Selective coating of medical devices

Information

  • Patent Grant
  • 7297159
  • Patent Number
    7,297,159
  • Date Filed
    Wednesday, July 21, 2004
    20 years ago
  • Date Issued
    Tuesday, November 20, 2007
    17 years ago
Abstract
Methods for coating different regions of an implantable device are disclosed. An embodiment of the method includes dipping a first portion of the implantable device into a first coating substance, and then centrifuging the implantable device to provide an even coating. Next, a second portion of the implantable device is dipped into a second coating substance, and the implantable device is again centrifuged, resulting in an even second coating. In another embodiment, a first coating substance is applied to an interior surface of a cylindrical implantable device, such as a stent or graft, and a second coating substance is applied to an exterior surface. A centrifuge step is performed so that the first coating substance is preferentially and uniformly applied on the interior surface of the implantable device and the second coating substance is preferentially and uniformly applied on the exterior surface of the implantable device.
Description
FIELD OF THE INVENTION

The present invention relates to the coating of an implantable device. More specifically, this invention relates to a method for selective coating of an intraluminal implantable device, such as a stent or graft.


BACKGROUND

Occlusion of blood vessels reduces or blocks blood flow. During the course of atherosclerosis, for example, growths called plaques develop on the inner walls of the arteries and narrow the bore of the vessels. An emboli, or a moving clot, is more likely to become trapped in a vessel that has been narrowed by plaques. Further, plaques are common sites of thrombus formation. Together, these events increase the risk of heart attacks and strokes.


Traditionally, critically stenosed atherosclerotic vessels have been treated with bypass surgery in which veins removed from the legs, or small arteries removed from the thoracic cavity, are implanted in the affected area to provide alternate routes of blood circulation. More recently, implantable devices, such as synthetic vascular grafts and stents, have been used to treat diseased blood vessels.


Synthetic vascular grafts are macro-porous vessel-like configurations typically made of expanded polytetrafluoroethylene (ePTFE), polyethylene terephthalate (PET), polyurethane (PU), or an absorbable polymer. Grafts made of ePTFE or PET are very non-wetting materials when introduced into an aqueous environment, causing difficulty in impregnating the materials. In addition, grafts made of ePTFE or PET typically are permanently implanted in the body, while grafts made of an absorbable polymer bioabsorb over time. A graft may be positioned into the host blood vessel as a replacement for a diseased or occluded segment that has been removed. Alternatively, a graft may be sutured to the host vessel at each end so as to form a bypass conduit around a diseased or occluded segment of the host vessel.


Percutaneous transluminal coronary angioplasty (PTCA) is a procedure for treating heart disease in which a catheter assembly having a balloon portion is introduced percutaneously into the cardiovascular system of a patient via the brachial or femoral artery. The catheter assembly is advanced through the coronary vasculature until the balloon portion is positioned across the occlusive lesion. Once in position across the lesion, the balloon is inflated to a predetermined size to radially compress against the atherosclerotic plaque of the lesion to remodel the vessel. The balloon is then deflated to a smaller profile to allow the catheter to be withdrawn from the patient's vasculature.


Restenosis of the artery commonly develops over several months after the procedure, which may require another angioplasty procedure or a surgical by-pass operation. Restenosis is thought to involve the body's natural healing process. Angioplasty or other vascular procedures injure the vessel walls, removing the vascular endothelium, disturbing the tunica intima, and causing the death of medial smooth muscle cells. Excessive neoinitimal tissue formation, characterized by smooth muscle cell migration and proliferation to the intima, follows the injury. Proliferation and migration of smooth muscle cells (SMC) from the media layer to the intima cause an excessive production of extra cellular matrices (ECM), which is believed to be one of the leading contributors to the development of restenosis. The extensive thickening of the tissues narrows the lumen of the blood vessel, constricting or blocking blood flow through the vessel.


Intravascular stents are sometimes implanted within vessels in an effort to maintain the patency thereof by preventing collapse and/or by impeding restenosis. Implantation of a stent is typically accomplished by mounting the stent on the expandable portion of a balloon catheter, maneuvering the catheter through the vasculature so as to position the stent at the desired location within the body lumen, and inflating the balloon to expand the stent so as to engage the lumen wall. The stent maintains its expanded configuration, allowing the balloon to be deflated and the catheter removed to complete the implantation procedure. A covered stent, in which a graft-like covering is slip-fit onto the stent, may be employed to isolate the brittle plaque from direct contact with the stent, which is rigid.


To reduce the chance of the development of restenosis, therapeutic substances may be administered to the treatment site. For example, anticoagulant and antiplatelet agents are commonly used to inhibit the development of restenosis. In order to provide an efficacious concentration to the target site, systemic administration of such medication may be used, which often produces adverse or toxic side effects for the patient. Local delivery is a desirable method of treatment, in that smaller total levels of medication are administered in comparison to systemic dosages, but are concentrated at a specific site. Therefore, local delivery may produce fewer side effects and achieve more effective results.


One commonly applied technique for the local delivery of a therapeutic substance is through the use of a medicated implantable device, such as a stent or graft. Because of the mechanical strength needed to properly support vessel walls, stents are typically constructed of metallic materials. The metallic stent may be coated with a polymeric carrier, which is impregnated with a therapeutic agent. The polymeric carrier allows for a sustained delivery of the therapeutic agent.


Various approaches have previously been used to join polymers to metallic stents, including dipping and spraying processes. In one technique, the stent is first formed in a flat sheet, placed in a solution of polyurethane, and heated for a short period of time. Additional polyurethane solution is applied on top of the flat sheet, and the stent is again heated. This process produces a polyurethane film over the surface of the stent, and excess film is manually trimmed away. In one variation of this technique, microcapsules containing therapeutic agents are incorporated into the polyurethane film by adding the microcapsules to the polyurethane solution before heating.


In another technique, a solution is prepared that includes a solvent, a polymer dissolved in the solvent, and a therapeutic agent dispersed in the solvent. The solution is applied to the stent by spraying the solution onto the stent using an airbrush. After each layer is applied, the solvent is allowed to evaporate, thereby leaving on the stent surface a coating of the polymer and the therapeutic substance. Use of this spraying technique to apply a thick coating may result in coating uniformity problems, so multiple application steps are sometimes used in an attempt to provide better coating uniformity.


In yet another coating technique, a solution of dexamethasone in acetone is prepared, and an airbrush is used to spray short bursts of the solution onto a rotating wire stent. The acetone quickly evaporates, leaving a coating of dexamethasone on the surface of the stent.


The above-described methods often have difficulty in applying an even coating on the stent surfaces. One common result when using these spraying or immersion processes is that the aqueous coating tends to collect in crevices, apertures, or cavities in the framework of the stent, resulting in an uneven coating having an uncontrollably variable coating thickness. In particular, an excess amount of coating is often entrained in the angle between two intersecting struts of a stent, which is sometimes called “webbing” or “pooling.” The deposition of excessive amounts of therapeutic agents results in a poor surface area to volume ratio relative to conformal coatings. When such a coating experiences uncontrolled drying, drying artifacts may result in drug crystal formation.


The use of multiple applications of a fine, diffuse spray may produce a more controllable, even coating than immersion techniques. However, the diffuse application results in much of the coating substance not coating the stent and instead being released into the air. This inefficient use of the coating substance wastes the coating substance, which may be quite expensive, and increases the exposure of the air brush operator to the coating substance.


In addition, existing methods for coating implantable devices do not provide effective techniques for applying coatings of different substances onto different portions of the surface of the implantable device.


SUMMARY

In view of the above, there is a need to provide an improved method for coating medical devices which produces superior coating uniformity and control of the location of the coating without an excessive loss of materials. It is also desirable that the coating method can be used on a variety of implantable devices with aqueous or solvent-based coating substances. In particular, it is desired that therapeutic or bioactive substances, such as compositions of a polymer, solvent, and therapeutic substance, can be used to coat stents.


In accordance with various aspects of the present invention, the invention relates to a method for coating an implantable device. In one embodiment, the method comprises applying a first coating substance on a first portion of a surface of the implantable device, applying a second coating substance on a second portion of a surface of the implantable device, and rotating the implantable device about an axis of rotation. In another embodiment, a first coating substance is applied to an interior surface of a cylindrical implantable device, such as a stent or graft, and a second coating substance is applied to an exterior surface. A centrifuge step is performed so that the first coating substance is preferentially and uniformly applied on the interior surface of the implantable device and the second coating substance is preferentially and uniformly applied on the exterior surface of the implantable device.


Various embodiments of the described method enable highly viscous materials to be coated onto implantable devices. Viscous materials are not usually amenable to conventional coating methods such as dipping or spraying, because of the viscous material's propensity to accumulate in an uneven layer. However, the addition of a centrifugation step after dipping the implantable device in the viscous coating material can transform the uneven masses into a smooth, even coating.


Embodiments of the method also enable uniform coatings to be applied to implantable devices with improved repeatability, thereby improving coating uniformity between batches of implantable devices. With conventional manually-applied spray-coating techniques, operator error or inconsistency may result in different coating thicknesses between batches of stents. The centrifugation processes can reduce unwanted gross deposition of coating substances and enable high reproducibility of the coating quality.


Embodiments of the method also enable multiple stents to be processed simultaneously. Unlike manually-applied airbrush coating methods, in which stents are coated individually or in small groups, large batches of stents can be simultaneously immersed in the coating solution, simultaneously rotated in the centrifuge device, and simultaneously heated in an oven, thereby increasing throughput.


Embodiments of the method also may improve operator safety when coating implantable devices with hazardous materials. It is generally not desirable to spray coat an implantable device with toxic or radioactive coating substances, because of the increased exposure of the operator to the airborne hazardous coating substance. Dipping and centrifuging the implantable device as described above can decrease the amount of handling required for the coating process, resulting in reduced environmental contamination.


Embodiments of the method may also mitigate defects due to handling of the implantable device. In conventional spray processes, the implantable device is held aloft using one or two clamps or fixtures while the coating substance is sprayed onto the device. The point where these clamps contact the device may be masked from receiving the spray, resulting in defects in the coating. In contrast, the centrifuge container has minimal contact with the implantable device during the centrifuge process.


In another embodiment of the present invention, the invention relates to a drug loaded implantable device comprising two or more coating substances, each of the substances applied to portions of the device. In one embodiment, the portions are exterior surfaces of the device. In yet another embodiment, one of the portions is an exterior surface and another of the portions is an interior surface of the device. Further, one of the substances applied to the device can be a first substance that evenly coats a first portion of the device. Another of the substances can be a second substance that evenly coats a second portion of the device.





BRIEF DESCRIPTION OF THE DRAWINGS

The features of the described embodiments are specifically set forth in the appended claims. However, embodiments relating to both structure and method of operation are best understood by referring to the following description and accompanying drawings, in which similar parts are identified by like reference numerals.



FIG. 1 illustrates in plan view a cross-section of an embodiment of a centrifuge system;



FIG. 2 is a cross-section in plan view of an embodiment of a centrifuge container;



FIG. 3 is a flowchart of an embodiment of a coating process;



FIG. 4 is a flowchart of an alternative embodiment of a coating process; and



FIG. 5 is one embodiment of a stent having a first and second coating.





DETAILED DESCRIPTION

The following description is meant to be illustrative only and not limiting. Other embodiments of this invention will be apparent to those of ordinary skill in the art in view of this description.


The figures generally illustrate the techniques used to apply coatings to a stent in accordance with an embodiment of the present invention. Although the illustrated and described embodiments may relate to wire-based stents, any of a variety of implantable devices may be subjected to the coating process described herein, including, but not limited to, wire-based stents, tubular stents, rolled-sheet type stents, stent coverings, vascular grafts, or any implantable device having a complicated architecture which is not amenable to standard coating.


The materials from which such stents are formed may include metals such as, but not limited to, stainless steel, “MP35N,” “MP20N,” elastinite (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. The stent also may be made from virtually any biocompatible material, such as bioabsorbable or biostable polymers.


