Selective encryption to enable trick play

Information

  • Patent Grant
  • 7151833
  • Patent Number
    7,151,833
  • Date Filed
    Wednesday, March 19, 2003
    22 years ago
  • Date Issued
    Tuesday, December 19, 2006
    18 years ago
Abstract
Certain embodiments consistent with the present invention involve a method of selectively encrypting and decoding digital video content. Certain of the packets are selected for encryption according to a selection criterion, wherein the selected packets exclude packets containing start of frame (SOF) headers. The selected packets are encrypted while retaining the packets containing the SOF headers unencrypted to form selectively encrypted digital video content. In decoding selectively encrypted digital video content, offsets are calculated for at least one of I frames and P frames from the SOF headers and the calculated offsets are stored as an offset table. The offset table can then be accessed to enable trick play of the selectively encrypted digital video content.
Description

This application is also related to patent applications entitled “Critical Packet Partial Encryption” to Unger et al., Ser. No. 10/038,217; patent applications entitled “Time Division Partial Encryption” to Candelore et al., Ser. No. 10/038,032; entitled “Elementary Stream Partial Encryption”, to Candelore, Ser. No. 10/037,914; entitled “Partial Encryption and PID Mapping” to Unger et al., Ser. No. 10/037,499; entitled “Decoding and Decrypting of Partially Encrypted Information” to Unger et al., Ser. No. 10/037,498 all of which were filed on Jan. 2, 2002 and are hereby incorporated by reference herein.


This application is also related to U.S. patent applications Ser. No. 10/273,905, filed Oct. 18, 2002 to Candelore et al., entitled “Video Slice and Active Region Based Dual Partial Encryption”, Ser. No. 10/273,903, filed Oct. 18, 2002 to Candelore et al., entitled “Star Pattern Partial Encryption”, Ser. No. 10/274,084, filed Oct. 18, 2002 to Candelore et al., entitled “Slice Mask and Moat Pattern Partial Encryption”, Ser. No. 10/274,019, filed Oct. 18, 2002 to Candelore et al., entitled “Video Scene Change Detection”, which are hereby incorporated by reference.


COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile, reproduction of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.


FIELD OF THE INVENTION

This invention relates generally to the field of encryption of digital video content. More particularly, this invention relates to use of selective encryption to permit trick play with digital video content.


BACKGROUND OF THE INVENTION

When digital video such as MPEG (Moving Pictures Expert Group) digital video is played back in various trick play modes, access to I frames or P frames is generally required. I frames and P frames contain information that can be used to directly represent an image, whereas images are created with B frames by referencing and modifying preceding and/or subsequent I frames and P frames. As an example, when playback is carried out at 2× or 4× speed, the playback algorithm jumps from I frame to I frame or P frame to P frame to speed up the presentation of the video frames while skipping certain frames.


Unfortunately, when content is encrypted using traditional encryption techniques, trick play becomes difficult or impossible since content has to be decrypted in order to find the I frames and/or P frames. In the case of unencrypted content, these frames are accessed by calculating an offset from the start of frame (SOF).





BRIEF DESCRIPTION OF THE DRAWINGS

The features of the invention believed to be novel are set forth with particularity in the appended claims. The invention itself however, both as to organization and method of operation, together with objects and advantages thereof, may be best understood by reference to the following detailed description of the invention, which describes certain exemplary embodiments of the invention, taken in conjunction with the accompanying drawings in which:



FIG. 1 is a flow chart showing a selective encryption process and decoding process consistent with certain embodiments of the present invention.



FIG. 2 illustrates one embodiment of a selective encryption and decoding process consistent with certain embodiments of the present invention.



FIG. 3 illustrates another embodiment of a selective encryption and decoding process consistent with certain embodiments of the present invention.



FIG. 4 is a programmed processor which can represent either an encryption processor or a decoder consistent with certain embodiments of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail specific embodiments, with the understanding that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described. In the description below, like reference numerals are used to describe the same, similar or corresponding parts in the several views of the drawings.


The terms “scramble” and “encrypt” and variations thereof are used synonymously herein. The term “video” may be used herein to embrace not only true visual information, but also in the conversational sense (e.g., “video tape recorder”) to embrace not only video signals but associated audio and data. The present document generally uses the example of a “dual selective encryption” embodiment, but those skilled in the art will recognize that the present invention can be utilized to realize multiple partial encryption without departing from the invention. The terms “partial encryption” and “selective encryption” are used synonymously herein. Also, the terms “program” and “television program” and similar terms can be interpreted in the normal conversational sense, as well as a meaning wherein the term means any segment of A/V content that can be displayed on a television set or similar monitor device. The term “legacy” as used herein refers to existing technology used for existing cable and satellite systems. The exemplary embodiments disclosed herein are decoded by a television Set-Top Box (STB), but it is contemplated that such technology will soon be incorporated within television receivers of all types whether housed in a separate enclosure alone or in conjunction with recording and/or playback equipment or Conditional Access (CA) decryption module or within a television set itself. The present document generally uses the example of a “dual partial encryption” embodiment, but those skilled in the art will recognize that the present invention can be utilized to realize multiple partial encryption without departing from the invention.


