaceutically acceptable carrier.
Another embodiment of the present invention relates to a method for providing neuroprotection in a mammal in need of such treatment. The method comprises administering to the mammal a therapeutically effective amount of a compound of any of Formulas VI-X or a pharmaceutically acceptable salt thereof. In another embodiment, the present invention provides a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention or a pharmaceutically acceptable salt thereof in combination with one or more pharmaceutically acceptable carriers. The composition is preferably useful for the treatment of the disease conditions described above.
Further, the present invention provides the use of a compound of Formulas VI-X or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment of the disease conditions described above.
In another embodiment, the compounds, compositions, and methods disclosed herein therefore may be utilized to prevent and/or treat a disease such as alcohol dependence, opioid abuse treatment, neurological disorders, neuropathic pain, and fibromyalgia, among other conditions mediated by one or more opioid receptors.
In an illustrative embodiment of the present invention, Formula VII, Formula VIII, Formula IX, and Formula X, were evaluated for selective activity of the KOR. Turning to Table 3, inhibitory data is provided for the KOR. Inhibition data is provided as inhibitor constant, Ki, is the concentration required to produce half-maximum inhibition. This quantitative measure indicates how much of a particular drug or other substance (inhibitor) is needed to inhibit a given biological process (or component of a process, i.e. an enzyme, cell, cell receptor or microorganism) by half. The values are typically expressed as molar (micro- and nano-) concentrations.
In one embodiment, compound of the present invention either Formula VII, Formula VIII, Formula IX, and Formula X, are shown as in Table 3 to show inhibition with regard to various receptors, including opioid receptors μ (MOR), σ (DOR), and κ (KOR).
Turning to
It is therefore an embodiment of the present invention to provide novel compounds of XI, and derivatives thereof, or pharmaceutically acceptable salts thereof, which are presented for treating certain disorders in a patient, such as addiction, alcohol dependence, opioid abuse treatment, neurological disorders, and neuropathic pain. It is another embodiment of the present invention to provide pharmaceutically acceptable compositions comprising compounds of Formula XI, and a pharmaceutically acceptable carrier.
Another embodiment of the present invention relates to a method for providing neuroprotection in a mammal in need of such treatment. The method comprises administering to the mammal a therapeutically effective amount of a compound of any of Formula XI or a pharmaceutically acceptable salt thereof. In another embodiment, the present invention provides a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention or a pharmaceutically acceptable salt thereof in combination with one or more pharmaceutically acceptable carriers. The composition is preferably useful for the treatment of the disease conditions described above.
Further, the present invention provides the use of a compound of Formula XI or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment of the disease conditions described above.
In another embodiment, the compounds, compositions, and methods disclosed herein therefore may be utilized to prevent and/or treat a disease such as alcohol dependence, opioid abuse treatment, neurological disorders, neuropathic pain, and fibromyalgia, among other conditions mediated by one or more opioid receptors.
Turning to
Turning to
It is therefore an embodiment of the present invention to provide novel compounds of Formula XIII, and derivatives thereof, or pharmaceutically acceptable salts thereof, which are presented for treating certain disorders in a patient, such as addiction, alcohol dependence, opioid abuse treatment, neurological disorders, and neuropathic pain. It is another embodiment of the present invention to provide pharmaceutically acceptable compositions comprising compounds of Formula XIII, and a pharmaceutically acceptable carrier.
Another embodiment of the present invention relates to a method for providing neuroprotection in a mammal in need of such treatment. The method comprises administering to the mammal a therapeutically effective amount of a compound of any of Formula XIII or a pharmaceutically acceptable salt thereof. In another embodiment, the present invention provides a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention or a pharmaceutically acceptable salt thereof in combination with one or more pharmaceutically acceptable carriers. The composition is preferably useful for the treatment of the disease conditions described above.
Further, the present invention provides the use of a compound of Formula XIII or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment of the disease conditions described above.
In another embodiment, the compounds, compositions, and methods disclosed herein therefore may be utilized to prevent and/or treat a disease such as alcohol dependence, opioid abuse treatment, neurological disorders, neuropathic pain, and fibromyalgia, among other conditions mediated by one or more opioid receptors.
In an illustrative embodiment of the present invention, Formula XIII was evaluated for selective activity of the KOR. Turning to Table 4, inhibitory data is provided for the KOR. Inhibition data is provided as inhibitor constant, Ki, is the concentration required to produce half-maximum inhibition. This quantitative measure indicates how much of a particular drug or other substance (inhibitor) is needed to inhibit a given biological process (or component of a process, i.e. an enzyme, cell, cell receptor or microorganism) by half. The values are typically expressed as molar (micro- and nano-) concentrations. The data in Table 4 was obtained for the racemic mixture of Formula XIII. In some embodiments, the specific enantiomer of this compound demonstrates a Ki of 425 nM, indicating a significant level of selectivity and potency.
In one embodiment, compound of the present invention Formula XIII is shown as in Table 4 to show inhibition with regard to various receptors, including opioid receptors (MOR), a (DOR), and x (KOR).
Turning to
In one embodiment, R2 is a chemical group selected from a group consisting of: hydrogen, halogen, amine, alkyl amine, alkyl, hydroxy-, alkylhydroxy, alkyl amide, and alkyl ester.
In one embodiment, R3 is a chemical group selected from a group consisting of: hydrogen, halogen, amine, alkyl amine, alkyl, hydroxy-, alkylhydroxy, alkyl amide, and alkyl ester.
In one embodiment, R4 is a chemical group selected from a group consisting of: hydrogen, halogen, amine, alkyl amine, alkyl, hydroxy-, alkylhydroxy, alkyloxy, alkyl amide, and alkyl ester.