Vascular grafts may be used to replace, bypass, or reinforce diseased or damaged sections of a vein or artery. These grafts can be made from any suitable material including, but not limited to, highly open-pored materials such as polymers of expanded polytetrafluoroethylene (ePTFE) and polyethylene terephthalate (PET), or less porous materials such as polyurethanes, absorbable polymers, and combinations or variations thereof. Grafts may be formed using a lyophilization process. Polyurethanes from which the graft may be made include, but are not limited to, Biomer, BioSpan® polyurethane (manufactured by Polymer Technology Group, Berkeley, Calif.; referenced herein after as “BioSpan®”), and Elastion. Absorbable polymers from which the graft may be made include, but are not limited to, polycaprolactone (PCL), poly(lactic acid) (PLA), poly(glycolic acid) (PGA), polyanhydrides, polyorthoesters, polyphosphazenes, and components of extracellular matrix (ECM). In such an embodiment, additional interstices can be formed in the graft by any conventional methods known to one of ordinary skill in the art, including exposure of the graft to a laser discharge to form a pattern of pores.


In other embodiments, the implantable device to be coated is a covering for a self-expandable or balloon-expandable stent. This covering can be formed of materials similar to those from which the above-described graft may be formed.


Various types of coating substances may be applied to an implantable device in accordance with the present invention. In one embodiment, the coating substance includes a polymer loaded with a therapeutic substance. The terms “polymer,” “poly,” and “polymeric” as used herein mean the product of a polymerization reaction and are inclusive of homopolymers, copolymers, terpolymers, etc., whether natural or synthetic, including random, alternating, block, graft, crosslinked, blends, compositions of blends and variations thereof. The term “pre-polymer” refers to a low molecular weight material, such as oligomers, that can be further polymerized regardless of the mechanism of polymerization.


The polymer or combination of polymers can be applied to a stent based on the polymer's or polymers' ability to carry and release, at a controlled rate, various therapeutic agents such as antithrombogenic or anti-proliferative drugs. The polymeric material is most suitably biocompatible, including polymers that are non-toxic, non-inflammatory, chemically inert, and substantially non-immunogenic in the applied amounts. The polymer is typically either bioabsorbable or biostable. A bioabsorbable polymer breaks down in the body and is not present sufficiently long after implantation to cause an adverse local response. Bioabsorbable polymers are gradually absorbed or eliminated by the body by hydrolysis, metabolic process, bulk erosion, or surface erosion. Examples of bioabsorbable materials include but are not limited to polycaprolactone (PCL), poly-D, L-lactic acid (DL-PLA), poly-L-lactic acid (L-PLA), poly(lactide-co-glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polydioxanone, polyorthoester, polyanhydride, poly(glycolic acid), poly(glycolic acid-cotrimethylene carbonate), polyphosphoester, polyphosphoester urethane, poly (amino acids), cyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), copoly(etheresters), polyalkylene oxalates, polyphosphazenes, polyiminocarbonates, and aliphatic polycarbonates. Biomolecules such as heparin, fibrin, fibrinogen, cellulose, starch, and collagen are typically also suitable. Examples of biostable polymers include Parylene® and Parylast® (available from Advanced Surface Technology of Billerica, Mass.), polyurethane, such as a segmented polyurethane solution containing a dimethylacetamide (DMAc) solvent developed by the Polymer Technology Group, Inc. of Berkeley, Calif., and known by the trade name BioSpan®, polyethylene, polyethlyene teraphthalate, ethylene vinyl acetate, silicone and polyethylene oxide (PEO).


The expression “therapeutic agent” as used herein broadly refers to an agent or substance including, but not limited to, a therapeutic substance, a polymer impregnated with therapeutic substance, radioactive isotope, and radiopaque material, that possesses desirable therapeutic characteristics. The therapeutic agent may be, for example, antineoplastic, antimitotic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antiproliferative, antibiotic, antioxidant, and antiallergic substances, as well as combinations thereof. Examples of such antineoplastics and/or antimitotics include paclitaxel (e.g., TAXOL® by Bristol-Myers Squibb Co., Stamford, Conn.), docetaxel (e.g., Taxotere® from Aventis S.A., Frankfurt, Germany) methotrexate, azathioprine, actinomycin-D, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g., Adriamycin® from Pharmacia & Upjohn, Peapack, N.J.), and mitomycin (e.g., Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, and thrombin inhibitors such as Angiomax™ (Biogen, Inc., Cambridge, Mass.). Examples of such cytostatic or antiproliferative agents include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g., Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g., Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.); calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents that may be used include alpha-interferon, Trapidil antiplatelet (manufactured by DAITO Corporation, Japan; referenced herein after as “Trapidil”), genetically engineered epithelial cells, and dexamethasone. In yet other embodiments, the therapeutic substance is a radioactive isotope used in radiotherapeutic procedures. Examples of radioactive isotopes include, but are not limited to, phosphoric acid (H3P32O4), palladium (Pd103), cesium (Cs131), and iodine I125).


While the preventative and treatment properties of the foregoing therapeutic substances or agents are well known to those of ordinary skill in the art, the substances or agents are provided by way of example and are not meant to be limiting. Other therapeutic substances are equally applicable for use with the disclosed embodiments. For example, while many of the herein-described therapeutic agents have been used to prevent or treat restenosis, they are provided by way of example and are not meant to be limiting, since other drugs or coatings may be developed which are equally applicable for use with embodiment of the present invention.


In other embodiments, the coating is an aqueous solution of a therapeutic substance that does not contain a polymer matrix, for example, an aqueous solution of heparin. This aqueous solution can be applied to the stent and allowed to dry, thereby forming a heparin coating on the stent.


In addition to a polymer and a therapeutic agent, the coating substance may also include a solvent. The solvent can be virtually any solvent that is compatible with the implantable device to be coated. Examples of suitable solvents include but are not limited to dimethyl sulfoxide, dimethyl formamide, tetrahydrofuran, dimethyl acetamide, trichloroethane, acetone, ethanol, methanol, isopropanol, and ethyl acetate.



FIG. 1 shows a cross-section of an exemplary centrifuge system 100 in accordance with an embodiment of the present invention. Centrifuge system 100 includes a centrifuge device 102, which includes a rotatable rotor 104 for rotation about an axis 106, and a motor 108 which drives rotor 104 to rotate about axis 106. Centrifuge models 5410, 5415, 5417, 5804, and 5810, sold by Eppendorf Scientific, Inc., of Westbury, N.Y., may be used, for example, as centrifuge device 102. Exemplary centrifuge devices 102 provide rotational speeds of up to, for example, 14,000 rotations per minute (“RPM”). Rotor 104 includes a plurality of hollow chambers 110 circularly arranged about axis 106. Each chamber 110 is sized to receive a centrifuge container 112. Various centrifuge devices 102 available on the market are capable of centrifuging large numbers of centrifuge containers 112 simultaneously.



FIG. 2 shows in greater detail a cross-section of an exemplary centrifuge container 112. Centrifuge container 112 can be formed using a conventional centrifuge tube that has been modified as described below. A support 202 is provided towards the bottom of centrifuge container 112, and a mandrel 204 is preferably mounted thereon. In this embodiment, mandrel 204 is a rod. Mandrel 204 is inserted into the interior of the implantable device to be coated, such as a cylindrical stent 206. Mandrel 204 holds stent 206 and prevents stent 206 from contacting the interior walls of centrifuge container 112. Support 202 separates stent 206 from runoff reservoir 208, which is provided at the bottom of centrifuge container 112. Drainage openings 210 may be provided in support 202.


As can be seen in the embodiment shown in FIGS. 1-2, mandrel 204 is tilted such that when each centrifuge container 112 is mounted in centrifuge system 100, stents 206 are positioned such that their longitudinal axes are nearly parallel to axis of rotation 106. This may provide a more even coating on stents 206 after centrifugation. In alternative embodiments, mandrels 204 may have a different tilt angle relative to the central axes of centrifuge containers 112, or may have no tilt at all.



FIGS. 3 and 4 are flowcharts illustrating exemplary methods of coating an implantable device in accordance with an embodiment of the present invention. For the sake of example, the implantable device described with respect to FIGS. 1-4 is a stent, but the method also may be applied to various other implantable devices discussed above.



FIG. 5 illustrates a stent 206 having a first coating 207a and a second coating 207b. The first coating 207a comprises a first substance disposed along a first segment of the body of the stent 206 and the second coating 207b comprises a second substance disposed along a second segment of the body of the stent 206.


Referring to FIG. 3, in act 301, a first coating is applied to stent 206. The coating may be applied by injecting, spraying or immersing stent 206 with a liquid coating substance using techniques similar to those described in the background section above. The term “liquid” as used herein refers to substances having sufficient fluidity such that the substance can flow over the surface of stent 206 when processed through the further acts described below. “Liquid” is not intended to limit the coating substance to water-based substances or to low viscosity materials. Even highly viscous substances such as a hyaluronic acid solution (e.g., 1% hyaluronic acid), high molecular weight polyethylene glycol solution, gelatin solution, or poly(lactic) acid in 1,1,2 trichloroethane (e.g., 10% poly(lactic) acid) are included within the term.


As occurs with conventional coating techniques, the spraying or immersion of stent 206 in the coating substance typically results in a non-uniform coating, with webbing being observable between struts on stent 206. The term “strut(s)” as used herein includes the elongated elements and interconnecting elements of stent 206. In act 302, the still-wet stent 206 is inserted onto mandrel 204 in centrifuge container 112 such that mandrel 204 extends through the hollow interior of stent 206. Centrifuge container 112 is then inserted into chamber 110 of centrifuge system 100 (FIG. 1), and centrifuge system 100 is used to rotate stent 206 about axis 106 at high speeds. Centrifuge system 100 includes a plurality of rotatable chambers 110, such that multiple coated stents 206 can be centrifuged simultaneously, thereby increasing processing throughput.


The rotation of chambers 110 at high speeds creates a centrifugal force upon the coating substance that previously was applied to the surface of stent 206. Centrifugal force causes excess accumulations of coating substance, particularly the portions entrained between the struts of stent 206, to evenly redistribute over stent 206. Redistribution of the coating substance over the surface of stent 206 provides a more uniform coating free of webbing.


The centrifugation of stent 206 may result in some excess coating substance being removed from the surface of stent 206. Drainage openings 210 are provided in support 202 so that the runoff coating substance can flow from the upper portion of centrifuge container 112 into runoff reservoir 208. The channeling of runoff coating substance into runoff reservoir 208 prevents the coating substance from accumulating at the bottom end 212 of stent 206, which could lead to a non-uniform coating. Runoff coating substance can be recovered from runoff reservoir 208 and reused to coat additional stents 206. The recycling of the coating substance can produce significant cost savings when an expensive therapeutic agent is being used.


In alternative embodiments, different structures are provided to effectuate the flow of runoff coating substance into runoff reservoir 208. In one embodiment, support 202 is square-shaped, such that when support 202 is fitted into a centrifuge container 112 which is cylindrical in shape, runoff coating substance can flow around the openings formed between the edges of square support 202 and the circular interior of centrifuge container 112. In another embodiment, support 202 comprises a mesh platform, such that fluid can freely flow through support 202 to pass into reservoir 208. Numerous other variations are possible.


In act 303, coated, centrifuged stent 206 is immediately placed into a conventional oven for heating. Heating evaporates solvents that might be present in the coating substance, thereby forming a solid coating on the surface of stent 206. Heating act 303 can improve the adhesion of the coating substance to the metal forming metallic stents 206, and can also provide a better equilibrium for the solid phase drug distribution in the matrix of the coating substance. Heating act 303 might be used, for example, when coating stent 206 with a composition of ethylene vinyl alcohol copolymer with dimethyl sulfoxide, as will be described in greater detail in the example below. In alternative embodiments, no heating act is used, and stent 206 may be implanted immediately after centrifugation act 302. The use of a heating step and the parameters of such a step will vary with the application.