The above-referenced commonly owned patent applications describe inventions relating to various aspects of methods generally referred to herein as partial encryption or selective encryption. More particularly, systems are described wherein selected portions of a particular selection of digital content are encrypted using two (or more) encryption techniques while other portions of the content are left unencrypted. By properly selecting the portions to be encrypted, the content can effectively be encrypted for use under multiple decryption systems without the necessity of encryption of the entire selection of content. In some embodiments, only a few percent of data overhead is needed to effectively encrypt the content using multiple encryption systems. This results in a cable or satellite system being able to utilize Set-top boxes or other implementations of conditional access (CA) receivers from multiple manufacturers in a single system—thus freeing the cable or satellite company to competitively shop for providers of Set-top boxes.


The present invention applies similar selective encryption techniques to the problem of enabling trick play with encrypted digital video content. The partial encryption processes described in the above patent applications utilize any suitable encryption method. However, these encryption techniques are selectively applied to the data stream, rather than encrypting the entire data stream, using techniques described in the above-referenced patent applications. In general, but without the intent to be limiting, the selective encryption process utilizes intelligent selection of information to encrypt so that the entire program does not have to undergo dual encryption. By appropriate selection of data to encrypt, the program material can be effectively scrambled and hidden from those who desire to hack into the system and illegally recover commercial content without paying. MPEG (or similar format) data that are used to represent the audio and video data does so using a high degree of reliance on the redundancy of information from frame to frame. Certain data can be transmitted as “anchor” data representing chrominance and luminance data. That data is then often simply moved about the screen to generate subsequent frames by sending motion vectors that describe the movement of the block. Changes in the chrominance and luminance data are also encoded as changes rather than a recoding of absolute anchor data. Thus, encryption of this anchor data, for example, or other key data can effectively render the video un-viewable.


In accordance with certain embodiments consistent with the present invention, the selected video data to be encrypted may be any individual one or combination of the following (described in greater detail in the above applications): video slice headers appearing in an active region of a video frame, data representing an active region of a video frame, data in a star pattern within the video frame, data representing scene changes, I Frame packets, packets containing motion vectors in a first P frame following an I Frame, packets having an intra_slice_flag indicator set, packets having an intra_slice indicator set, packets containing an intra_coded macroblock, data for a slice containing an intra_coded macroblock, data from a first macroblock following the video slice header,packets containing video slice headers, anchor data, and P Frame data for progressively refreshed video data, data arranged in vertical and or horizontal moat patterns on the video frame, and any other selected data that renders the video and/or audio difficult to utilize. Several such techniques as well as others are disclosed in the above-referenced patent applications, any of which (or other techniques) can be utilized with the present invention to encrypt only a portion of the content, so long as the packets containing the SOF header is not encrypted, as will be explained later.


Currently there is a problem with delivering content to a personal-video-recorder (PVR) enabled set-top box is that to enable trick play it must be first descrambled. If the content is downloaded “opportunistically” from a carrousel at night, then descrambling (and locally re-scrambling) the content can cause a security problem. Keys used to locally re-scramble the content will not be as secure as those from the conditional access (CA) element. The content on the hard drive might be accessed without paying the appropriate viewing fees. Ideally, content delivered “opportunistically” or speculatively to a local drive of a set-top box would remain CA scrambled on the hard drive.


In accordance with certain embodiments consistent with the present invention, selective encryption is utilized to encrypt selective portions of content, but leaves the packets containing the SOF header in the clear (unencrypted). By leaving the SOF header unencrypted, trick play circuits and algorithms can operate properly. The remainder of the content can be encrypted fully or selectively according to any of the selective encryption schemes described in the copending applications, or any other suitable selective encryption content selection criterion.



FIG. 1 describes a process 100, in accord with certain embodiments consistent with the present invention, starting at 104. A packet selection criterion is established at 108 for determining which packets are to be encrypted. Such selection criterion can, for example, be established in accord with any of the above-referenced selective encryption selection criteria (including full encryption of all content except SOF header packets). Once the selection criterion is established, packets can be received at 112. If the packet does not meet the selection criterion at 116, then the packet is not encrypted at 120. If the packet does meet the selection criterion at 116, then control passes to 126 where the packet is examined to determine if it contains the SOF header. If so, the packet is not encrypted at 120. If not, the packet is encrypted at 130. Control passe from 120 or 130 to 134. At 134, if the last packet has not been encountered, the next packet is received at 112. If the last packet has been received at 134, the process stops at 138.


Thus, in accord with one embodiment consistent with the invention, a method of selectively encrypting digital video content, involves receiving a plurality of packets containing the digital video content; selecting certain of the packets for encryption according to a selection criterion, wherein the selected packets exclude certain packets containing start of frame (SOF) headers; encrypting the selected packets; and retaining the packets containing the SOF headers unencrypted to form selectively encrypted digital video content.


