The present invention relates to computers, computer peripherals, computer related devices, and other devices that may benefit from a quick and efficient method and/or system for connection to other like or different devices. More particularly, the present invention relates to a system and method for connecting computers and/or computer peripherals to other computers and/or computer peripherals using a universal computer cable having quick connectors and interchangeable ends, and a universal cabling system and method of using the connectors to connect computers, computer peripherals, computer related devices and other devices together. One such computer peripheral is a flash memory storage device.
The fields of computers, computer peripherals, and computer related devices are rapidly expanding. All of these devices must be connected to one another to communicate. This has caused a problem in the art due to the large number of conventional connector types and cable lengths, which are currently used. Many of these devices currently use universal serial bus (USB) or Firewire® computer architecture.
The USB architecture uses a four wire cable, or whatever the current USB specification calls for, usually in six, ten, or fifteen foot lengths, having seven different configurations possible on one end of the cable, and three different configurations possible on the other end of the cable, making possible many different configurations in each of the three popular lengths. Current USB Standards do not permit a cable length greater than fifteen feet without a repeater.
Five different types of plugs (male) or receptacles (female) are used on the ends of the USB cables to form these configurations. These are a USB A Male, USB B Male, MiniUSB A Male and MiniUSB B Male plugs, as well as a USB A Female receptacle. Any one of these plugs or receptacles may be found on either end of a USB cable. The only limitation on the possible combinations is that an A Male USB plug is not used with a MiniUSB A Male plug, and a MiniUSB B Male plug is not used with a USB B Male plug.
Firewire® computer architecture uses a four or six wire cable, or whatever the current Firewire® specification calls for, usually in the same lengths as a USB cable, and having a six pin Firewire® computer connector on one or both ends of a Firewire® cable, and a four pin audio-visual connector, which also may be on one, or both, ends of a Firewire® cable, thus providing additional cable configurations.
The large number of cable configurations causes problems in the art for the computer and/or peripheral, or device manufacturer, the wholesaler, the retailer, and the user, all of whom are put to the expense of manufacturing and/or stocking and/or selling and/or buying and/or using a bewildering array of cables to connect computers and/or computer peripherals to other computers and/or computer peripherals or devices. Thus, those skilled in the art have begun to search for an easier and less costly way to accomplish these connections.
Flash memory is well known and is utilized in various portable storage devices for transferring and storing computer files and programs. A typical flash memory device has a housing including an integral connector for connecting to a USB port on a computer. When plugged into a USB port, the computer's operating system recognizes the flash memory device as a removable drive and allows data to be retrieved from and written to the flash memory drive.
It is desirable to provide a flash memory drive that can accommodate a variety of interface connections and/or configurations to enable transfer of files from the flash memory drive to a variety of external devices.
The present invention concerns a flash memory device including a housing having opposed first and second ends; a flash memory drive enclosed in the housing; and a quick connector mounted in the housing and having a plurality of pins exposed at the second end, the pins being configured for connection to a selected one of at least two different interchangeable connectors. The flash memory device housing can include a loop portion extending from the first end.
The plurality of pins can be six female pins arranged in two parallel rows of three pins each and including a female connector body extending about said pins. The flash memory drive is electrically connected to the pins. Also provided are at least two interchangeable connectors each having a male quick connector electrically connected to a conventional connector and adapted to engage said female quick connector on the flash memory device. The conventional connectors can be, for example, a 4-Pin USB Series “A” Receptacle, a 4 Pin USB Series “A” Plug, a 4-Pin USB Series “B” Plug, a 5-Pin USB 2.0 Specification Mini-“A” Plug, and a 4-Pin USB 2.0 Specification Mini-“B” Plug. By selecting the appropriate interchangeable connector, the flash memory device can be connected a computer or other device having a conventional connector port such as a USB port.
The flash memory can be part of a kit including a container for storing the interchangeable connectors and the flash memory device when not in use. The kit can also include a universal computer cable useable for USB or Firewire® computer architecture, and having the quick connectors for the use with the interchangeable connectors. The items in the kit can be packaged in a blister pack for display.