In act 304, it is determined whether one or more additional layers of coating substance is to be applied to stent 206. If so, the process returns to act 301, and another layer of coating substance is applied. Multiple layers of coating substance may be applied to produce a more uniform coating with fewer defects. Each layer can be formed very thin and uniform, and subsequent layers can be added to increase the overall loading onto stent 206. Moreover, the use of multiple layers can provide enhanced control over the release rate of the coating. Finally, when the desired number of layers have been applied, the process is completed at act 305, and stent 206 may be packaged for delivery or immediately implanted into a patient's body using techniques well-known to those of ordinary skill in the art.


In another embodiment shown in FIG. 4, act 401 involves applying a first coating substance to a portion of stent 206. As previously described, the coating may be applied by injecting, spraying or immersing stent 206 with an aqueous coating substance using techniques similar to those described in the background section above. In act 402, the still-wet stent 206 is inserted onto mandrel 204 in centrifuge container 112 such that mandrel 204 extends through the hollow interior of stent 206. Centrifuge container 112 is then inserted into chamber 110 of centrifuge system 100 (FIG. 1), and centrifuge system 100 is used to rotate stent 206 about axis 106 at high speeds.


The rotation of chambers 110 at high speeds creates a centrifugal force upon the coating substance that previously was applied to the surface of stent 206. Centrifugal force causes excess accumulations of coating substance, particularly the portions entrained between the struts of stent 206, to be more evenly redistributed over stent 206. Redistribution of the coating substance over the surface of stent 206 provides a more uniform coating free of webbing.


The centrifugation of stent 206 may result in some excess coating substance being removed from the surface of stent 206. Drainage openings 210 are provided in support 202 so that the runoff coating substance can flow from the upper portion of centrifuge container 112 into runoff reservoir 208. The channeling of runoff coating substance into runoff reservoir 208 prevents the coating substance from accumulating at the bottom end 212 of stent 206, which could lead to a non-uniform coating. This runoff coating substance can be recovered from runoff reservoir 208 and reused to coat additional stents 206. The recycling of the coating substance can produce significant cost savings when an expensive therapeutic agent is being used.


In act 403, coated, centrifuged stent 206 is immediately placed into a conventional oven for heating. In alternative embodiments, no heating act is used, and stent 206 may be implanted immediately after centrifugation act 302. The use of a heating step and the parameters of such a step will vary with the application.


In act 404, whether additional coating substance is to be applied to a portion or portions of stent 206 is determined. If so, the process returns to act 401, and additional coating substance is applied to a portion or portions of stent 206. Each portion of stent 206 can be covered in a different coating substance. For example, in one embodiment a first end of stent 206 is dipped into a first coating substance. Stent 206 is then centrifuged to provide an even coating at the first end. Next, the second end of stent 206 is dipped into a second coating substance, and stent 206 is again centrifuged to provide an even coating at the second end.


In another embodiment, a first coating substance is applied to an interior portion or surface of stent 206 and a second coating substance is applied to an exterior surface or portion of stent 206. In addition to a general stent structure, the following coating configuration also applies to other devices, including a stent graft or sheath covered stent. Further, the structural configuration of the stent graft or sheath covered stent also prevents the two coating substances from intermixing. For this embodiment, the stent 206 is inserted onto a mandrel in the centrifuge container and a volume or drop (i.e., approximately 20 microliters) of first coating substance is dripped into the interior portion of the stent. As such, the substance generally coats the interior portion as the viscous substance drips through the stent. Second and third drops of the first coating substance are also applied in a similar manner, for a total of approximately 60 microliters of substance coating the interior portion of the stent. The stent is then centrifuged and dried in an oven at approximately 50° C. for 5 hours. Approximately 60 microliters are similarly applied to the exterior of the stent, centrifuged and dried according to the above procedure to produce an evenly interior and exterior coated stent.


When the desired number of layers have been applied, the process is completed at act 405, and stent 206 may be packaged for delivery or immediately implanted into a patient's body using techniques well-known to those of ordinary skill in the art.


The application of one or more coating substances to different portions of the stent or graft precludes potential physical and/or chemical interactions from occurring between multiple substances. In addition, this coating technique also allows variable layers of the same or different substances to be applied to specific portions of the stent, thereby providing enhanced site-specific treatment of various disease states and/or conditions.


For example, stents uniformly coated with radioactive materials that limit cell proliferation have been used to treat restenosis. However, one side effect of this treatment method is the occurrence of a “candy-wrapper” effect at the treatment site. In general, the candy-wrapper effect is characterized by enhanced restenosis at the ends or edges of the radioactive stent that cause the ends of the stent to twist and contract in a radially inward direction. The abrupt change in radioactive levels at the edges of the stent, e.g. between tissue contacting the radioactive stent versus tissue not contacting the stent, is thought to further stimulate the proliferation of smooth muscle cells at these sites.


One method of mitigating this effect is to apply variable layers of radioactive material along the surface of the stent. In general, the level or amount of radiation at a tissue site is proportional to the number of layers of radioactive substance applied to the corresponding portion of the stent. As such, gradually decreasing the number of radioactive material layers towards the ends of the stent provides a smooth transition in radiation amounts between adjacent tissue cells. For example, for material delivering a radiation dosage of 10-100 gray (Gy) approximately 1 to 5 layers of material are applied to the central portion of the stent. Successively decreasing numbers of layers of the radioactive material are applied to the stent, terminating at the end or edge portions of the stent having only 1 to 2 layers of material. Other radioactive materials and layer variations, though not expressly disclosed, may also be used. This, in turn, inhibits cell stimulation and proliferation in tissue contacting the stent surface and portions of surrounding tissues, thereby preventing the occurrence of the candy-wrapper effect.


Alternatively, materials having different levels of radioactive substances may also be used to counteract the candy wrapper effect. For this embodiment, materials containing higher levels or dosages of radioactive substances are applied in a single layer near the central portion of the stent. Likewise, single layers of lower radioactive substances, whereby the radioactive levels are successively decreasing in the direction away from the central portion of the stent, are also applied to the surface of the stent. Exemplary dosage ranges of radioactive substances, whereby the high dosage range represents materials applied to the central portion of the stent and the low dosage range represents materials applied to the edge sections of the stent, are 50 Gy to 100 Gy and 10 Gy to 30 Gy, respectively. As described above, the stent configuration prevents cell stimulation and proliferation in tissue contacting the stent and, also, in surrounding tissues.


In yet another embodiment, the edges of the stent contain increased levels of radioactivity compared to the central portion of the stent. The dosage of radioactivity at the edges of the stent is configured to inhibit stimulation and proliferation of surrounding cells. As such, the radioactive material arrests cell division not only at the edges of the stent, but also in the surrounding tissue. In general, the level of radioactive substance applied to the end portions is approximately 500% to 1,000% greater than the level of radioactive substance applied to the central portion of the stent. As such, the increased dosage of radioactive material applied to the end portions of the stent inhibits the occurrence of the candy wrapper effect.


Grafts and stent coverings may include a large number of interstices, which cause these devices to have a generally permeable characteristic. In accordance with various embodiments of the present invention, permeable grafts and stent coverings can be coated with a coating substance, such as those described above, and then placed into a centrifuge for centrifugation. The centrifugation process provides improved perfusion of the coating substance through the interstices of the graft or stent covering, particularly when the devices are formed of a highly hydrophobic material.


In another embodiment, a process for applying a hydrogel coating to a graft or stent covering is provided. When applying a hydrogel coating, a coating substance containing at least one crosslinkable pre-polymer and a first fluid in which the pre-polymer is soluble is prepared. The pre-polymer should be in true solution, saturated, or super-saturated with the first fluid. Exemplary crosslinkable pre-polymers include, but are not limited to, polyethylene glycol (PEG) diacrylate, hyaluronic, and pluronic. The concentration of pre-polymer in the composition should be selected such that it is high enough to ensure effective crosslinking of the pre-polymer since a solution too dilute may not form a crosslinked hydrogel. An implantable device may then be dipped into this pre-polymer coating substance. Alternatively, prior to application of the pre-polymer, the implantable device may be perfused with a low surface energy solvent such as, for example, acetone or ethanol, which effectuates improved perfusion of the pre-polymer solution through the interstices of the implantable device.


After the implantable device is dipped into the pre-polymer solution, the implantable device is placed in a centrifuge container and loaded into a centrifuge system, similar to the centrifuge container 112 and centrifuge system 100 described above. Centrifuging the coated implantable device spreads the viscous pre-polymer solution evenly across the surface of the implantable device and into the interstices or crevices therein.


The pre-polymer is cured to form a hydrogel coating on the implantable device. Curing may be accomplished photochemically using ultraviolet or visible irradiation and a photoinitiator, thermally, or by moisture curing at room temperature. The practice of these and other suitable curing procedures is well known to those of ordinary skill in the art.


In yet another embodiment, the coating method of the present invention can be used to provide a physician with greater flexibility in selecting a desired coating substance for use with a particular patient. Conventionally, stents are coated by either the stent manufacturer or a third party prior to delivering the stent to a physician for implantation into a patient. In accordance with the present invention, a physician can apply a coating on a bare stent, centrifuge the stent using a small, portable centrifuge device, and implant the freshly-prepared stent in a patient's body. This enables the physician to precisely select the composition of the coating substance applied to the stent. In addition, because the stent can be locally coated and then immediately implanted by the physician after coating, perishable or environmentally-sensitive materials may be used to coat the stent.


EXAMPLE 1

An ACS Duet® stainless steel stent 206, produced by Guidant Corp. of Indianapolis, Ind., is partially dipped or immersed (e.g., for a few seconds or up to 20 seconds or more) in a coating substance composed of BioSpan® (a polyurethane) and Trapidil (i.e., triazolopyrimidine, an antiplatelet) in a 3:1 ratio. The stent 206 is then immediately mounted into a centrifuge container 112, as described above with respect to FIGS. 1-4. The centrifuge container 112 is inserted into chamber 110 and rotated for 30 seconds at 2500 rpm.


The stent 206 is then removed from the centrifuge container 112, placed on a mandrel, and loaded into a Blue M model vacuum convection oven from the Blue M Electric company of Watertown, Wis., for 24 hours at a temperature of 50° C. The heating causes the coating substance to fully dry, leaving a thin coating of BioSpan® and Trapidil on a portion of the stent.


Next, the immersion, centrifugation, and heating acts are repeated on the uncoated portion of the stent 206. For these subsequent processes, the uncoated portion of the stent is dipped or immersed in Duraflo® heparin solution (manufactured by Baxter, Deerfield, Ill.; referenced herein after as “Duraflo®”).


The above-described process results in a physically separated, selective coating of two different biologically active agents on the stent.


EXAMPLE 2

Multi-Link Duet™ stents, produced by Guidant Corp. of Indianapolis, Ind., are cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried. An ethylene vinyl alcohol (EVAL) stock solution is made having an EVAL:DMSO:THF w/w ratio of 1:2:1.5. The mixture is placed in a warm water shaker bath at 60° C. for 12 hours. The solution is mixed, then cooled to room temperature. A 9% by weight Dexamethasone solution is formulated as follows: 0.91 grams of the EVAL:DMSO:THF solution is mixed with 0.09 grams of Dexamethasone. The cleaned Multi-Link Duet™ stents are mounted in a makeshift holder placed within ependorf tubes. One half of the stent is dipped in the EVAL-Dexamethasone solution and transferred to the ependorf tube. The dipped end is vertically lower and resting on the holder in the tube. The tube is then centrifuged at 3000 rpm for 60 seconds. The half-coated stent is dried for 2 hours in a vacuum oven at 50° C. Following drying, the clean half of the stent is dipped in Duraflo® (organic soluble heparin) made at 10% w/w in Freon. The coating process is repeated. The final coating configuration results in a one-half Dexamethasone and other one-half Heparin-coated stent.