A method of decoding selectively encrypted digital video content, consistent with certain embodiments, involves receiving the selectively encrypted digital video content, wherein the selectively encrypted digital video content has unencrypted packets containing start of frame (SOF) headers; calculating offsets for at least one of I frames and P frames from the SOF headers; and storing the calculated offsets as an offset table. The offset table can be accessed to enable trick play of the selectively encrypted digital video content by identifying the location of I and/or P frames.


A selective encryption encoder for selective encryption of digital video content, consistent with certain embodiments of the present invention receives a plurality of packets containing the digital video content. A programmed processor selects certain of the packets for encryption according to a selection criterion, wherein the selected packets exclude packets containing start of frame (SOF) headers. An encrypter encrypts the selected packets while retaining the packets containing the SOF headers unencrypted to form selectively encrypted digital video content. The selectively encrypted content can then be stored on an electronic storage medium and/or transmitted to a receiver such as a television Set-top box.


In certain embodiments consistent with the present invention, all of the packets containing SOF headers can be left encrypted. However, this should not be considered limiting since in other embodiments only certain of the packets containing SOF headers might be left unencrypted, while others are encrypted. By way of example, and not limitation, I frames may generally be the more important frames containing SOF headers to have in the clear. Thus, some or all of the packets containing I frame SOF headers may be passed in the clear while other packets containing SOF headers may be encrypted. For example, B and/or P frame packets containing SOF headers, in many instances may be encrypted freely while I frame packets containing SOF headers are kept in the clear. Many variations with various advantages may be contemplated by those skilled in the art upon consideration of this teaching.



FIG. 2 depicts an embodiment of this process wherein a clear stream of data 204 is converted to a selectively encrypted stream of data 208. Clear stream 204 contains a sequence of packets each having program identifier (PID) A. Packets 212 and 214 contain SOF headers, while packets 218, 220, 222, 224 and 226 contain oilier information that forms a part of the video data stream. As a part of the encryption process of this example, all packets except those containing SOF headers are encrypted. Thus, packets 212 and 214 are transferred directly to the selectively encrypted stream 208. Packets 218, 220, 222, 224 and 226 are encrypted to produce encrypted packets 238, 240, 242, 244 and 246, respectively. At the decoder (e.g., in a television Set-top box (STB), the fact that the SOF headers are unencrypted enables calculation of offsets for trick play at 240. These offsets can then be stored in a local trick play. offset table at 254 to enable rapid access to the proper I and/or P frames, and thus produce trick play.



FIG. 3 depicts an embodiment of this process wherein a clear stream of data 304 is converted to a selectively encrypted stream of data 308. In this example, the selective encryption selection criterion is one that only partially encrypts packets not containing SOF headers. Clear stream 304 contains a sequence of packets each having program identifier (PID) A. Packets 312 and 314 contain SOF headers, while packets 318, 320, 322, 324 and 326 contain other information forming part of the stream of video. As a part of the encryption process of this example, only certain of the packets containing information other than the SOF header are encrypted. As illustrated, packets 312 and 314 are transferred directly to the selectively encrypted stream 308. Packets 318, 322 and 326 are encrypted to produce encrypted packets 338, 342 and 346, respectively. At the decoder (e.g., in a television STB), the fact. that the SOF headers are unencrypted enables calculation of offsets for trick play at 350. These offsets can then be stored in a local trick play offset table at 354 to enable rapid access to the proper I and/or P frames, and thus produce trick play.


When selectively encrypted digital video content is created as streams 208 or 308, the selectively encrypted digital video content can then be stored on an electronic storage medium or transmitted to one or more recipients (e.g., by downloading, streaming or broadcast by a cable or satellite content provider to subscriber's Set-top boxes serving as receivers and decoders.


Thus, certain embodiments of the present invention keep the SOF header packets in the clear. This allows commercially available decoder chips such as the model number 7030 manufactured and sold by Broadcom Corporation to calculate the byte offset to I, P and B frames. For trick play operation, the offset allows a decoder (e.g., a Set-top box) to display, for example, every second I Frame or fourth I frame without decoding other content. While the SOF headers are not encrypted, the rest of the content does not need to be completely encrypted, as described above.


The processes above can be carried out on any suitable programmed general purpose processor operating as a server/encoder such as that depicted as computer 400 of FIG. 4. Computer 400 can represent either an encryption processor or a decoder depending upon programming. Computer 400 has one or more central processor units (CPU) 410 with one or more associated buses 414 used to connect the central processor unit 410 to Random Access Memory 418 and Non-Volatile Memory 422 in a known manner. Output devices 426, such as a display and printer, may be provided in order to display and/or print output for the use of the MSO or user as well as to provide a user interface such as a Graphical User Interface (GUI). Similarly, input devices such as keyboard, mouse and removable media readers 430 may be provided for the input of information by the operator. Computer 400 also may incorporate internal and/or external attached disc or other mass storage 434 (e.g., disc and/or optical storage) for storing large amounts of information including, but not limited to, the operating system, encryption processes (for the encryption encoder), or offset calculation and local offset table if computer 400 is used as a decoder (e.g., forming a part of a television STB). The Computer system 400 also has an interface 438 for connection to the cable system if present at the MSO. While depicted as a single computer, the digital content provider may utilize multiple linked computers to carry out the functions described herein.