The above, as well as other advantages of the present invention will become readily apparent to those skilled in the art from the following detailed description of a preferred embodiment when considered in the light of the accompanying drawings in which:
Referring to
The universal cable portion first end 22A is mechanically and electrically attached to a universal cable first connector portion 24A and the universal cable portion second end 22B is mechanically and electrically attached to a universal cable second connector portion 24B, said portions 24A and 24B preferably are, but not necessarily, female. Hence the universal cable first connector portion 24A is in electrical communication with the universal cable second connector portion 24B. Thus, the combination of the universal cable portion 22, and the universal connector portions 24A and 24B define the basic universal cable 20. In the first preferred embodiment of the present invention, the universal cable first connector portion 24A is identical to universal cable second connector portion 24B.
Also shown in
Referring to
Referring to
Referring to
As shown in
Illustrated in
Referring to
The 4-Circuit Plug 201, when used as a first serial bus plug, Firewire® plug, receptacle or converter 32 comprises a miniature quick connect first housing 181, a third connector portion 172A, and a universal cable quick connect first mating connector portion 26A, wherein each of the connector portions 172A, 26A are in mechanical attachment with the housing 181 and in electrical attachment with the cabling 190, thus allowing electrical communications between the connector portions 172A, 26A.
Similarly, the 4-Circuit Plug 201, when used as a second serial bus plug, Firewire® plug, receptacle or converter 36 comprises miniature quick connect first housing 181, fifth connector portion 176B, and universal cable quick connect second mating connector portion 26B, wherein each of the connector portions 176B, 26B are in mechanical attachment with the housing 181 and in electrical attachment with the cabling 190, thus allowing electrical communications between the connector portions 176B, 26B.
Illustrated in
The 6-Circuit plug 202, when used as a first modified first serial bus plug, Firewire® plug, receptacle or converter 32A comprises a miniature quick connect second housing 182, third connector portion 172A, and universal cable quick connect first mating connector portion 26A, wherein each of the connector portions 172A, 26A are in mechanical attachment with the second housing 182 and in electrical attachment with the cabling 190, thus allowing electrical communications between the connector portions 172A, 26A.
Similarly, the 6-Circuit plug 202, when used as the first modified second serial bus plug, Firewire® plug, receptacle or converter 36A comprises miniature quick connect second housing 182, fifth connector portion 176B, and universal cable quick connect second mating connector portion 26B, wherein each of the connector portions 176B, 26B are in mechanical attachment with the housing 182 and in electrical attachment with the cabling 190, thus allowing electrical communications between the connector portions 176B, 26B.
Illustrated in
The 4-pin USB Series “A” receptacle 203, when used as the second modified first serial bus plug, Firewire® plug, receptacle or converter 32B comprises miniature quick connect third housing 183, quick connect third mating connector portion 172A, quick connect first mating connector portion 26A, wherein each of the connector portions 172A, 26A are in mechanical attachment with the housing 183 and in electrical attachment with the cabling 190, thus allowing electrical communications between the connector portions 172A, 26A.
Similarly, the 4-Pin Series “A” receptacle 203, when used as the second modified second serial bus plug, Firewire® plug, receptacle or converter 36B comprises miniature quick connect third housing 183, fifth connector portion 176B, and quick connect second mating connector portion 26B, wherein each of the connector portions 176B, 26B are in mechanical attachment with the housing 183 and in electrical attachment with the cabling 190, thus allowing electrical communications between the connector portions 176B, 26B.
Illustrated in
The 4-Pin USB Series “A” plug 204, when used as the third modified first serial bus plug, Firewire® plug, receptacle or converter 32C comprises miniature quick connect fourth housing 184, third connector portion 172A, and universal cable quick connect first mating connector portion 26A, wherein each of the connector portions 172A, 26A are in mechanical attachment with the housing 184 and in electrical attachment with the cabling 190, thus allowing electrical communications between the connector portions 172A, 26A.