EXAMPLE 3

Multi-Link Duet™ stents are cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air-dried. An ethylene vinyl alcohol (EVAL) stock solution is made having an EVAL:DMSO:THF w/w ratio of 1:2:1.5. The mixture is placed in a warm water shaker bath at 60° C. for 12 hours. The solution is mixed, then cooled to room temperature. A 5% by weight Actinomycin-D (Ac-D) solution is formulated as follows: 0.95 grams of the EVAL:DMSO:THF solution is mixed with 0.05 grams of AcD. The cleaned Multi-Link Duet™ stents are mounted in a makeshift holder placed within ependorf tubes. One half of the stent is dipped in the EVAL-AcD solution and transferred to the ependorf tube. The dipped end is vertically lower and resting on the holder in the tube. The tube is then centrifuged at 3000 rpm for 60 seconds. The half-coated stent is dried for 2 hours in a vacuum oven at 50° C. Following drying, the clean half of the stent is dipped in Duraflo® (organic soluble heparin) made at 10% w/w in Freon. The coating process is repeated. The final coating configuration results in a one-half AcD and one-half Heparin-coated stent.


EXAMPLE 4

Multi-Link Duet™ stents are patterned with microdepots on the outer diameter of the stents. Microdepot stents are cleaned in an ultrasonic bath of isopropyl alcohol for 20 minutes, then air dried. A 10% AcD stock solution is made having an AcD:THF w/w ratio of 10:90. A 10% Dexamethasone stock solution is made having a Dexamethasone:THF w/w ratio of 10:90. The cleaned Multi-Link Duet™ stents are mounted in a makeshift holder placed within ependorf tubes. One half of the stent is dipped in the AcD solution and is transferred to the ependorf tube. The dipped end is vertically lower and is resting on the holder in the tube. The tube is then centrifuged at 2000 rpm for 60 sec. The half-coated stent is dried for 1 hour in a vacuum oven at 30° C. Following drying, the clean half of the stent is dipped in the Dexamethasone solution. The coating process is repeated. The drug loaded stents are then coated with Duraflo® solution by spraying a solution of Duraflo® as described in previous embodiments. The final coating configuration results in a one-half AcD and other one-half Dexamethasone coated microdepot stent that is topcoated with Heparin.


The rotational speed during centrifugation can be varied. Higher RPM values may provide improved uniformity and a reduction in defects. However, lower RPM values may improve solid uptake, i.e., the total loading of the coating substance onto stent 206. The solid uptake is calculated by measuring the initial weight of stent 206, and then measuring the weight after the loading and centrifugation acts. Increasing the total centrifugation time may also improve the uniformity and reduce defects in the coating. Accordingly, practitioners should tailor the process to the particular application.


Various embodiments of the described method enable highly viscous materials to be coated onto implantable devices. Viscous materials are not usually amenable to conventional coating methods such as dipping or spraying, because of the viscous material's propensity to accumulate in an uneven layer. However, the addition of a centrifugation step after dipping the implantable device in the viscous coating material can transform the uneven masses into a smooth, even coating.


Embodiments of the method also enable uniform coatings to be applied to implantable devices with improved repeatability, thereby improving coating uniformity between batches of implantable devices. With conventional manually-applied spray-coating techniques, operator error or inconsistency may result in different coating thicknesses between batches of stents. The centrifugation processes can reduce unwanted gross deposition of coating substances and enable high reproducibility of the coating quality.


Embodiments of the method also enable multiple stents to be processed simultaneously. Unlike manually-applied airbrush coating methods, in which stents are coated individually or in small groups, large batches of stents can be simultaneously immersed in the coating solution, simultaneously rotated in the centrifuge device, and simultaneously heated in an oven, thereby increasing throughput.


Embodiments of the method also may improve operator safety when coating implantable devices with hazardous materials. It is generally not desirable to spray coat an implantable device with toxic or radioactive coating substances, because of the increased exposure of the operator to the airborne hazardous coating substance. Dipping and centrifuging the implantable device as described above can decrease the amount of handling required for the coating process, resulting in reduced environmental contamination.


Embodiments of the method may also mitigate defects due to handling of the implantable device. In conventional spray processes, the implantable device is held aloft using one or two clamps or fixtures while the coating substance is sprayed onto the device. The point where these clamps contact the device may be masked from receiving the spray, resulting in defects in the coating. In contrast, the centrifuge container 112 has minimal contact with the implantable device during the centrifuge process.


In general, the coating substance of the various embodiments can have a viscosity within the range of about 0.5 cp to 1,000 cp (centipoise) (whereby 1 cp is approximately equal to the viscosity of water at 20° C.). As such, 0.5 cp approximately represents a very thin substance, 100 cp approximately represents, for example, a light oil, and 1,000 cp approximately represents a thick, viscous substance. Further, the relationship between the centrifugal force of the centrifuge or similar device and the viscosity of the coating substance can be approximately represented by the following equation:

(g+r*f2)/k*m

Where:

    • U=velocity
    • g=gravitational acceleration
    • r=average distance*4Π2
    • f=rpm
    • k=surface area to volume ratio (and other geometric constants/parameters)
    • m=kinetic viscosity


      In addition to the above, the viscosity of the coating substance is also dependent on the type of polymer and concentration of polymer contained in the coating substance.


The above embodiments only illustrate the principles of this invention and are not intended to limit the invention to the particular embodiments described. For example, the heating to evaporate the solvent material may be omitted, and other embodiments utilizing centrifugation coating methods can be used in combination with other acts in different processes which do not require active heating. These and various other adaptations and combinations of features of the embodiments disclosed are within the scope of the invention, as defined by the following claims.

Claims
  • 1. A stent, comprising: a first outer surface segment extending from a distal edge of the stent towards a proximal end of the stent and a second outer surface segment extending from a proximal edge of the stent towards a distal end of the stent;a uniform first coating layer comprising a drug blended with a polymer evenly distributed over the entire first outer surface segment of the stent but not distributed over the second outer surface segment of the stent, the first coating layer being free of webbing over the first outer surface segment; anda uniform second coating layer different from the first coating layer comprising a drug blended with,a polymer evenly distributed over the entire second outer surface segment of the stent but not distributed over the first outer surface segment of the stent, the second coating layer being free of webbing over the second outer surface segment, wherein the second coating layer does not cover the first coating layer.
  • 2. The stent of claim 1, wherein the drug of the first or second coating is for the treatment of restenosis.
  • 3. The stent of claim 1, wherein the first coating is separated from the second coating by a distance along the length of the stent.
  • 4. The stent of claim 1, wherein the drug of the first coating is different from the drug of the second coating.
  • 5. The stent of claim 4, wherein the drug of the first coating or the drug of the second coating is in a class of therapeutic substances selected from the group consisting of antineoplastic, antimitotic, anti-inflammatory, antiplatelet, anticoagulant, antifebrin, antithrombin, antiproliferative, antibiotic, antioxidant and antiallergic substances.
  • 6. The stent of claim 1, further comprising a third coating covering at least a portion of the first and/or second coating.
  • 7. The stent of claim 1, wherein the polymer of the first coating layer is the same as the polymer of the second coating layer.
  • 8. A stent, comprising: a body having a first segment and a second segment along a length of the body;a uniform first coating layer comprising a first substance evenly distributed along the entire first segment of the body, the first coating layer being free of webbing along the first segment, the second segment being free from the first coating layer; anda uniform second coating layer comprising a second substance evenly distributed along the entire second segment of the body, the second coating layer being free of webbing along the second segment, the first segment being free from the second coating layer,wherein the second coating layer does not cover the first coating layer, wherein the body is a cylindrical body such that the first segment includes an outer face of the cylindrical body extending from a proximal edge of the stent towards a distal end region of the stent and the second segment includes an outer face of the cylindrical body extending from a distal edge of the stent towards a proximal end region of the stent; andwherein each of the first substance and the second substance comprises a drug blended with a polymer, and the first substance and the second substance are different.
  • 9. The stent of claim 8, wherein the polymer of the first substance is different than the polymer of the second substance.
  • 10. The stent of claim 8, wherein the drug of the first substance is different than the drug of the second substance.
  • 11. The stent of claim 8, wherein the first coating comprises a polymer and the second coating comprises the same polymer as the first coating.
CROSS REFERENCE

This is a divisional application of U.S. application Ser. No. 09/697,106, now U.S. Pat. No. 6,783,793, which was filed on Oct. 26, 2000.