Those skilled in the art will recognize that the present invention has been described in terms of exemplary embodiments based upon use of a programmed processor (e.g., computer 400). However, the invention should not be so limited, since the present invention could be implemented using hardware component equivalents such as special purpose hardware and/or dedicated processors which are equivalents to the invention as described and claimed. Similarly, general purpose computers, microprocessor based computers, micro-controllers, optical computers, analog computers, dedicated processors and/or dedicated hard wired logic may be used to construct alternative equivalent embodiments of the present invention. Moreover, although the present invention has been described in terms of a general purpose personal computer providing a playback mechanism, the playback can be carried on a dedicated machine without departing from the present invention.


Those skilled in the art will appreciate that the program steps and associated data used to implement the embodiments described above can be implemented using disc storage as well as other forms of storage such as for example Read Only Memory (ROM) devices, Random Access Memory (RAM) devices; optical storage elements, magnetic storage elements, magneto-optical storage elements, flash memory, core memory and/or other equivalent storage technologies without departing from the present invention. Such alternative storage devices should be considered equivalents.


The present invention, as described in embodiments herein, is implemented using a programmed processor executing programming instructions that are broadly described above form that can be stored on any suitable electronic storage medium or transmitted over any suitable electronic communication medium or otherwise be present in any computer readable or propagation medium. However, those skilled in the art will appreciate that the processes described above can be implemented in any number of variations and in many suitable programming languages without departing from the present invention. For example, the order of certain operations carried out can often be varied, additional operations can be added or operations can be deleted without departing from the invention. Error trapping can be added and/or enhanced and variations can be made in user interface and information presentation without departing from the present invention. Such variations are contemplated and considered equivalent.


Software code and/or data embodying certain aspects of the present invention may be present in any computer readable medium, transmission medium, storage medium or propagation medium including, but not limited to, electronic storage devices such as those described above, as well as carrier waves, electronic signals, data structures (e.g., trees, linked lists, tables, packets, frames, etc.) optical signals, propagated signals, broadcast signals, transmission media (e.g., circuit connection, cable, twisted pair, fiber optic cables, waveguides, antennas, etc.) and other media that stores, carries or passes the code and/or data. Such media may either store the software code and/or data or serve to transport the code and/or data from one location to another. In the present exemplary embodiments, MPEG compliant packets, slices, tables and other data structures are used, but this should not be considered limiting since other data structures can similarly be used without departing from the present invention.


While the invention has been described in conjunction with specific embodiments, it is evident that many alternatives, modifications, permutations and variations will become apparent to those skilled in the art in light of the foregoing description. Accordingly, it is intended that the present invention embrace all such alternatives, modifications and variations as fall within the scope of the appended claims.