Similarly, the 4-Pin USB Series “A” plug 204, when used as the third modified second serial bus plug, Firewire® plug, receptacle or converter 36C comprises miniature quick connect fourth housing 184, fifth connector portion 176B, and universal cable quick connect second mating connector portion 26B, wherein each of the connector portions 176B, 26B are in mechanical attachment with the housing 184 and in electrical attachment with the cabling 190, thus allowing electrical communications between the connector portions 176B, 26B.
Illustrated in
The 4-Pin USB -Series “B” plug 205, when used as the fourth modified first serial bus plug, Firewire® plug, receptacle or converter 32D comprises miniature quick connect fifth housing 185, third connector portion 172A, and universal cable quick connect first mating connector portion 26A, wherein each of the connector portions 172A, 26A are in mechanical attachment with the housing 185 and in electrical attachment with the cabling 190, thus allowing electrical communications between the connector portions 172A, 26A.
Similarly, the 4-Pin USB Series “B” plug 205, when used as the fourth modified second serial bus plug, Firewire® plug, receptacle or converter 36D comprises miniature quick connect fifth housing 185, fifth connector portion 176B, and universal cable quick connect second mating connector-portion 26B, wherein each of the connector portions 176B, 26B are in mechanical attachment with the housing 185 and in electrical attachment with the cabling 190, thus allowing electrical communications between the connector portions 176B, 26B.
Illustrated in
The 5-Pin USB Mini-“A” plug 206 when used as the fifth modified first serial bus plug, Firewire® plug, receptacle or converter 32E comprises miniature quick connect sixth housing 186, third connector portion 172A, and universal cable quick connect first mating connector portion 26A, wherein each of the connector portions 172A, 26A are in mechanical attachment with the housing 186 and in electrical attachment with the cabling 190, thus allowing electrical communications between the connector portions 172A, 26A.
Similarly, the 5-Pin USB Mini “A” plug 206, when used as the fifth modified second serial bus plug, Firewire® plug, receptacle or converter 36E comprises miniature quick connect sixth housing 186, fifth connector portion 176B, and universal cable quick connect second mating connector portion 26B, wherein each of the connector portions 176B, 26B are in mechanical attachment with the housing 186 and in electrical attachment with the cabling 190, thus allowing electrical communications between the connector portions 176B, 26B.
Illustrated in
The 4-Pin USB-“Mini-B” plug 207, when used as the sixth modified first serial bus plug, Firewire® plug, receptacle or converter 32F, comprises miniature quick connect seventh housing 187, third connector portion 172A, and universal cable quick connect first mating connector portion 26A, wherein each of the connector portions 172A, 26A are in mechanical attachment with the housing 187 and in electrical attachment with the cabling 190, thus allowing electrical communications between the connector portions 172A, 26A.
Similarly, the 4-Pin USB “Mini-B” plug 207, when used as the sixth modified second serial bus plug, Firewire® plug, receptacle or converter 32F, comprises miniature quick connect seventh housing 187, fifth connector portion 176B, and universal cable quick connect second mating connector-portion 26B, wherein each of the connector portions 176B, 26B are in mechanical attachment with the housing 187 and in electrical attachment with the cabling 190, thus allowing electrical communications between the connector portions 176B, 26B.
Referring to
First connector portion 24A and second connector portion 24B each have a connector housing 200, which preferably are identical. Mechanically attached to each connector housing 200 is a six pin-female connector 160, such as that illustrated in
A method of connecting computers to computer peripherals is provided utilizing a universal cable and a quick connect connector comprising the steps of: a) providing a universal computer cable (USB or Firewire®) 20 having a universal cable connector portion (female) (24A, 24B) electrically connected to an end of the universal computer cable; b) providing a universal cable miniature quick connect connector having a universal cable quick connect mating connector portion (26A, 26B); and c) connecting the universal cable connector to the quick connect connector by plugging the universal cable connector portion into the quick connect mating connector portion.