US Referenced Citations (921)
Number Name Date Kind
2072303 Herrmann et al. Mar 1937 A
2386454 Frosch et al. Oct 1945 A
2647017 Coulliette Jul 1953 A
2701559 Cooper Feb 1955 A
3288728 Gorham Nov 1966 A
3687135 Stroganov et al. Aug 1972 A
3773737 Goodman et al. Nov 1973 A
3839743 Schwarcz Oct 1974 A
3849514 Gray, Jr. et al. Nov 1974 A
3900632 Robinson Aug 1975 A
4075045 Rideout Feb 1978 A
4104410 Malecki Aug 1978 A
4110497 Hoel Aug 1978 A
4132357 Blackinton Jan 1979 A
4164524 Ward et al. Aug 1979 A
4226243 Shalaby et al. Oct 1980 A
4321711 Mano Mar 1982 A
4323071 Simpson et al. Apr 1982 A
4329383 Joh May 1982 A
4338942 Fogarty Jul 1982 A
4343931 Barrows Aug 1982 A
4346028 Griffith Aug 1982 A
4439185 Lundquist Mar 1984 A
4489670 Mosser et al. Dec 1984 A
4516972 Samson et al. May 1985 A
4529792 Barrows Jul 1985 A
4538622 Samson et al. Sep 1985 A
4554929 Samson et al. Nov 1985 A
4573470 Samson et al. Mar 1986 A
4596574 Urist Jun 1986 A
4599085 Riess et al. Jul 1986 A
4608984 Fogarty Sep 1986 A
4611051 Hayes et al. Sep 1986 A
4612009 Drobnik et al. Sep 1986 A
4616593 Kawamura et al. Oct 1986 A
4616652 Simpson Oct 1986 A
4629563 Wrasidlo Dec 1986 A
4633873 Dumican et al. Jan 1987 A
4638805 Powell Jan 1987 A
4656083 Hoffman et al. Apr 1987 A
4656242 Swan et al. Apr 1987 A
4699611 Bowden Oct 1987 A
4702252 Brooks et al. Oct 1987 A
4718907 Karwoski et al. Jan 1988 A
4722335 Vilasi Feb 1988 A
4723549 Wholey et al. Feb 1988 A
4732152 Wallstén et al. Mar 1988 A
4733665 Palmaz Mar 1988 A
4739762 Palmaz Apr 1988 A
4740207 Kreamer Apr 1988 A
4743252 Martin, Jr. et al. May 1988 A
4748982 Horzewski et al. Jun 1988 A
4768507 Fischell et al. Sep 1988 A
4774039 Wrasidlo Sep 1988 A
4776337 Palmaz Oct 1988 A
4800882 Gianturco Jan 1989 A
4816339 Tu et al. Mar 1989 A
4818559 Hama et al. Apr 1989 A
4828561 Woodroof May 1989 A
4850999 Planck Jul 1989 A
4865870 Hu et al. Sep 1989 A
4871542 Vilhardt Oct 1989 A
4877030 Beck et al. Oct 1989 A
4878906 Lindemann et al. Nov 1989 A
4879135 Greco et al. Nov 1989 A
4880683 Stow Nov 1989 A
4882168 Casey et al. Nov 1989 A
4886062 Wiktor Dec 1989 A
4902289 Yannas Feb 1990 A
4906423 Frisch Mar 1990 A
4931287 Bae et al. Jun 1990 A
4932353 Kawata et al. Jun 1990 A
4941870 Okada et al. Jul 1990 A
4943346 Mattelin Jul 1990 A
4950227 Savin et al. Aug 1990 A
4955899 Della Corna et al. Sep 1990 A
4967606 Wells et al. Nov 1990 A
4977901 Ofstead Dec 1990 A
4988356 Crittenden et al. Jan 1991 A
4994033 Shockey et al. Feb 1991 A
4994298 Yasuda Feb 1991 A
4994560 Kruper, Jr. et al. Feb 1991 A
5015505 Cetnar May 1991 A
5019090 Pinchuk May 1991 A
5019096 Fox, Jr. et al. May 1991 A
5028597 Kodama et al. Jul 1991 A
5037392 Hillstead Aug 1991 A
5037427 Harada et al. Aug 1991 A
5040548 Yock Aug 1991 A
5047050 Arpesani Sep 1991 A
5049132 Shaffer et al. Sep 1991 A
5053048 Pinchuk Oct 1991 A
5059166 Fischell Oct 1991 A
5059169 Zilber Oct 1991 A
5059211 Stack et al. Oct 1991 A
5062829 Pryor et al. Nov 1991 A
5064435 Porter Nov 1991 A
5078720 Burton et al. Jan 1992 A
5081394 Morishita et al. Jan 1992 A
5084065 Weldon et al. Jan 1992 A
5085629 Goldberg et al. Feb 1992 A
5087244 Wolinsky Feb 1992 A
5087394 Keith Feb 1992 A
5100429 Sinofsky et al. Mar 1992 A
5100992 Cohn et al. Mar 1992 A
5102402 Dror et al. Apr 1992 A
5104410 Chowdhary Apr 1992 A
5108416 Ryan et al. Apr 1992 A
5108417 Sawyer Apr 1992 A
5108755 Daniels et al. Apr 1992 A
5112457 Marchant May 1992 A
5116318 Hillstead May 1992 A
5116365 Hillstead May 1992 A
5123917 Lee Jun 1992 A
5127362 Iwatsu et al. Jul 1992 A
5133742 Pinchuk Jul 1992 A
5134192 Feijen et al. Jul 1992 A
5147370 McNamara et al. Sep 1992 A
5156623 Hakamatsuka et al. Oct 1992 A
5156911 Stewart Oct 1992 A
5158548 Lau et al. Oct 1992 A
5163951 Pinchuk et al. Nov 1992 A
5163952 Froix Nov 1992 A
5163958 Pinchuk Nov 1992 A
5165919 Sasaki et al. Nov 1992 A
5167614 Tessmann et al. Dec 1992 A
5171445 Zepf Dec 1992 A
5176638 Don Michael Jan 1993 A
5188734 Zepf Feb 1993 A
5192311 King et al. Mar 1993 A
5197977 Hoffman, Jr. et al. Mar 1993 A
5205822 Johnson et al. Apr 1993 A
5213561 Weinstein et al. May 1993 A
5213576 Abiuso et al. May 1993 A
5219980 Swidler Jun 1993 A
5222971 Willard et al. Jun 1993 A
5225750 Higuchi et al. Jul 1993 A
5226889 Sheiban Jul 1993 A
5226913 Pinchuk Jul 1993 A
5229045 Soldani Jul 1993 A
5229172 Cahalan et al. Jul 1993 A
5232444 Just Aug 1993 A
5234456 Silvestrini Aug 1993 A
5234457 Andersen Aug 1993 A
5236447 Kubo et al. Aug 1993 A
5242399 Lau et al. Sep 1993 A
5254089 Wang Oct 1993 A
5254091 Aliahmad et al. Oct 1993 A
5258020 Froix Nov 1993 A
5258419 Rolando et al. Nov 1993 A
5269802 Garber Dec 1993 A
5272012 Opolski Dec 1993 A
5278200 Coury et al. Jan 1994 A
5279594 Jackson Jan 1994 A
5282823 Schwartz et al. Feb 1994 A
5282860 Matsuno et al. Feb 1994 A
5286254 Shapland et al. Feb 1994 A
5289831 Bosley Mar 1994 A
5290271 Jernberg Mar 1994 A
5292516 Viegas et al. Mar 1994 A
5298260 Viegas et al. Mar 1994 A
5300295 Viegas et al. Apr 1994 A
5304200 Spaulding Apr 1994 A
5306250 March et al. Apr 1994 A
5306286 Stack et al. Apr 1994 A
5306294 Winston et al. Apr 1994 A
5306501 Viegas et al. Apr 1994 A
5306786 Moens et al. Apr 1994 A
5308641 Cahalan et al. May 1994 A
5314472 Fontaine May 1994 A
5318531 Leone Jun 1994 A
5328471 Slepian Jul 1994 A
5330500 Song Jul 1994 A
5330768 Park et al. Jul 1994 A
5336518 Narayanan et al. Aug 1994 A
5342283 Good Aug 1994 A
5342348 Kaplan Aug 1994 A
5342395 Jarrett et al. Aug 1994 A
5342621 Eury Aug 1994 A
5344426 Lau et al. Sep 1994 A
5344455 Keogh et al. Sep 1994 A
5350800 Verhoeven et al. Sep 1994 A
5356433 Rowland et al. Oct 1994 A
5360401 Turnland et al. Nov 1994 A
5360443 Barone et al. Nov 1994 A
5364354 Walker et al. Nov 1994 A
5366504 Andersen et al. Nov 1994 A
5368560 Rambo et al. Nov 1994 A
5370684 Vallana et al. Dec 1994 A
5380299 Fearnot et al. Jan 1995 A
5383925 Schmitt Jan 1995 A
5383927 DeGoicoechea et al. Jan 1995 A
5385580 Schmitt Jan 1995 A
5387450 Stewart Feb 1995 A
5389106 Tower Feb 1995 A
5399666 Ford Mar 1995 A
5405472 Leone Apr 1995 A
5409495 Osborn Apr 1995 A
5411466 Hess May 1995 A
5411477 Saab May 1995 A
5412035 Schmitt et al. May 1995 A
5415938 Cahalan et al. May 1995 A
5417981 Endo et al. May 1995 A
5423849 Engelson et al. Jun 1995 A
5423885 Williams Jun 1995 A
5429618 Keogh Jul 1995 A
5441515 Khosravi et al. Aug 1995 A
5443458 Eury et al. Aug 1995 A
5443496 Schwartz et al. Aug 1995 A
5443500 Sigwart Aug 1995 A
5445646 Euteneuer et al. Aug 1995 A
5447724 Helmus et al. Sep 1995 A
5451233 Yock Sep 1995 A
5455040 Marchant Oct 1995 A
5456661 Narcisco, Jr. Oct 1995 A
5456713 Chuter Oct 1995 A
5458615 Klemm et al. Oct 1995 A
5460610 Don Michael Oct 1995 A
5462990 Hubbell et al. Oct 1995 A
5464450 Buscemi et al. Nov 1995 A
5464650 Berg et al. Nov 1995 A
5470313 Crocker Nov 1995 A
5470603 Staniforth et al. Nov 1995 A
5476476 Hillstead Dec 1995 A
5476509 Keogh et al. Dec 1995 A
5485496 Lee et al. Jan 1996 A
5496346 Horzewski et al. Mar 1996 A
5500013 Buscemi et al. Mar 1996 A
5501227 Yock Mar 1996 A
5502158 Sinclair et al. Mar 1996 A
5507768 Lau et al. Apr 1996 A
5511726 Greenspan et al. Apr 1996 A
5514154 Lau et al. May 1996 A
5514379 Weissleder et al. May 1996 A
5516560 Harayama et al. May 1996 A
5516881 Lee et al. May 1996 A
5527337 Stack et al. Jun 1996 A
5537729 Kolobow Jul 1996 A
5538493 Gerken et al. Jul 1996 A
5545209 Roberts et al. Aug 1996 A
5545408 Trigg et al. Aug 1996 A
5551954 Buscemi et al. Sep 1996 A
5554120 Chen et al. Sep 1996 A
5554182 Dinh et al. Sep 1996 A
5556413 Lam Sep 1996 A
5558642 Schweich, Jr. et al. Sep 1996 A
5562728 Lazarus et al. Oct 1996 A
5569463 Helmus et al. Oct 1996 A
5571135 Fraser et al. Nov 1996 A
5571166 Dinh et al. Nov 1996 A
5571567 Shah Nov 1996 A
5578046 Liu et al. Nov 1996 A
5578073 Haimovich et al. Nov 1996 A
5584877 Miyake et al. Dec 1996 A
5588962 Nicholas et al. Dec 1996 A
5591199 Porter et al. Jan 1997 A
5591224 Schwartz et al. Jan 1997 A
5591227 Dinh et al. Jan 1997 A
5591607 Gryaznov et al. Jan 1997 A
5593403 Buscemi Jan 1997 A
5593434 Williams Jan 1997 A
5595722 Grainger et al. Jan 1997 A
5599301 Jacobs et al. Feb 1997 A
5599307 Bacher et al. Feb 1997 A
5599352 Dinh et al. Feb 1997 A
5599922 Gryaznov et al. Feb 1997 A
5605696 Eury et al. Feb 1997 A
5607442 Fischell et al. Mar 1997 A
5607467 Froix Mar 1997 A
5609629 Fearnot et al. Mar 1997 A
5610241 Lee et al. Mar 1997 A
5611775 Machold et al. Mar 1997 A