In one embodiment, R5 is a chemical group selected from a group consisting of: hydrogen, halogen, amine, alkyl, alkyl amine, hydroxy-, alkylhydroxy-, alkyl amide, alkyl ester, benzyl, and phenyl alkyl.
In one embodiment, R6 is a chemical group selected from a group consisting of: hydrogen, halogen, amine, alkyl, alkyl amine, hydroxy-, alkylhydroxy-, alkyl amide, and alkyl ester.
In one embodiment, R7 is a chemical group selected from a group consisting of: hydrogen, halogen, amine, alkyl, alkyl amine, hydroxy-, alkylhydroxy-, alkyl amide, alkyl ester, benzyl, and phenyl alkyl.
It is therefore an embodiment of the present invention to provide novel compounds of XIV, and derivatives thereof, or pharmaceutically acceptable salts thereof, which are presented for treating certain disorders in a patient, such as addiction, alcohol dependence, opioid abuse treatment, neurological disorders, and neuropathic pain. It is another embodiment of the present invention to provide pharmaceutically acceptable compositions comprising compounds of Formula XIV, and a pharmaceutically acceptable carrier.
Another embodiment of the present invention relates to a method for providing neuroprotection in a mammal in need of such treatment. The method comprises administering to the mammal a therapeutically effective amount of a compound of any of Formula XIV or a pharmaceutically acceptable salt thereof. In another embodiment, the present invention provides a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention or a pharmaceutically acceptable salt thereof in combination with one or more pharmaceutically acceptable carriers. The composition is preferably useful for the treatment of the disease conditions described above.
Further, the present invention provides the use of a compound of Formula XIV or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the treatment of the disease conditions described above.
In another embodiment, the compounds, compositions, and methods disclosed herein therefore may be utilized to prevent and/or treat a disease such as alcohol dependence, opioid abuse treatment, neurological disorders, neuropathic pain, and fibromyalgia, among other conditions mediated by one or more opioid receptors.
Those skilled in the art will recognize that the methods and compositions of the present invention may be implemented in many manners and as such are not to be limited by the foregoing exemplary embodiments and examples. In other words, functional elements being performed by single or multiple components, in various combinations of hardware and software or firmware, and individual functions, may be distributed among various software applications at either the client level or server level or both. In this regard, any number of the features of the different embodiments described herein may be combined into single or multiple embodiments, and alternate embodiments having fewer than, or more than, all of the features described herein are possible.
Functionality may also be, in whole or in part, distributed among multiple components, in manners now known or to become known. Thus, myriad combinations are possible in achieving the functions, features, and preferences described herein. Moreover, the scope of the present invention covers conventionally known manners for carrying out the described features as well as those variations and modifications that may be made to the processes, composition, or compounds described herein as would be understood by those skilled in the art now and hereafter.
While various embodiments have been described for purposes of this disclosure, such embodiments should not be deemed to limit the teaching of this disclosure to those embodiments. Various changes and modifications may be made to the elements and operations described above to obtain a result that remains within the scope of the compositions and methods described in this disclosure.
In certain embodiments of the present invention, the series of “open chain” analogs of Formulas XV to XXXVII, as depicted in
In some embodiments, the “open chain” analogs of Formulas XV to XXXVII, as depicted in
In various embodiments, the “open chain” analogs of Formulas XV to XXXVII, as depicted in
In certain embodiments, the “open chain” analogs of Formulas XV to XXXVII, as depicted in
In certain embodiments of the present invention,
In some embodiments, the “closed chain” analogs of Formulas XXXVIII to LIII, as depicted in
In various embodiments, the “closed chain” analogs of Formulas XXXVIII to LIII, as depicted in
In certain embodiments, the structure-activity relationship analysis of these “closed chain” analogs of Formulas XXXVIII to LIII, as depicted in
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it should be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of specific embodiments are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the described embodiments to the precise forms disclosed. It should be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.
While embodiments of the disclosure have been shown and described, modifications thereof can be made by one skilled in the art without departing from the spirit and teachings of the disclosure. The embodiments described and the examples provided herein are exemplary only, and are not intended to be limiting. Many variations and modifications of the disclosure disclosed herein are possible and are within the scope of the disclosure. The scope of protection is not limited by the description set out above, but is only limited by the claims which follow, that scope including all equivalents of the subject matter of the claims. Embodiments can include a system, a method, a compound, or combinations thereof.
This application is a continuation-in-part of U.S. patent application Ser. No. 17/290,987, filed May 3, 2021, entitled “NOVEL SELECTIVE KAPPA OPIOID RECEPTOR ANTAGONISTS AND METHODS RELATED THERETO FOR TREATMENT OF ADDICTION AND NEUROPATHIC PAIN”, which is the 35 U.S.C § 371 national application of PCT Application No. PCT/US2019/59524, filed on Nov. 1, 2019, entitled “NOVEL SELECTIVE KAPPA OPIOID RECEPTOR ANTAGONISTS AND METHODS RELATED THERETO FOR TREATMENT OF ADDICTION AND NEUROPATHIC PAIN”, which claims priority to U.S. Patent Application Ser. No. 62/928,008, filed on Oct. 30, 2019, entitled “NOVEL SELECTIVE KAPPA OPIOID RECEPTOR ANTAGONISTS AND METHODS RELATED THERETO FOR TREATMENT OF ADDICTION AND NEUROPATHIC PAIN”, and U.S. Patent Application Ser. No. 62/755,186, filed on Nov. 2, 2018, entitled “NOVEL SELECTIVE KAPPA OPIOID RECEPTOR ANTAGONISTS AND METHODS RELATED THERETO FOR TREATMENT OF ADDICTION AND NEUROPATHIC PAIN”, all of which are hereby incorporated herein by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
62928008 | Oct 2019 | US | |
62755186 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17290987 | May 2021 | US |
Child | 18420655 | US |