Claims
  • 1. A method of selectively encrypting digital video content, comprising; receiving a plurality of packets containing the digital video content;selecting packets from the plurality of packets for encryption according to a selection criterion, wherein the selection criterion is explicitly based at least in part upon the presence or absence of a start of frame (SOF) header in the selected packets, and wherein the selected packets exclude certain packets containing SOF headers;encrypting the selected packets; andretaining the certain packets containing the SOF headers unencrypted to form selectively encrypted digital video content.
  • 2. The method according to claim 1, further comprising storing the selectively encrypted digital video content on an electronic storage medium.
  • 3. The method according to claim 1, further comprising transmitting the selectively encrypted digital video content to a receiver.
  • 4. The method according to claim 1, wherein the selection criterion comprises selection of all packets except those packets containing the SOF header.
  • 5. The method according to claim 1, wherein the selection criterion comprises selection of packets except those certain packets containing the SOF header where the selected packets represent less than all of the remaining packets excluding those certain packets containing the SOF header.
  • 6. The method according to claim 1, wherein at least one packet containing an SOF header is not one of the certain packets containing a SOF header and is encrypted.
  • 7. The method according to claim 1, wherein the certain packets containing the SOF headers comprise I frame packets.
  • 8. The method according to claim 1, carried out on a programmed processor.
  • 9. An electronic computer readable storage medium storing instructions that, when executed on a programmed processor, carry out the method of selectively encrypting digital video cement according to claim 1.
  • 10. A method of decoding selectively encrypted digital video content comprising: receiving the selectively encrypted digital video content, wherein the selectively encrypted digital video content has certain unencrypted packets containing start of frame (SOF) headers, wherein the certain unencrypted packets were selected based upon a selection criterion that is explicitly based at least in part upon the presence or absence of a start of an SOF header in the selected packets;calculating offsets for at least one of I frames and P frames from the SOF headers; andstoring the calculated offsets as an offset table.
  • 11. The method according to claim 10, further comprising accessing the offset table to enable trick play of the selectively encrypted digital video content.
  • 12. The method according to claim 10, wherein the selectively encrypted digital video content is stored on an electronic storage medium.
  • 13. The method according to claim 10, wherein the selectively encrypted digital video content is transmitted from a content provider to a receiver.
  • 14. The method according to claim 10, wherein the selectively encrypted digital video content is fully encrypted except for certain packets containing SOF headers.
  • 15. The method according to claim 10, wherein the selectively encrypted digital video content comprises the certain unencrypted packets containing SOF headers, encrypted packets containing SOF headers, packets that do not contain SOF headers that are encrypted, and packets that do not contain SOF headers that are unencrypted.
  • 16. The method according to claim 10, wherein at least one packet containing an SOF header is not one of the certain packets containing a SOF header and is encrypted.
  • 17. The method according to claim 10, wherein the certain packets containing the SOF headers comprise I frame packets.
  • 18. The method according to claim 10, carried out on a programmed processor.
  • 19. An electronic storage medium storing instructions that, when executed on a programmed processor, carry out the method of decoding selectively encrypted digital video content according to claim 10.
  • 20. A decoder for decoding selectively encrypted digital video content, comprising: a receiver that receives the selectively encrypted digital video content, wherein the selectively encrypted digital video content has unencrypted packets containing start of frame (SOF) headers;wherein the certain unencrypted packets were selected based upon a selection criterion that is explicitly based at least in part upon the presence or absence of a start of an SOF header in the selected packets;an offset calculator tat calculates offsets for at least one of I frames and P frames from the SOF headers; andmeans for storing the calculated offsets as an offset table.
  • 21. The decoder according to claim 20, further comprising means for accessing the offset table to enable trick play of the selectively encrypted digital video content.
  • 22. The decoder according to claim 20, wherein, the selectively encrypted digital video content is stored on an electronic storage medium.
  • 23. The decoder according to claim 20, wherein the selectively encrypted digital video content is transmitted from a content provider to a receiver.
  • 24. The decoder according to claim 20, wherein the selectively encrypted digital video content is fully encrypted except for the certain packets containing the SOF header.
  • 25. The decoder according to claim 20, wherein the selectively encrypted digital video content comprises unencrypted packets containing SOF headers, encrypted packets containing SOF headers that are encrypted, packets that do not contain SOF headers that are encrypted, and packets that do not contain SOF headers that are unencrypted.
  • 26. The decoder according to claim 20, wherein the offset calculator is implemented by a programmed processor.
  • 27. The decoder according to claim 20, wherein the offset table is stored in an electronic storage medium.
  • 28. A selective encryption encoder for selective encryption of digital video content, comprising; means for receiving a plurality of packets containing the digital video content;a programmed processor that selects packets for encryption according to a selection criterion, wherein the selected packets exclude certain packets containing start of frame (SOF) headers;wherein the selection criterion is explicitly based at least in part upon the presence or absence of a SOF header in the selected packets; andan encrypter for encrypting the selected packets while retaining the certain packets containing the SOF headers unencrypted to form selectively encrypted digital video content.
  • 29. The encoder according to claim 28, further comprising an electronic storage medium for storing the selectively encrypted digital video content.
  • 30. The encoder according to claim 28, further comprising a transmitter for transmitting the selectively encrypted digital video content to a receiver.
  • 31. The encoder according to claim 28, wherein the selection criterion comprises selection of all packets except those containing the SOF header.
  • 32. The encoder according to claim 28, wherein the selection criterion comprises selection of certain packets except those containing the SOF header where the certain packets represent less than all of the packets that do not contain the SOF header.
CROSS REFERENCE TO RELATED DOCUMENTS

This application is a continuation of pending U.S. patent application Ser. No. 10/319,096, filed Dec. 13, 2002 to Candelore et al. entitled “Encryption to Enable Trick Play”, and is also related to and claims priority benefit of U.S. Provisional patent application Ser. No. 60/409,675, filed Sep. 9, 2002, entitled “Generic PID Remapping for Content Replacement”, to Candelore. These applications are hereby incorporated by reference herein.