5616338 Fox, Jr. et al. Apr 1997 A
5618298 Simon Apr 1997 A
5618299 Khosravi et al. Apr 1997 A
5620420 Kriesel Apr 1997 A
5624411 Tuch Apr 1997 A
5628730 Shapland et al. May 1997 A
5628755 Heller et al. May 1997 A
5628781 Williams et al. May 1997 A
5628785 Schwartz et al. May 1997 A
5628786 Banas et al. May 1997 A
5629077 Turnlund et al. May 1997 A
5631135 Gryaznov et al. May 1997 A
5632771 Boatman et al. May 1997 A
5632840 Campbell May 1997 A
5637113 Tartaglia et al. Jun 1997 A
5644020 Timmermann et al. Jul 1997 A
5645559 Hachtman et al. Jul 1997 A
5649951 Davidson Jul 1997 A
5649977 Campbell Jul 1997 A
5653691 Rupp et al. Aug 1997 A
5656080 Staniforth et al. Aug 1997 A
5656082 Takatsuki et al. Aug 1997 A
5658995 Kohn et al. Aug 1997 A
5667523 Bynon et al. Sep 1997 A
5667767 Greff et al. Sep 1997 A
5667796 Otten Sep 1997 A
5670558 Onishi et al. Sep 1997 A
5674242 Phan et al. Oct 1997 A
5679400 Tuch Oct 1997 A
5693085 Buirge et al. Dec 1997 A
5693376 Fetherston et al. Dec 1997 A
5695498 Tower Dec 1997 A
5695810 Dubin et al. Dec 1997 A
5697967 Dinh et al. Dec 1997 A
5700286 Tartaglia et al. Dec 1997 A
5702754 Zhong Dec 1997 A
5702818 Cahalan et al. Dec 1997 A
5707385 Williams Jan 1998 A
5711763 Nonami et al. Jan 1998 A
5711812 Chapek et al. Jan 1998 A
5711958 Cohn et al. Jan 1998 A
5713949 Jayaraman Feb 1998 A
5716981 Hunter et al. Feb 1998 A
5718726 Amon et al. Feb 1998 A
5720726 Marcadis et al. Feb 1998 A
5721131 Rudolph et al. Feb 1998 A
5722984 Fischell et al. Mar 1998 A
5723219 Kolluri et al. Mar 1998 A
5725549 Lam Mar 1998 A
5726297 Gryaznov et al. Mar 1998 A
5728068 Leone et al. Mar 1998 A
5728751 Patnaik Mar 1998 A
5730698 Fischell et al. Mar 1998 A
5733326 Tomonto et al. Mar 1998 A
5733327 Igaki et al. Mar 1998 A
5733330 Cox Mar 1998 A
5733564 Lehtinen Mar 1998 A
5733925 Kunz et al. Mar 1998 A
5735897 Buirge Apr 1998 A
5741554 Tisone Apr 1998 A
5741881 Patnaik Apr 1998 A
5746745 Abele et al. May 1998 A
5746998 Torchilin et al. May 1998 A
5756457 Wang et al. May 1998 A
5756476 Epstein et al. May 1998 A
5759205 Valentini Jun 1998 A
5759474 Rupp et al. Jun 1998 A
5765682 Bley et al. Jun 1998 A
5766204 Porter et al. Jun 1998 A
5766239 Cox Jun 1998 A
5766710 Turnlund et al. Jun 1998 A
5769883 Buscemi et al. Jun 1998 A
5769884 Solovay Jun 1998 A
5770609 Grainger et al. Jun 1998 A
5772864 Møller et al. Jun 1998 A
5776184 Tuch Jul 1998 A
5780807 Saunders Jul 1998 A
5782742 Crocker Jul 1998 A
5783657 Pavlin et al. Jul 1998 A
5788626 Thompson Aug 1998 A
5788979 Alt et al. Aug 1998 A
5800392 Racchini Sep 1998 A
5800516 Fine et al. Sep 1998 A
5804318 Pinchuk et al. Sep 1998 A
5807244 Barot Sep 1998 A
5810871 Tuckey et al. Sep 1998 A
5810873 Morales Sep 1998 A
5811151 Hendriks et al. Sep 1998 A
5811447 Kunz et al. Sep 1998 A
5820917 Tuch Oct 1998 A
5823996 Sparks Oct 1998 A
5824048 Tuch Oct 1998 A
5824049 Ragheb et al. Oct 1998 A
5824056 Rosenberg Oct 1998 A
5826586 Mishra et al. Oct 1998 A
5830178 Jones et al. Nov 1998 A
5830179 Mikus et al. Nov 1998 A
5830217 Ryan Nov 1998 A
5830461 Billiar Nov 1998 A
5830879 Isner Nov 1998 A
5833644 Zadno-Azizi et al. Nov 1998 A
5833651 Donovan et al. Nov 1998 A
5833659 Kranys Nov 1998 A
5834582 Sinclair et al. Nov 1998 A
5836962 Gianotti Nov 1998 A
5836965 Jendersee et al. Nov 1998 A
5837008 Berg et al. Nov 1998 A
5837313 Ding et al. Nov 1998 A
5837835 Gryaznov et al. Nov 1998 A
5840009 Fischell et al. Nov 1998 A
5840083 Braach-Maksvytis Nov 1998 A
5843033 Ropiak Dec 1998 A
5843119 Schulewitz Dec 1998 A
5843172 Yan Dec 1998 A
5846247 Unsworth et al. Dec 1998 A
5849859 Acemoglu Dec 1998 A
5851508 Greff et al. Dec 1998 A
5853408 Muni Dec 1998 A
5854207 Lee et al. Dec 1998 A
5854376 Higashi Dec 1998 A
5855598 Pinchuk Jan 1999 A
5855612 Ohthuki et al. Jan 1999 A
5855618 Patnaik et al. Jan 1999 A
5857998 Barry Jan 1999 A
5858556 Eckhart et al. Jan 1999 A
5858746 Hubbell et al. Jan 1999 A
5858990 Walsh Jan 1999 A
5860954 Ropiak Jan 1999 A
5865814 Tuch Feb 1999 A
5866113 Hendriks et al. Feb 1999 A
5868781 Killion Feb 1999 A
5869127 Zhong Feb 1999 A
5871436 Eury Feb 1999 A
5871437 Alt Feb 1999 A
5873904 Ragheb et al. Feb 1999 A
5874101 Zhong et al. Feb 1999 A
5874109 Ducheyne et al. Feb 1999 A
5874165 Drumheller Feb 1999 A
5874355 Huang et al. Feb 1999 A
5876426 Kume et al. Mar 1999 A
5876433 Lunn Mar 1999 A
5876743 Ibsen et al. Mar 1999 A
5877224 Brocchini et al. Mar 1999 A
5877263 Patnaik et al. Mar 1999 A
5879713 Roth et al. Mar 1999 A
5883011 Lin et al. Mar 1999 A
5888533 Dunn Mar 1999 A
5891192 Murayama et al. Apr 1999 A
5893840 Hull et al. Apr 1999 A
5893852 Morales Apr 1999 A
5895407 Jayaraman Apr 1999 A
5897911 Loeffler Apr 1999 A
5897955 Drumheller Apr 1999 A
5898178 Bunker Apr 1999 A
5902631 Wang et al. May 1999 A
5902875 Roby et al. May 1999 A
5905168 Dos Santos et al. May 1999 A
5906759 Richter May 1999 A
5910564 Gruning et al. Jun 1999 A
5914182 Drumheller Jun 1999 A
5914387 Roby et al. Jun 1999 A
5916234 Lam Jun 1999 A
5916870 Lee et al. Jun 1999 A
5919893 Roby et al. Jul 1999 A
5921416 Uchara Jul 1999 A
5922005 Richter et al. Jul 1999 A
5922393 Jayaraman Jul 1999 A
5925552 Keogh et al. Jul 1999 A
5925720 Kataoka et al. Jul 1999 A
5928916 Keogh Jul 1999 A
5932299 Katoot Aug 1999 A
5935135 Bramfitt et al. Aug 1999 A
5942209 Leavitt et al. Aug 1999 A
5947993 Morales Sep 1999 A
5948018 Dereume et al. Sep 1999 A
5948428 Lee et al. Sep 1999 A
5951881 Rogers et al. Sep 1999 A
5954744 Phan et al. Sep 1999 A
5955509 Webber et al. Sep 1999 A
5957975 Lafont et al. Sep 1999 A
5958385 Tondeur et al. Sep 1999 A
5962138 Kolluri et al. Oct 1999 A
5965720 Gryaznov et al. Oct 1999 A
5968091 Pinchuk et al. Oct 1999 A
5968092 Buscemi et al. Oct 1999 A
5969422 Ting et al. Oct 1999 A
5971954 Conway et al. Oct 1999 A
5972027 Johnson Oct 1999 A
5972029 Fuisz Oct 1999 A
5972505 Phillips et al. Oct 1999 A
5976155 Foreman et al. Nov 1999 A
5976182 Cox Nov 1999 A
5980564 Stinson Nov 1999 A
5980928 Terry Nov 1999 A
5980972 Ding Nov 1999 A
5981568 Kunz et al. Nov 1999 A
5984449 Tajika et al. Nov 1999 A
5986169 Gjunter Nov 1999 A
5997468 Wolff et al. Dec 1999 A
5997517 Whitbourne Dec 1999 A
6010445 Armini et al. Jan 2000 A
6010530 Goicoechea Jan 2000 A
6010573 Bowlin Jan 2000 A
6011125 Lohmeijer et al. Jan 2000 A
6013099 Dinh et al. Jan 2000 A
6015541 Greff et al. Jan 2000 A
6019789 Dinh et al. Feb 2000 A
6024918 Hendriks et al. Feb 2000 A
6027510 Alt Feb 2000 A
6027526 Limon et al. Feb 2000 A
6030371 Pursley Feb 2000 A
6033582 Lee et al. Mar 2000 A
6033719 Keogh Mar 2000 A
6034204 Mohr et al. Mar 2000 A
6042606 Frantzen Mar 2000 A
6042875 Ding et al. Mar 2000 A
6045899 Wang et al. Apr 2000 A
6048964 Lee et al. Apr 2000 A
6051021 Frid Apr 2000 A
6051576 Ashton et al. Apr 2000 A
6051648 Rhee et al. Apr 2000 A
6054553 Groth et al. Apr 2000 A
6056906 Werneth et al. May 2000 A
6056993 Leidner et al. May 2000 A
6059752 Segal May 2000 A
6059810 Brown et al. May 2000 A
6060451 DiMaio et al. May 2000 A
6060518 Kabanov et al. May 2000 A
6063092 Shin May 2000 A
6066156 Yan May 2000 A
6071266 Kelley Jun 2000 A
6071305 Brown et al. Jun 2000 A
6074659 Kunz et al. Jun 2000 A
6080099 Slater Jun 2000 A
6080177 Igaki et al. Jun 2000 A
6080190 Schwartz Jun 2000 A
6080488 Hostettler et al. Jun 2000 A
6083258 Yadav Jul 2000 A
6086610 Duerig et al. Jul 2000 A
6090330 Gawa et al. Jul 2000 A
6093199 Brown et al. Jul 2000 A
6093463 Thakrar Jul 2000 A
6096070 Ragheb et al. Aug 2000 A
6096525 Patnaik Aug 2000 A
6099455 Columbo et al. Aug 2000 A
6099559 Nolting Aug 2000 A
6099561 Alt Aug 2000 A
6099562 Ding et al. Aug 2000 A
6103230 Billiar et al. Aug 2000 A
6106454 Berg et al. Aug 2000 A
6106530 Harada Aug 2000 A
6106889 Beavers et al. Aug 2000 A
6107416 Patnaik et al. Aug 2000 A
6110180 Foreman et al. Aug 2000 A
6110188 Narciso, Jr. Aug 2000 A
6110483 Whitbourne et al. Aug 2000 A
6113629 Ken Sep 2000 A
6117479 Hogan et al. Sep 2000 A
6117979 Hendriks et al. Sep 2000 A
6120477 Campbell et al. Sep 2000 A
6120491 Kohn et al. Sep 2000 A
6120535 McDonald et al. Sep 2000 A
6120536 Ding et al. Sep 2000 A
6120788 Barrows Sep 2000 A
6120847 Yang et al. Sep 2000 A
6120904 Hostettler et al. Sep 2000 A
6121027 Clapper et al. Sep 2000 A
6123712 Di Caprio et al. Sep 2000 A
6125523 Brown et al. Oct 2000 A
6126686 Badylak et al. Oct 2000 A
6127173 Eckstein et al. Oct 2000 A
6129761 Hubbell Oct 2000 A
6129928 Sarangapani et al. Oct 2000 A