Also provided is a method of connecting external electrical equipment to computers and computer peripherals that comprises: a) providing a universal cable 20 having a universal cable first end 22A and second end 22B, wherein the universal cable first end has a universal cable first or female connector portion electrically connected thereto, which is in electrical communication with the universal cable second end 22B that is electrically connected to external electrical equipment; b) providing at least one quick connect serial bus plug or receptacle or converter 32 having a quick connect mating or male connector portion; and c) connecting the external electrical equipment to the at least one quick connect serial bus plug or receptacle or converter 32 by plugging the universal cable first connector portion 24A into the quick connect mating connector 26A.
Because the universal cable connector portions, and the quick connect mating connector portions may remain unchanged and accommodate a large number of first and/or second serial bus plugs, Firewire® plugs receptacles and/or converters, a truly universal cable system is provided.
Referring now to
The interchangeability of the connectors 203 through 207 of the kit 300 advantageously allows the universal cable 20 to be configured in a plurality of configurations, depending on the needs of the user of the universal cable 20. In a first configuration of the kit 300, the 4-Pin USB Series “A” plug 204 is attached to a one of the universal cable first connector portion 24A and the universal cable second connector portion 24B and the 4-Pin USB Series “B” plug 205 is attached to the other of the universal cable first connector portions, as outlined in more detail above. In the first configuration of the kit 300, the universal cable 20 is advantageously operable to connect a computer or hub (not shown) to a printer (not shown), a scanner (not shown), or a CD/DVD drive (not shown), such as by connecting the Pin USB Series “A” plug 204 to the computer or hub and connecting the 4-Pin USB Series “B” plug 205 to the printer, the scanner or the CD/DVD drive.
In a second configuration of the kit 300, the 4-Pin Series “A” receptacle 203 is attached to a one of the universal cable first connector portion 24A and the universal cable second connector portion 24B and the 4-Pin USB Series “A” plug 204 is attached to the other of the universal cable first connectors, as outlined in more detail above. In the second configuration of the kit 300, the universal cable 20 is advantageously operable to provide a USB extension cable.
In a third configuration of the kit 300, the 4-Pin USB Series “A” plug 204 is attached to a one of the universal cable first connector portion 24A and the universal cable second connector portion 24B and the 4-Pin USB-“Mini-B” plug 207 is attached to the other of the universal cable first connectors, as outlined in more detail above. In the third configuration of the kit 300, the universal cable 20 is advantageously operable to connect the computer or hub to a PDA (not shown), a digital camera (not shown), or a MP3 player (not shown), such as by connecting the 4-Pin USB Series “A” plug 204 to the computer or hub and connecting the 4-Pin USB-“Mini-B” plug 207 to the PDA, the digital camera or the MP3 player.
In a fourth configuration of the kit 300, the 5-Pin USB Mini “A” plug 206 is attached to a one of the universal cable first connector portion 24A and the universal cable second connector portion 24B and the 4-Pin USB-“Mini-B” plug 207 is attached to the other of the universal cable first connectors, as outlined in more detail above. In the fourth configuration of the kit 300, the universal cable 20 is advantageously operable to connect the PDA to a cell phone (not shown), to connect the cell phone to the digital camera and to connect the MP3 player to another MP3 player, such as by connecting the 5-Pin USB Mini “A” plug 206 to the PDA, the cell phone, or the MP3 player and connecting the 4-Pin USB-“Mini-B” plug 207 to the cell phone, the digital camera, or the other MP3 player.
In a fifth configuration of the kit 300, the 5-Pin USB Mini “A” plug 206 is attached to a one of the universal cable first connector portion 24A and the universal cable second connector portion 24B and the 4-Pin USB Series “B” plug 205 is attached to the other of the universal cable first connector portions, as outlined in more detail above. In the fifth configuration, the universal cable 20 is advantageously operable to connect the PDA to the printer or to a hard drive (not shown), or to connect the digital camera to the printer, such as by connecting the 5-Pin USB Mini “A” plug 206 to the PDA or the digital camera and connecting the 4-Pin USB Series “B” plug 205 to the printer or the hard drive.