US Referenced Citations (297)
Number Name Date Kind
3852519 Court Dec 1974 A
4381519 Wilkinson et al. Apr 1983 A
4419693 Wilkinson Dec 1983 A
4521853 Guttag Jun 1985 A
4634808 Moerder Jan 1987 A
4700387 Hirata Oct 1987 A
4703351 Kondo Oct 1987 A
4703352 Kondo Oct 1987 A
4710811 Kondo Dec 1987 A
4712238 Gilhousen et al. Dec 1987 A
4722003 Kondo Jan 1988 A
4739510 Jeffers et al. Apr 1988 A
4772947 Kondo Sep 1988 A
4785361 Brotby Nov 1988 A
4788589 Kondo Nov 1988 A
4815078 Shimura Mar 1989 A
4845560 Kondo et al. Jul 1989 A
4887296 Horne Dec 1989 A
4890161 Kondo Dec 1989 A
4924310 von Brandt May 1990 A
4944006 Citta et al. Jul 1990 A
4953023 Kondo Aug 1990 A
4989245 Bennett Jan 1991 A
4995080 Bestler et al. Feb 1991 A
5018197 Jones et al. May 1991 A
5023710 Kondo et al. Jun 1991 A
5091936 Katznelson Feb 1992 A
5122873 Golin Jun 1992 A
5138659 Kelkar et al. Aug 1992 A
5142537 Kutner et al. Aug 1992 A
5144662 Welmer Sep 1992 A
5144664 Esserman et al. Sep 1992 A
5159452 Kinoshita et al. Oct 1992 A
5196931 Kondo Mar 1993 A
5208816 Seshardi et al. May 1993 A
5237424 Nishino et al. Aug 1993 A
5237610 Gammie et al. Aug 1993 A
5241381 Kondo Aug 1993 A
5247575 Sprague et al. Sep 1993 A
5258835 Kato Nov 1993 A
5319707 Wasilewski et al. Jun 1994 A
5319712 Finkelstein et al. Jun 1994 A
5325432 Gardeck et al. Jun 1994 A
5327502 Katata Jul 1994 A
5341425 Wasilewski et al. Aug 1994 A
5359694 Concordel Oct 1994 A
5379072 Kondo Jan 1995 A
5381481 Gammie et al. Jan 1995 A
5398078 Masuda et al. Mar 1995 A
5400401 Wasilewski et al. Mar 1995 A
5416651 Uetake et al. May 1995 A
5416847 Boze May 1995 A
5420866 Wasilewski May 1995 A
5428403 Andrew et al. Jun 1995 A
5434716 Sugiyama et al. Jul 1995 A
5438369 Citta et al. Aug 1995 A
5444491 Lim Aug 1995 A
5455862 Hoskinson Oct 1995 A
5469216 Takahashi et al. Nov 1995 A
5471501 Parr et al. Nov 1995 A
5473692 Davis Dec 1995 A
5481554 Kondo Jan 1996 A
5481627 Kim Jan 1996 A
5485577 Eyer et al. Jan 1996 A
5491748 Auld, Jr. et al. Feb 1996 A
5528608 Shimizume Jun 1996 A
5535276 Ganesan Jul 1996 A
5539823 Martin Jul 1996 A
5539828 Davis Jul 1996 A
5555305 Robinson et al. Sep 1996 A
5561713 Suh Oct 1996 A
5568552 Davis Oct 1996 A
5574787 Ryan Nov 1996 A
5582470 Yu Dec 1996 A
5583576 Perlman et al. Dec 1996 A
5583863 Darr, Jr. et al. Dec 1996 A
5590202 Bestler et al. Dec 1996 A
5598214 Kondo et al. Jan 1997 A
5600721 Kitazato Feb 1997 A
5606359 Youden et al. Feb 1997 A
5608448 Smoral et al. Mar 1997 A
5615265 Coutrot Mar 1997 A
5617333 Oyamada et al. Apr 1997 A
5625715 Trew et al. Apr 1997 A
5629981 Nerlikar May 1997 A
5652795 Eillon et al. Jul 1997 A
5663764 Kondo et al. Sep 1997 A
5666293 Metz et al. Sep 1997 A
5699429 Tamer et al. Dec 1997 A
5703889 Shimoda et al. Dec 1997 A
5717814 Abecassis Feb 1998 A
5726711 Boyce Mar 1998 A
5732346 Lazaridis et al. Mar 1998 A
5742680 Wilson Apr 1998 A
5742681 Giachetti et al. Apr 1998 A
5751280 Abbott et al. May 1998 A
5751743 Takizawa May 1998 A
5751813 Dorenbos May 1998 A
5754650 Katznelson May 1998 A
5754658 Aucsmith May 1998 A
5757417 Aras et al. May 1998 A
5757909 Park May 1998 A
5768539 Metz et al. Jun 1998 A
5796786 Lee Aug 1998 A
5796829 Newby et al. Aug 1998 A
5796840 Davis Aug 1998 A
5802176 Audebert Sep 1998 A
5805700 Nardone et al. Sep 1998 A
5805712 Davis Sep 1998 A
5805762 Boyce et al. Sep 1998 A
5809147 De Lange et al. Sep 1998 A
5815146 Youden et al. Sep 1998 A
5818934 Cuccia Oct 1998 A
5825879 Davis Oct 1998 A