6132809 Hynes et al. Oct 2000 A
6136333 Cohn et al. Oct 2000 A
6140127 Sprague Oct 2000 A
6140431 Kinker et al. Oct 2000 A
6143354 Koulik et al. Nov 2000 A
6143370 Panagiotou et al. Nov 2000 A
6149574 Trauthen et al. Nov 2000 A
6150630 Perry et al. Nov 2000 A
6153252 Hossainy et al. Nov 2000 A
6156373 Zhong et al. Dec 2000 A
6159227 Di Caprio et al. Dec 2000 A
6159229 Jendersee et al. Dec 2000 A
6159951 Karpeisky et al. Dec 2000 A
6159978 Myers et al. Dec 2000 A
6160084 Langer et al. Dec 2000 A
6165212 Dereume et al. Dec 2000 A
6166130 Rhee et al. Dec 2000 A
6168617 Blaeser et al. Jan 2001 B1
6168619 Dinh et al. Jan 2001 B1
6169170 Gryaznov et al. Jan 2001 B1
6171609 Kunz Jan 2001 B1
6172167 Stapert et al. Jan 2001 B1
6174316 Tuckey et al. Jan 2001 B1
6174330 Stinson Jan 2001 B1
6177523 Reich et al. Jan 2001 B1
6180632 Myers et al. Jan 2001 B1
6183505 Mohn, Jr. et al. Feb 2001 B1
6187045 Fehring et al. Feb 2001 B1
6193727 Foreman et al. Feb 2001 B1
6203551 Wu Mar 2001 B1
6209621 Treacy Apr 2001 B1
6210715 Starling et al. Apr 2001 B1
6211249 Cohn et al. Apr 2001 B1
6214115 Taylor et al. Apr 2001 B1
6214407 Laube et al. Apr 2001 B1
6214901 Chudzik et al. Apr 2001 B1
6217586 Mackenzie Apr 2001 B1
6217721 Xu et al. Apr 2001 B1
6224626 Steinke May 2001 B1
6224675 Prentice et al. May 2001 B1
6224894 Jamiolkowski et al. May 2001 B1
6228845 Donovan et al. May 2001 B1
6231590 Slaikeu et al. May 2001 B1
6231600 Zhong May 2001 B1
6240616 Yan Jun 2001 B1
6242041 Katoot et al. Jun 2001 B1
6245076 Yan Jun 2001 B1
6245099 Edwin et al. Jun 2001 B1
6245103 Stinson Jun 2001 B1
6245753 Byun et al. Jun 2001 B1
6245760 He et al. Jun 2001 B1
6248129 Froix Jun 2001 B1
6248344 Ylanen et al. Jun 2001 B1
6251135 Stinson et al. Jun 2001 B1
6251136 Guruwaiya et al. Jun 2001 B1
6251142 Bernacca et al. Jun 2001 B1
6253443 Johnson Jul 2001 B1
6254632 Wu et al. Jul 2001 B1
6258099 Mareiro et al. Jul 2001 B1
6258121 Yang et al. Jul 2001 B1
6258371 Koulik et al. Jul 2001 B1
6262034 Mathiowitz et al. Jul 2001 B1
6270788 Koulik et al. Aug 2001 B1
6273850 Gambale Aug 2001 B1
6273913 Wright et al. Aug 2001 B1
6277110 Morales Aug 2001 B1
6277449 Kolluri et al. Aug 2001 B1
6279368 Escano et al. Aug 2001 B1
6281262 Shikinami Aug 2001 B1
6283947 Mirzaee Sep 2001 B1
6283949 Roorda Sep 2001 B1
6284305 Ding et al. Sep 2001 B1
6284333 Wang et al. Sep 2001 B1
6287332 Bolz et al. Sep 2001 B1
6287628 Hossainy et al. Sep 2001 B1
6290721 Heath Sep 2001 B1
6293966 Frantzen Sep 2001 B1
6294836 Paranjpe et al. Sep 2001 B1
6296603 Turnlund et al. Oct 2001 B1
6299604 Ragheb et al. Oct 2001 B1
6303901 Perry et al. Oct 2001 B1
6306176 Whitbourne Oct 2001 B1
6312459 Huang et al. Nov 2001 B1
6319520 Wuthrich et al. Nov 2001 B1
6322588 Ogle et al. Nov 2001 B1
6322847 Zhong et al. Nov 2001 B1
6327772 Zadno-Azizi et al. Dec 2001 B1
6331313 Wong et al. Dec 2001 B1
6335029 Kamath et al. Jan 2002 B1
6344035 Chudzik et al. Feb 2002 B1
6346110 Wu Feb 2002 B2
6358556 Ding et al. Mar 2002 B1
6362099 Gandikota et al. Mar 2002 B1
6364903 Tseng et al. Apr 2002 B2
6375458 Moorleghem et al. Apr 2002 B1
6375826 Wang et al. Apr 2002 B1
6379379 Wang Apr 2002 B1
6379381 Hossainy et al. Apr 2002 B1
6387118 Hanson May 2002 B1
6387121 Alt May 2002 B1
6387379 Goldberg et al. May 2002 B1
6388043 Langer et al. May 2002 B1
6395325 Hedge et al. May 2002 B1
6395326 Castro et al. May 2002 B1
6406738 Hogan et al. Jun 2002 B1
6409761 Jang Jun 2002 B1
6413272 Igaki Jul 2002 B1
6419692 Yang et al. Jul 2002 B1
6420189 Lopatin Jul 2002 B1
6423092 Datta et al. Jul 2002 B2
6436816 Lee et al. Aug 2002 B1
6444567 Besser et al. Sep 2002 B1
6447835 Wang et al. Sep 2002 B1
6451373 Hossainy et al. Sep 2002 B1
6454738 Tran et al. Sep 2002 B1
6455424 McTeer et al. Sep 2002 B1
6461632 Gogolewski Oct 2002 B1
6462284 Hashimoto Oct 2002 B1
6464720 Boatman et al. Oct 2002 B2
6468906 Chan et al. Oct 2002 B1
6479565 Stanley Nov 2002 B1
6481262 Ching et al. Nov 2002 B2
6482834 Spada et al. Nov 2002 B2
6485512 Cheng Nov 2002 B1
6488701 Nolting et al. Dec 2002 B1
6488773 Ehrhardt et al. Dec 2002 B1
6491666 Santini, Jr. et al. Dec 2002 B1
6492615 Flanagan Dec 2002 B1
6494862 Ray et al. Dec 2002 B1
6494908 Huxel et al. Dec 2002 B1
6495156 Wenz et al. Dec 2002 B2
6495200 Chan et al. Dec 2002 B1
6503538 Chu et al. Jan 2003 B1
6503556 Harish et al. Jan 2003 B2
6503954 Bhat et al. Jan 2003 B1
6504307 Malik et al. Jan 2003 B1
6506437 Harish et al. Jan 2003 B1
6510722 Ching et al. Jan 2003 B1
6511748 Barrows Jan 2003 B1
6517888 Weber Feb 2003 B1
6517889 Jayaraman Feb 2003 B1
6521284 Parsons et al. Feb 2003 B1
6524232 Tang et al. Feb 2003 B1
6524347 Myers et al. Feb 2003 B1
6527801 Dutta Mar 2003 B1
6527863 Pacetti et al. Mar 2003 B1
6528526 Myers et al. Mar 2003 B1
6530950 Alvarado et al. Mar 2003 B1
6530951 Bates et al. Mar 2003 B1
6537589 Chae et al. Mar 2003 B1
6539607 Fehring et al. Apr 2003 B1
6540776 Sanders Millare et al. Apr 2003 B2
6540777 Stenzel Apr 2003 B2
6544223 Kokish Apr 2003 B1
6544543 Mandrusov et al. Apr 2003 B1
6544582 Yoe Apr 2003 B1
6554758 Turnlund et al. Apr 2003 B2
6554854 Flanagan Apr 2003 B1
6555059 Myrick et al. Apr 2003 B1
6555157 Hossainy Apr 2003 B1
6558733 Hossainy et al. May 2003 B1
6562136 Chappa et al. May 2003 B1
6565599 Hong et al. May 2003 B1
6565659 Pacetti et al. May 2003 B1
6569191 Hogan May 2003 B1
6569193 Cox et al. May 2003 B1
6572644 Moein Jun 2003 B1
6572672 Yadav et al. Jun 2003 B2
6574851 Mirizzi Jun 2003 B1
6582417 Ledesma et al. Jun 2003 B1
6585755 Jackson et al. Jul 2003 B2
6585765 Hossainy et al. Jul 2003 B1
6585926 Mirzaee Jul 2003 B1
6592614 Lenker et al. Jul 2003 B2
6592617 Thompson Jul 2003 B2
6596296 Nelson et al. Jul 2003 B1
6605114 Yan et al. Aug 2003 B1
6605154 Villareal Aug 2003 B1
6605874 Leu et al. Aug 2003 B2
6610087 Zarbatany et al. Aug 2003 B1
6613072 Lau et al. Sep 2003 B2
6616765 Castro et al. Sep 2003 B1
6623448 Slater Sep 2003 B2
6625486 Lundkvist et al. Sep 2003 B2
6626939 Burnside et al. Sep 2003 B1
6635269 Jennissen Oct 2003 B1
6635964 Maex et al. Oct 2003 B2
6645135 Bhat Nov 2003 B1
6645195 Bhat et al. Nov 2003 B1
6645243 Vallana et al. Nov 2003 B2
6645547 Shekalim et al. Nov 2003 B1
6656162 Santini, Jr. et al. Dec 2003 B2
6656216 Hossainy et al. Dec 2003 B1
6656506 Wu et al. Dec 2003 B1
6660034 Mandrusov et al. Dec 2003 B1
6663662 Pacetti et al. Dec 2003 B2
6663880 Roorda et al. Dec 2003 B1
6664187 Ngo et al. Dec 2003 B1
6664335 Krishnan Dec 2003 B2
6666214 Canham Dec 2003 B2
6666880 Chiu et al. Dec 2003 B1
6667049 Janas et al. Dec 2003 B2
6669723 Killion et al. Dec 2003 B2
6669980 Hansen Dec 2003 B2
6673154 Pacetti et al. Jan 2004 B1
6673385 Ding et al. Jan 2004 B1
6676697 Richter Jan 2004 B1
6676700 Jacobs et al. Jan 2004 B1
6679980 Andreacchi Jan 2004 B1
6689099 Mirzaee Feb 2004 B2
6689375 Wahlig et al. Feb 2004 B1
6695920 Pacetti et al. Feb 2004 B1
6699281 Vallana et al. Mar 2004 B2
6703307 Lopatin et al. Mar 2004 B2
6706013 Bhat et al. Mar 2004 B1
6706273 Roessler Mar 2004 B1
6709379 Brandau et al. Mar 2004 B1
6709514 Hossainy Mar 2004 B1
6712845 Hossainy Mar 2004 B2
6713119 Hossainy et al. Mar 2004 B2
6716444 Castro et al. Apr 2004 B1
6719934 Stinson Apr 2004 B2
6719989 Matsushima et al. Apr 2004 B1
6720402 Langer et al. Apr 2004 B2
6723120 Yan Apr 2004 B2
6733768 Hossainy et al. May 2004 B2
6740040 Mandrusov et al. May 2004 B1
6743462 Pacetti Jun 2004 B1
6746773 Llanos et al. Jun 2004 B2
6749626 Bhat et al. Jun 2004 B1
6752826 Holloway et al. Jun 2004 B2
6753007 Haggard et al. Jun 2004 B2
6753071 Pacetti et al. Jun 2004 B1
6758859 Dang et al. Jul 2004 B1
6759054 Chen et al. Jul 2004 B2
6764505 Hossainy et al. Jul 2004 B1
6774278 Ragheb et al. Aug 2004 B1
6776792 Yan et al. Aug 2004 B1
6783793 Hossainy et al. Aug 2004 B1
6818063 Kerrigan Nov 2004 B1
6846323 Yip et al. Jan 2005 B2
6860946 Hossainy et al. Mar 2005 B2
6861088 Weber et al. Mar 2005 B2
6865810 Stinson Mar 2005 B2
6869443 Buscemi et al. Mar 2005 B2
6878160 Gilligan et al. Apr 2005 B2
6887270 Miller et al. May 2005 B2
6887485 Fitzhugh et al. May 2005 B2
6890546 Mollison et al. May 2005 B2
6899731 Li et al. May 2005 B2
20010001806 Turnlund et al. May 2001 A1
20010007083 Roorda Jul 2001 A1
20010014717 Hossainy et al. Aug 2001 A1
20010016753 Caprio et al. Aug 2001 A1
20010020011 Mathiowitz et al. Sep 2001 A1
20010029351 Falotico et al. Oct 2001 A1
20010037145 Guruwaiya et al. Nov 2001 A1
20010044652 Moore Nov 2001 A1