When the kit 300 is configured in any of the configurations detailed above, the container 302 securely stores those of the 4-Pin USB Series “A” Receptacle 203, the 4 Pin USB Series “A” Plug 204, the 4-Pin USB Series “B” Plug 205, the 5-Pin USB 2.0 Specification Mini-“A” Plug 206, and the 4-Pin USB 2.0 Specification Mini-“B” Plug 207 that are not used in the current configuration.
Referring now to
Referring now to
The interchangeability of the connectors 201, 202 of the kit 300′ advantageously allows the universal cable 20 to be configured in a plurality of configurations, depending on the needs of the user of the universal cable 20. In a first configuration of the kit 300′, a one of the 4-Circuit Plugs 201 is attached to a one of the universal cable first connector portion 24A and the universal cable second connector portion 24B and a one of the 6-Circuit Plugs 202 is attached to the other universal cable first connector portion, as outlined in more detail above. In the first configuration of the kit 300′, the universal cable 20 is advantageously able to connect the computer or the hub to a digital video camera (not shown) or to audio mixing equipment (not shown), such as by connecting the 4-Circuit Plug 201 to the computer or the hub and connecting the 6-Circuit Plug 202 to the digital video camera or to the audio mixing equipment.
In a second configuration of the kit 300′, a one of the 4-Circuit Plugs 201 is attached to a one of the universal cable first connector portion 24A and the universal cable second connector portion 24B and the other 4-Circuit Plug 201 is attached to the other of the universal cable first connector portions, as outlined in more detail above. In the second configuration of the kit 300′, the universal cable 20 is advantageously able to connect the digital video camera to another digital video camera or the audio mixing equipment, and to connect the audio mixing equipment to the digital video camera or to another audio mixing equipment, such as by connecting one of the 4-Circuit plugs 201 to the digital video camera or the audio mixing equipment and connecting the other 4-Circuit plug 201 to the other digital video camera or the other audio mixing equipment.
In a third configuration of the kit 300′, a one of the 6-Circuit Plugs 202 is attached to a one of the universal cable first connector portion 24A and the universal cable second connector portion 24B and the other 6-Circuit Plug 202 is attached to the other of the universal cable first connector portions, as outlined in more detail above. In the third configuration of the kit 300′, the universal cable 20 is advantageously able to connect the computer or hub to another computer or hub, to the scanner, to the CD/DVD drive or to the hard drive, such as by connecting one of the 6-Circuit Plugs 202 to the computer or hub and connecting the other 6-Circuit Plug 202 to the other computer or hub, to the scanner, to the CD/DVD drive or to the hard drive.
When the kit 300′ is configured in any of the configurations detailed above, the container 302 securely store those of the 4-Circuit Plugs 201 and the 6-Circuit Plugs 202 that are not used in the current configuration.
Those skilled in the art will appreciate that various combinations of the interchangeable ends 201 through 207 may be provided and that more or fewer of the interchangeable ends 201 through 207 including, but not limited to, Firewire® plugs, receptacles, and/or converters may be provided with the universal cable 20 and/or the container 302 to form a kit, such as the kit 300 or 300′, while remaining within the scope of the present invention.
Referring now to
The second end 406 of the housing 402 includes a six pin female quick connector or receptacle 410, best seen in
Since the pin arrangement 416 is substantially identical to the second pin arrangement 116, the fourth pin arrangement 123, the sixth pin arrangement 131, the eighth pin arrangement 139, the tenth pin arrangement 146, the twelfth pin arrangement 154, the fourteenth pin arrangement 162 and the nth pin arrangement (not shown), the connector 410 of the second end 406 of the flash memory device 400 is operable to connect to a one of the respective quick connect first mating connector portions 26A and quick connect second mating connector portions 26B of the 4-Pin USB Series “A” Receptacle 203, the 4 Pin USB Series “A” Plug 204, the 4-Pin USB Series “B” Plug 205, the 5-Pin USB 2.0 Specification Mini-“A” Plug 206, and the 4-Pin USB 2.0 Specification Mini-“B” Plug 207, collectively referred to as interchangeable connectors. The interchangeable connectors 203, 205, 205, 206 and 207, therefore, are each operable to be interchangeably and releasably connected to the connector 410 to electrically communicate with the flash memory 418 in the housing 402.