5850218 LaJoie et al. Dec 1998 A
5852290 Chaney Dec 1998 A
5852470 Kondo et al. Dec 1998 A
5870474 Wasiliewski et al. Feb 1999 A
5894320 Vancelette Apr 1999 A
5894516 Brandenburg Apr 1999 A
5915018 Aucsmith Jun 1999 A
5922048 Emura Jul 1999 A
5923755 Birch et al. Jul 1999 A
5930361 Hayashi et al. Jul 1999 A
5933500 Blatter et al. Aug 1999 A
5940738 Rao Aug 1999 A
5949877 Traw et al. Sep 1999 A
5949881 Davis Sep 1999 A
5973679 Abbott et al. Oct 1999 A
5973722 Wakai et al. Oct 1999 A
5999622 Yasukawa et al. Dec 1999 A
5999698 Nakai et al. Dec 1999 A
6005561 Hawkins et al. Dec 1999 A
6011849 Orrin Jan 2000 A
6012144 Pickett Jan 2000 A
6021199 Ishibashi Feb 2000 A
6021201 Bakhle et al. Feb 2000 A
6026164 Sakamoto et al. Feb 2000 A
6028932 Park Feb 2000 A
6049613 Jakobsson Apr 2000 A
6055314 Spies et al. Apr 2000 A
6055315 Doyle et al. Apr 2000 A
6057872 Candelore May 2000 A
6058186 Enari May 2000 A
6058192 Guralnick et al. May 2000 A
6061451 Muratani et al. May 2000 A
6064748 Hogan May 2000 A
6065050 DeMoney May 2000 A
6069647 Sullivan et al. May 2000 A
6070245 Murphy, Jr. et al. May 2000 A
6072872 Chang et al. Jun 2000 A
6072873 Bewick Jun 2000 A
6073122 Wool Jun 2000 A
6088450 Davis et al. Jul 2000 A
6105134 Pinder et al. Aug 2000 A
6108422 Newby et al. Aug 2000 A
6115821 Newby et al. Sep 2000 A
6118873 Lotspiech et al. Sep 2000 A
6134551 Aucsmith Oct 2000 A
6138237 Ruben et al. Oct 2000 A
6148082 Slattery et al. Nov 2000 A
6154206 Ludtke Nov 2000 A
6157719 Wasilewski et al. Dec 2000 A
6181334 Freeman et al. Jan 2001 B1
6185369 Ko et al. Feb 2001 B1
6185546 Davis Feb 2001 B1
6189096 Haverty Feb 2001 B1
6192131 Geer et al. Feb 2001 B1
6199053 Herbert et al. Mar 2001 B1
6204843 Freeman et al. Mar 2001 B1
6209098 Davis Mar 2001 B1
6215484 Freeman et al. Apr 2001 B1
6226618 Downs May 2001 B1
6229895 Son et al. May 2001 B1
6230194 Frailong et al. May 2001 B1
6230266 Perlman et al. May 2001 B1
6236727 Ciacelli et al. May 2001 B1
6240553 Son et al. May 2001 B1
6246720 Kutner et al. Jun 2001 B1
6256747 Inohara et al. Jul 2001 B1
6263506 Ezaki et al. Jul 2001 B1
6266416 Sigbjornsen et al. Jul 2001 B1
6266480 Ezaki et al. Jul 2001 B1
6272538 Holden et al. Aug 2001 B1
6278783 Kocher et al. Aug 2001 B1
6289455 Kocher et al. Sep 2001 B1
6292568 Atkins, III et al. Sep 2001 B1
6292892 Davis Sep 2001 B1
6307939 Vigarie Oct 2001 B1
6311012 Cho et al. Oct 2001 B1
6324288 Hoffman Nov 2001 B1
6351538 Uz Feb 2002 B1
6378130 Adams Apr 2002 B1
6389533 Davis et al. May 2002 B1
6389537 Davis et al. May 2002 B1
6415031 Colligan et al. Jul 2002 B1
6415101 deCarmo et al. Jul 2002 B1
6430361 Lee Aug 2002 B1
6445738 Zdepski et al. Sep 2002 B1
6449718 Rucklidge et al. Sep 2002 B1
6453115 Boyle Sep 2002 B1
6456985 Ohtsuka Sep 2002 B1
6459427 Mao et al. Oct 2002 B1
6463152 Takahashi Oct 2002 B1
6466671 Maillard et al. Oct 2002 B1
6505032 McCorkle et al. Jan 2003 B1
6505299 Zeng et al. Jan 2003 B1
6510554 Gorden et al. Jan 2003 B1
6519693 Debey Feb 2003 B1
6529526 Schneidewend Mar 2003 B1
6543053 Li et al. Apr 2003 B1
6549229 Kirby et al. Apr 2003 B1
6557031 Mimura et al. Apr 2003 B1
6587561 Sered et al. Jul 2003 B1
6640145 Hoffberg et al. Oct 2003 B1
6650754 Akiyama et al. Nov 2003 B1
6654389 Brunheroto et al. Nov 2003 B1
6678740 Rakib et al. Jan 2004 B1
6681326 Son et al. Jan 2004 B1
6684250 Anderson et al. Jan 2004 B1
6697944 Jones et al. Feb 2004 B1
6754276 Harumoto et al. Jun 2004 B1