20010051608 Mathiowitz et al. Dec 2001 A1
20020002399 Huxel et al. Jan 2002 A1
20020004060 Heublein et al. Jan 2002 A1
20020004101 Ding et al. Jan 2002 A1
20020005206 Falotico et al. Jan 2002 A1
20020007213 Falotico et al. Jan 2002 A1
20020007214 Falotico Jan 2002 A1
20020007215 Falotico et al. Jan 2002 A1
20020009604 Zamora et al. Jan 2002 A1
20020016625 Falotico et al. Feb 2002 A1
20020032414 Ragheb et al. Mar 2002 A1
20020032434 Chudzik et al. Mar 2002 A1
20020051730 Bodnar et al. May 2002 A1
20020062148 Hart May 2002 A1
20020065553 Weber May 2002 A1
20020071822 Uhrich Jun 2002 A1
20020077693 Barclay et al. Jun 2002 A1
20020082679 Sirhan et al. Jun 2002 A1
20020087123 Hossainy et al. Jul 2002 A1
20020091433 Ding et al. Jul 2002 A1
20020094440 Llanos et al. Jul 2002 A1
20020111590 Davila et al. Aug 2002 A1
20020116050 Kocur Aug 2002 A1
20020120326 Michal Aug 2002 A1
20020138133 Lenz et al. Sep 2002 A1
20020142039 Claude Oct 2002 A1
20020155212 Hossainy Oct 2002 A1
20020161114 Gunatillake et al. Oct 2002 A1
20020165608 Llanos et al. Nov 2002 A1
20020176849 Slepian Nov 2002 A1
20020183581 Yoe et al. Dec 2002 A1
20020187632 Marsh Dec 2002 A1
20020188037 Chudzik et al. Dec 2002 A1
20020188277 Roorda et al. Dec 2002 A1
20030003221 Zhong et al. Jan 2003 A1
20030004141 Brown Jan 2003 A1
20030028243 Bates et al. Feb 2003 A1
20030028244 Bates et al. Feb 2003 A1
20030031780 Chudzik et al. Feb 2003 A1
20030032767 Tada et al. Feb 2003 A1
20030033001 Igaki Feb 2003 A1
20030036794 Ragheb et al. Feb 2003 A1
20030039689 Chen et al. Feb 2003 A1
20030040712 Ray et al. Feb 2003 A1
20030040790 Furst Feb 2003 A1
20030054090 Hansen Mar 2003 A1
20030055482 Schwager et al. Mar 2003 A1
20030059520 Chen et al. Mar 2003 A1
20030060877 Falotico et al. Mar 2003 A1
20030065377 Davila et al. Apr 2003 A1
20030072868 Harish et al. Apr 2003 A1
20030073961 Happ Apr 2003 A1
20030083646 Sirhan et al. May 2003 A1
20030083739 Cafferata May 2003 A1
20030088307 Shulze et al. May 2003 A1
20030093107 Parsonage et al. May 2003 A1
20030097088 Pacetti May 2003 A1
20030097173 Dutta May 2003 A1
20030099712 Jayaraman May 2003 A1
20030100865 Santini, Jr. et al. May 2003 A1
20030105518 Dutta Jun 2003 A1
20030105530 Pirhonen Jun 2003 A1
20030113439 Pacetti et al. Jun 2003 A1
20030113445 Martin Jun 2003 A1
20030138487 Hogan et al. Jul 2003 A1
20030150380 Yoe Aug 2003 A1
20030157241 Hossainy et al. Aug 2003 A1
20030158517 Kokish Aug 2003 A1
20030171053 Sanders Sep 2003 A1
20030185964 Weber et al. Oct 2003 A1
20030187495 Cully et al. Oct 2003 A1
20030190406 Hossainy et al. Oct 2003 A1
20030203617 Lane et al. Oct 2003 A1
20030207020 Villareal Nov 2003 A1
20030208259 Penhasi Nov 2003 A1
20030209835 Chun et al. Nov 2003 A1
20030211230 Pacetti et al. Nov 2003 A1
20030226833 Shapovalov et al. Dec 2003 A1
20030236565 DiMatteo et al. Dec 2003 A1
20040018296 Castro et al. Jan 2004 A1
20040029952 Chen et al. Feb 2004 A1
20040047978 Hossainy et al. Mar 2004 A1
20040047980 Pacetti et al. Mar 2004 A1
20040052858 Wu et al. Mar 2004 A1
20040052859 Wu et al. Mar 2004 A1
20040054104 Pacetti Mar 2004 A1
20040060508 Pacetti et al. Apr 2004 A1
20040062853 Pacetti et al. Apr 2004 A1
20040063805 Pacetti et al. Apr 2004 A1
20040071861 Mandrusov et al. Apr 2004 A1
20040072922 Hossainy et al. Apr 2004 A1
20040073298 Hossainy Apr 2004 A1
20040086542 Hossainy et al. May 2004 A1
20040086550 Roorda et al. May 2004 A1
20040093077 White et al. May 2004 A1
20040096504 Michal May 2004 A1
20040098095 Burnside et al. May 2004 A1
20040098117 Hossainy et al. May 2004 A1
20040111149 Stinson Jun 2004 A1
20040127970 Saunders Jul 2004 A1
20040142015 Hossainy et al. Jul 2004 A1
20040143317 Stinson et al. Jul 2004 A1
20040167610 Fleming, III Aug 2004 A1
20040213893 Boulais Oct 2004 A1
20040236417 Yan et al. Nov 2004 A1
20050038497 Neuendorf et al. Feb 2005 A1
20050043786 Chu et al. Feb 2005 A1
20050049694 Neary Mar 2005 A1
20050054774 Kangas Mar 2005 A1
20050055044 Kangas Mar 2005 A1
20050060020 Jenson Mar 2005 A1
20050064088 Fredrickson Mar 2005 A1
20050065501 Wallace Mar 2005 A1
20050065545 Wallace Mar 2005 A1
20050065593 Chu et al. Mar 2005 A1
20050074406 Couvillon, Jr. et al. Apr 2005 A1
20050074545 Thomas Apr 2005 A1
20050079274 Palasis et al. Apr 2005 A1
Foreign Referenced Citations (174)
Number Date Country
2 008 312 Jul 1990 CA
2 007 648 Apr 1991 CA
1 322 628 Oct 1993 CA
1 336 319 Jul 1995 CA
1 338 303 May 1996 CA
042 24 401 Jan 1994 DE
044 07 079 Sep 1994 DE
197 31 021 Jan 1999 DE
19916086 Oct 1999 DE
198 56 983 Dec 1999 DE
0 108 171 May 1984 EP
0 144 534 Jun 1985 EP
0 301 856 Feb 1989 EP
0 380 668 Apr 1989 EP
0 351 314 Jan 1990 EP
0 364 787 Apr 1990 EP
0 396 429 Nov 1990 EP
0 397 500 Nov 1990 EP
0 464 755 Jan 1992 EP
0 493 788 Jul 1992 EP
0 526 606 Sep 1992 EP
0 514 406 Nov 1992 EP
0 517 075 Dec 1992 EP
0 540 290 May 1993 EP
0 553 960 Aug 1993 EP
0 554 082 Aug 1993 EP
0 565 251 Oct 1993 EP
0 578 998 Jan 1994 EP
0 604 022 Jun 1994 EP
0 621 017 Oct 1994 EP
0 623 354 Nov 1994 EP
0 627 226 Dec 1994 EP
0 649 637 Apr 1995 EP
0 665 023 Aug 1995 EP
0 701 802 Mar 1996 EP
0 701 803 Mar 1996 EP
0 709 068 May 1996 EP
0 716 836 Jun 1996 EP
0 732 087 Sep 1996 EP
0 832 618 Sep 1996 EP
0 756 853 Feb 1997 EP
0 809 999 Dec 1997 EP
0 832 655 Apr 1998 EP
0 834 293 Apr 1998 EP
0 850 604 Jul 1998 EP
0 850 651 Jul 1998 EP
0 879 595 Nov 1998 EP
0 910 584 Apr 1999 EP
0 923 953 Jun 1999 EP
0 953 320 Nov 1999 EP
0 972 498 Jan 2000 EP
0 974 315 Jan 2000 EP
0970711 Jan 2000 EP
0 982 041 Mar 2000 EP
1 023 879 Aug 2000 EP
1 034 752 Sep 2000 EP
1 075 838 Feb 2001 EP
1 103 234 May 2001 EP
1 192 957 Apr 2002 EP
1 273 314 Jan 2003 EP
0 869 847 Mar 2003 EP
0 941 072 Jan 2004 EP
2 753 907 Apr 1998 FR
2 247 696 Mar 1992 GB
2 316 086 Jan 2000 GB
2 316 342 Jan 2000 GB
2 333 975 Jan 2000 GB
2 336 551 Jan 2000 GB
2 356 586 May 2001 GB
2 356 587 May 2001 GB
2 333 474 Jun 2001 GB
2 334 685 Jun 2001 GB
2 356 585 Jul 2001 GB
2 374 302 Aug 2001 GB
2 370 243 Jun 2002 GB
2 384 199 Jul 2003 GB
SHO49-48336 Dec 1974 JP
SHO54-1831O Jul 1979 JP
SHO60-28504 Jul 1985 JP
21199867 May 1994 JP
HEI8-33718 Feb 1996 JP
HEI10-151190 Jun 1998 JP
2919971 Jul 1999 JP
2001-190687 Jul 2001 JP
0872531 Oct 1981 SU
0876663 Oct 1981 SU
0905228 Feb 1982 SU
0790725 Feb 1983 SU
1016314 May 1983 SU
0811750 Sep 1983 SU
1293518 Feb 1987 SU
1477423 May 1989 SU
WO 8903232 Apr 1989 WO
WO 9001969 Mar 1990 WO
WO 9004982 May 1990 WO
WO 9006094 Jun 1990 WO
WO 9111176 Aug 1991 WO
WO 9112846 Sep 1991 WO
WO 9117744 Nov 1991 WO
WO 9117789 Nov 1991 WO
WO 9210218 Jun 1992 WO
WO 9306792 Apr 1993 WO
WO 9409760 May 1994 WO
WO 9421196 Sep 1994 WO
WO 9510989 Apr 1995 WO
WO 9511817 May 1995 WO
WO 9524929 Sep 1995 WO
WO 9529647 Nov 1995 WO
WO 9533422 Dec 1995 WO
WO 9628115 Sep 1996 WO
WO 9635516 Nov 1996 WO
WO 9640174 Dec 1996 WO
WO 9710011 Mar 1997 WO
WO 9745105 Dec 1997 WO
WO 9746590 Dec 1997 WO
WO 9804415 Feb 1998 WO
WO 9807390 Feb 1998 WO
WO 9808463 Mar 1998 WO
WO 9817331 Apr 1998 WO
WO 9820863 May 1998 WO
WO 9823228 Jun 1998 WO
WO 9832398 Jul 1998 WO
WO 9836784 Aug 1998 WO
WO 9836784 Aug 1998 WO
WO 9901118 Jan 1999 WO
WO 9903515 Jan 1999 WO
WO 9916386 Apr 1999 WO
WO 9916386 Apr 1999 WO
WO 9938546 Aug 1999 WO
WO 9942147 Aug 1999 WO
WO 9963981 Dec 1999 WO
WO 0002599 Jan 2000 WO
WO 0012147 Mar 2000 WO
WO 0018446 Apr 2000 WO
WO 0064506 Nov 2000 WO
WO 0101890 Jan 2001 WO
WO 0115751 Mar 2001 WO
WO 0117459 Mar 2001 WO
WO 0117577 Mar 2001 WO
WO 0143727 Jun 2001 WO
WO 0145763 Jun 2001 WO
WO 0149338 Jul 2001 WO
WO 0151027 Jul 2001 WO
WO 0152772 Jul 2001 WO
WO 0157144 Aug 2001 WO
WO 0174414 Oct 2001 WO
WO 0191918 Dec 2001 WO
WO 0203890 Jan 2002 WO
WO 0226162 Apr 2002 WO
WO 0234311 May 2002 WO
WO 0247731 Jun 2002 WO
WO 0249771 Jun 2002 WO
WO 02056790 Jul 2002 WO
WO 02058753 Aug 2002 WO
WO 02087550 Nov 2002 WO
WO 02102283 Dec 2002 WO
WO 03000308 Jan 2003 WO
WO 03007918 Jan 2003 WO
WO 03007919 Jan 2003 WO
WO 03022323 Mar 2003 WO
WO 03028780 Apr 2003 WO
WO 03037223 May 2003 WO
WO 03039612 May 2003 WO
WO 03061841 Jul 2003 WO
WO 03072084 Sep 2003 WO
WO 03072086 Sep 2003 WO
WO 03080147 Oct 2003 WO
WO 03082368 Oct 2003 WO
WO 04000383 Dec 2003 WO
WO 2004009145 Jan 2004 WO
WO 2004017947 Mar 2004 WO
WO 2004017976 Mar 2004 WO
WO 2004023985 Mar 2004 WO
WO 2004024339 Mar 2004 WO
Related Publications (1)
Number Date Country
20040265475 A1 Dec 2004 US
Divisions (1)
Number Date Country
Parent 09697106 Oct 2000 US
Child 10897244 US