The flash memory device 400 may be combined with the kit 300 to form an alternative embodiment of the kit. The container 302 of the kit 300 shown in
The interchangeability of the ends 203, 204, 205, 206 and 207 advantageously allows the flash memory device 400 to be configured in a plurality of conventional connector configurations, depending on the needs of the user. For example, when the 4-Pin USB Series “A” plug 204 is attached to the connector 410 of the flash memory device 400, the flash memory drive 418 is advantageously operable to connect to a computer or a hub (not shown) having the corresponding conventional USB port. When connector 204 with the flash memory device 400 is engaged with the USB port (not shown) in the computer, the operating system of the computer will recognize the flash memory drive 418 as a removable drive and allow data to be retrieved from and written to the flash memory storage.
Similarly, when the 4-Pin USB Series “B” plug 205 is attached to the connector 410 of the flash memory device 400, the flash memory drive 418 is advantageously operable to connect to a printer (not shown), a scanner (not shown) or a CD/DVD drive (not shown). Similarly, when the 5-Pin USB Mini “A” plug 206 is attached to the connector 410 of the flash memory device 400, the flash memory drive 418 is advantageously operable to connect to a PDA (not shown), a cell phone (not shown), or a MP3 player (not shown). Similarly, when the 4-Pin USB-“Mini-B” plug 207 is attached to the connector 410 of the flash memory device 400, the flash memory drive 418 is advantageously operable to connect to the PDA, a digital camera (not shown) or the MP3 player.
Since the pin arrangement 416 is substantially identical to the second pin arrangement 116, the fourth pin arrangement 123, the sixth pin arrangement 131, the eighth pin arrangement 139, the tenth pin arrangement 146, the twelfth pin arrangement 154, the fourteenth pin arrangement 162 and the nth pin arrangement (not shown), the connector 410 of the second end 406 of the flash memory device 400 is also operable to connect to a one of the respective quick connect first mating connector portions 26A and quick connect second mating connector portions 26B of the Firewire®—IEEE Standard 1394a-2000 4-Circuit Plug 201 and the Firewire®—IEEE Standard 1394-1995 6-Circuit Plug 202, the plugs 201 and 202 collectively referred to as interchangeable plugs or connectors. The interchangeable connectors 201 and 202, therefore, are each operable to be interchangeably and releasably connect to the connector 410 of the flash memory device 400. The interchangeability of the connectors 201 and 202 advantageously allows the flash memory device 400 to be configured for connection to a number of devices as described above depending on the needs of the user.
Those skilled in the art will appreciate that various combinations of the interchangeable connectors 201, 202, 203, 204, 205, 206, and 207 may be provided and that more or fewer of the interchangeable connectors may be provided with the universal cable 20 and the flash memory device 400 to form alternative embodiments of the kit while remaining within the scope of the present invention.
The device 50, shown in
The control 502 provides at least two functions. The first function is to select the direction of transfer of the data. If the device 450 has the capacity to act as a host, the control 502 can be used to select a slave mode of operation of the host chip 502. Thus, the device 450, such as a computer, will recognize the flash memory device as a storage peripheral and control the reading of data from and the writing of data to the flash memory 418.
The second function of the control 504 is to select individual files to be transferred when the host chip 502 is in the host mode of operation. The control 504 will cause the host chip 502 to read the names of individual files stored in the memory of the device 450 and the flash memory 418. The host chip 502 will signal the display 506 to visually indicate an identification of the selected file (e.g., the file name) so that the user can make a decision on whether or not to copy, move or delete the file using the control 504.
In accordance with the provisions of the patent statutes, the present invention has been described in what is considered to represent its preferred embodiment. However, it should be noted that the invention can be practiced otherwise than as specifically illustrated and described without departing from its spirit or scope.