6772340 Peinado et al. Aug 2004 B1
6788690 Harri Sep 2004 B1
6826185 Montanaro et al. Nov 2004 B1
6891565 Dietrich May 2005 B1
6904520 Rosset et al. Jun 2005 B1
6976166 Herley et al. Dec 2005 B1
20010030959 Ozawa et al. Oct 2001 A1
20020026587 Talstra et al. Feb 2002 A1
20020046406 Chelehmal et al. Apr 2002 A1
20020047915 Misu Apr 2002 A1
20020059425 Belfiore et al. May 2002 A1
20020083317 Ohta et al. Jun 2002 A1
20020083438 So et al. Jun 2002 A1
20020097322 Monroe et al. Jul 2002 A1
20020108035 Herley et al. Aug 2002 A1
20020129243 Nanjundiah Sep 2002 A1
20020150239 Carny et al. Oct 2002 A1
20020170053 Peterka et al. Nov 2002 A1
20020184506 Perlman Dec 2002 A1
20020194613 Unger Dec 2002 A1
20020196939 Unger et al. Dec 2002 A1
20030002854 Belknap et al. Jan 2003 A1
20030009669 White et al. Jan 2003 A1
20030021412 Candelore et al. Jan 2003 A1
20030026423 Unger et al. Feb 2003 A1
20030046686 Candelore et al. Mar 2003 A1
20030063615 Luoma et al. Apr 2003 A1
20030072555 Yap et al. Apr 2003 A1
20030077071 Lin et al. Apr 2003 A1
20030081630 Mowery et al. May 2003 A1
20030081776 Candelore May 2003 A1
20030084284 Ando et al. May 2003 A1
20030097662 Russ et al. May 2003 A1
20030112333 Chen et al. Jun 2003 A1
20030118243 Sezer et al. Jun 2003 A1
20030123664 Pedlow et al. Jul 2003 A1
20030123849 Nallur et al. Jul 2003 A1
20030123864 Pedlow, Jr. et al. Jul 2003 A1
20030126086 Safadi Jul 2003 A1
20030133570 Candelore et al. Jul 2003 A1
20030140257 Peterka et al. Jul 2003 A1
20030145329 Candelore Jul 2003 A1
20030152224 Candelore et al. Aug 2003 A1
20030152226 Candelore et al. Aug 2003 A1
20030156718 Candelore et al. Aug 2003 A1
20030159139 Candelore et al. Aug 2003 A1
20030159140 Candelore Aug 2003 A1
20030159152 Lin et al. Aug 2003 A1
20030174837 Candelore et al. Sep 2003 A1
20030188154 Dallard Oct 2003 A1
20030193973 Takashimizu et al. Oct 2003 A1
20030198223 Mack et al. Oct 2003 A1
20030204717 Kuehnel Oct 2003 A1
20030226149 Chun et al. Dec 2003 A1
20030228018 Vince Dec 2003 A1
20040003008 Wasilewski et al. Jan 2004 A1
20040010717 Simec et al. Jan 2004 A1
20040028227 Yu Feb 2004 A1
20040047470 Candelore Mar 2004 A1
20040049688 Candelore et al. Mar 2004 A1
20040049690 Candelore et al. Mar 2004 A1
20040049691 Candelore et al. Mar 2004 A1
20040049694 Candelore Mar 2004 A1
20040078575 Morten et al. Apr 2004 A1
20040081333 Grab et al. Apr 2004 A1
20040091109 Son et al. May 2004 A1
20040123094 Sprunk Jun 2004 A1
20040139337 Pinder et al. Jul 2004 A1
20040165586 Read et al. Aug 2004 A1
20040187161 Cao Sep 2004 A1
20040193550 Siegal Sep 2004 A1
20050004875 Kontio et al. Jan 2005 A1
20050071669 Medvinsky et al. Mar 2005 A1
20050169473 Candelore Aug 2005 A1
20050192904 Candelore Sep 2005 A1
Foreign Referenced Citations (21)
Number Date Country
0471373 Feb 1992 EP
0527611 Jul 1992 EP
0558016 Feb 1993 EP
0596826 Apr 1993 EP
0610587 Dec 1993 EP
0680209 Apr 1995 EP
0674440 Sep 1995 EP
0674441 Sep 1995 EP
0833517 Apr 1998 EP
0866615 Sep 1998 EP
1 187 483 Mar 2002 EP
1187483 Mar 2002 EP
7067028 Mar 1995 JP
11243534 Oct 2002 JP
WO 8607224 Dec 1986 WO
WO 9410775 May 1994 WO
WO 9738530 Oct 1997 WO
WO 0031964 Jun 2000 WO
WO 0165762 Sep 2001 WO
WO 0178386 Oct 2001 WO
WO 0178386 Oct 2001 WO
Related Publications (1)
Number Date Country
20040049691 A1 Mar 2004 US
Provisional Applications (1)
Number Date Country
60409675 Sep 2002 US
Continuations (1)
Number Date Country
Parent 10319096 Dec 2002 US
Child 10391940 US