This application is a continuation-in-part of co-pending U.S. patent application Ser. No. 10/965,641 filed Oct. 14, 2004, which is a continuation-in-part of U.S. patent application Ser. No. 10/328,519 filed Dec. 23, 2002, now U.S. Pat. No. 7,004,787 issued Feb. 28, 2006, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/387,796, filed Jun. 11, 2002, and the benefit of U.S. Provisional Patent Application Ser. No. 60/401,900, filed Aug. 8, 2002.
Number | Name | Date | Kind |
---|---|---|---|
2776415 | McGinley | Jan 1957 | A |
3885849 | Bailey et al. | May 1975 | A |
4057310 | Young | Nov 1977 | A |
4310213 | Fetterolf, Sr. et al. | Jan 1982 | A |
D295971 | Kikuta | May 1988 | S |
4824383 | Lemke | Apr 1989 | A |
D301870 | Shibano | Jun 1989 | S |
4846697 | Rodgers | Jul 1989 | A |
5119020 | Massey et al. | Jun 1992 | A |
5197900 | Ellis et al. | Mar 1993 | A |
5236373 | Kennedy | Aug 1993 | A |
5293013 | Takahashi | Mar 1994 | A |
5315062 | Hoshino | May 1994 | A |
5370550 | Alwine et al. | Dec 1994 | A |
5425653 | Koiso | Jun 1995 | A |
5445534 | Ishizuka et al. | Aug 1995 | A |
5609501 | McMills et al. | Mar 1997 | A |
5637009 | Tsuji et al. | Jun 1997 | A |
5658170 | Tan et al. | Aug 1997 | A |
5692918 | Hill | Dec 1997 | A |
5772453 | Tan et al. | Jun 1998 | A |
5772472 | Beutler et al. | Jun 1998 | A |
5823814 | Alwine | Oct 1998 | A |
D405053 | Tan et al. | Feb 1999 | S |
5954523 | Babcock | Sep 1999 | A |
5961351 | Wu | Oct 1999 | A |
5975954 | Wu et al. | Nov 1999 | A |
6007380 | Shimoiyo | Dec 1999 | A |
6007382 | Wu | Dec 1999 | A |
6010348 | Alden | Jan 2000 | A |
6080012 | Zhu et al. | Jun 2000 | A |
6089879 | Babcock | Jul 2000 | A |
6155872 | Wu | Dec 2000 | A |
6171136 | Liu et al. | Jan 2001 | B1 |
6183292 | Chen et al. | Feb 2001 | B1 |
6210231 | Lai | Apr 2001 | B1 |
6215656 | O'Neal et al. | Apr 2001 | B1 |
6217378 | Wu | Apr 2001 | B1 |
6220872 | Chen | Apr 2001 | B1 |
D443251 | Wang et al. | Jun 2001 | S |
6250955 | Archuleta | Jun 2001 | B1 |
6257930 | Yu | Jul 2001 | B1 |
6280243 | Liu et al. | Aug 2001 | B1 |
6302721 | Turner et al. | Oct 2001 | B1 |
6309255 | Yu | Oct 2001 | B1 |
6334793 | Amoni et al. | Jan 2002 | B1 |
6346002 | Hsu et al. | Feb 2002 | B1 |
6358088 | Nishio et al. | Mar 2002 | B1 |
6406313 | Victor | Jun 2002 | B1 |
6466437 | Sakuragi et al. | Oct 2002 | B1 |
6637909 | Bryan | Oct 2003 | B1 |
6663420 | Xiao | Dec 2003 | B1 |
6728108 | Chen | Apr 2004 | B2 |
6733329 | Yang | May 2004 | B2 |
6908324 | Morley et al. | Jun 2005 | B1 |
Number | Date | Country |
---|---|---|
100 31 954 | Mar 2001 | DE |
1 096 760 | May 2001 | EP |
1 100 158 | May 2001 | EP |
2 332 103 | Jun 1999 | GB |
P2001-209460 | Mar 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20060277364 A1 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10965641 | Oct 2004 | US |
Child | 11424599 | US |