The present disclosure relates generally to therapeutic uses of a laser. More particularly, but not by way of limitation, the present disclosure relates to systems, apparatuses, and methods of using a field, such as an electric field, a magnetic field, or both, to selectively produce laser induced optical breakdown (LIOB) in a biological medium.
High-powered pulsed lasers have been used for certain therapies for a number of years. In the medical context, “laser” is generally used to refer to a coherent light source used to treat or remove tissue. Examples of pulsed laser therapies include laser vein removal, laser hair removal, and laser tattoo removal. Each of these therapies typically involves targeting a laser at a biological medium and pulsing the laser (e.g., a “laser beam” or “laser light”) into the biological medium where the beam or light is absorbed by an absorptive target, such as a vein, hair follicle, or tattoo pigment particle, in the biological medium. For example, using the appropriate wavelength of light, the pulsed laser can lead to ablation of tattoo ink particles in the dermis from laser induced optical breakdown (LIOB), which leads to tattoo fading. In other laser-based therapies, such as skin tightening, the biological medium itself is the absorptive target. When the absorptive target is in a non-transparent medium such as tissue, ablating pigment particles is less efficient as compared to ablating pigment particles in a transparent medium, such as water.
Laser induced optical breakdown (LIOB) is the catastrophic evolution of damage inflicted in a medium by a beam of high laser fluence, which results in electron avalanche (e.g., a build of free carries in a relatively short time) and plasma formation. This effect is based on the acceleration of free electrons to high energies that cause collisions with other atoms or molecules and lead to secondary free carriers. To illustrate, the LIOB process for pigment particle ablation related to tattoo removal begins with a small number of free electrons that naturally occur in the biological medium, or from those that are generated by laser-induced (multi-photon) ionization or through a thermal initiation pathway (i.e., thermionic emission). Electron avalanche can develop if these electrons are able to gain enough energy from the laser beam that they are able to ionize atoms, resulting in increased collisions and further stripping of ions and electrons. Repetition of the process can lead to a rapid accumulation of free electrons. As a result, “cascade ionization” or “electron avalanche” occurs that results in the formation of a plasma plume adjacent to the pigment particle surface.
When the level of ionization and plasma formation becomes appreciable, the incoming laser energy can be readily absorbed by the free electrons in the plasma plume via free-free transitions in the field of ions. This absorption causes intense heating of the plasma and consequentially a rapid expansion of the plasma plume in the form of a shock wave. Because of this, a visible photon release appears and the intense heat causes formation of one or more vacuoles (e.g., steam cavitation bubbles) adjacent to the pigment particle. The plasma plume can form in the range of a nanosecond and the vacuoles (e.g., dermal vacuoles) form shortly thereafter. If the vacuoles are large enough, the vacuoles can result in laser attenuation and scattering (laser shielding), each of which can contribute to a loss of laser effectiveness during a laser-based therapy.
U.S. Pat. No. 5,149,406 describes suppressing LIOB events by quenching the free electrons present in transparent, non-conductive gaseous medium, such as an SF6 environment. However, unlike the transparent, non-conductive gaseous medium, a biological medium is conductive obtain a high enough voltage to provide quenching of the free electrons would require an electric current level that would be dangerous to the patient. Additionally, quenching the free electrons in a biological medium has been considered non-feasible because it has been thought that no electric field could be generated within a conductive medium—i.e., with no electric field, there would be no electromotive force on free electrons.
Referring to
Referring to
A laser pulse into a tattoo pigment agglomeration 104 (e.g., an absorptive target) can produce an LIOB event at the surface of the pigment agglomeration 104. The LIOB event leads to ablation damage to the absorptive target and to the formation of a steam vacuole—i.e. a “particle vacuole” 100—located immediately adjacent to the absorptive target on the side that is closest to the pulsed laser source. The particle vacuoles 100 are typically large, asymmetrically shaped, and usually appear adjacent to pigment particles. In addition to particle vacuoles 100, additional vacuoles—referred to as “remote vacuoles” 102—may form in biological media (e.g., dermis, adipose, muscle, etc.) away from or remote to pigment particles such that remote vacuoles 102 do not appear to be directly associated with the pigment particle surfaces. Remote vacuoles 102 are typically smaller and can appear more spherical than particle vacuoles 100.
It is noted that, while laser-based therapies in biological media without absorptive targets (e.g., pigment particles) typically do not generate remote vacuoles 102, when an absorptive target (e.g., pigment particles) is present in the biological medium, remote vacuoles 102 can be generated. To illustrate, a LIOB event at the pigment particle surface can act as a source of free electrons within the medium (e.g., dermis, adipose, muscle, etc.). Remote vacuoles 102 can form when pulsed laser light photons interact with the free electrons resulting in an avalanche cascade of free electrons and formation of a plasma bubble that leads to the production of steam and, thus, remote vacuole 102.
Referring to
Both particle vacuoles 100 and remote vacuoles 102 cause laser shielding of the absorptive target, resulting in laser attenuation and scattering which leads to decreased laser effectiveness against the absorptive target. Consequently, as a result of the vacuoles (e.g., remote vacuoles 120), only a percentage of initial laser energy reaches its intended target and attempts to immediately repeat pulsed laser treatments of the whitened tattoo are ineffective. The absorption time of vacuoles into surrounding tissue can take anywhere from minutes to hours. Additionally, LIOB events that occur in biological media are highly destructive to surrounding cellular structures. For example, the release of heat and the shockwave damage to cells in and around a treatment cite of the biological medium can lead to necrotizing vasculitis, which in turn leads to significant collagen damage and epidermal scabbing 24-48 hours post-laser treatment. In an attempt to counteract this damage, the laser fluence during a treatment session can be reduced or limited, which reduces an overall efficacy of the treatment. Repeated pulsed laser treatments of the tattooed skin is ineffective without significant rest times between laser treatment sessions to allow the vacuole to be absorbed by the surrounding tissue and/or to allow recovery from the skin damage (e.g., epidermal scabbing). Additionally, as a result of vacuoles that form during a laser-based therapy (e.g., a tattoo removal session), practitioners have difficulty in achieving the maximum desired therapeutic effect from and/or providing repeated pulsed laser treatments to a specific site in the biological medium during a single treatment session. Therefore, completion of laser therapy in a single treatment session has generally not been feasible as a result of the presence of these laser shielding vacuoles.
The present disclosure includes examples of methods, apparatuses, and systems for providing selective laser induced optical breakdown (LIOB) in a biological medium, such as a conductive biological medium. For example, LIOB may be used as part of tissue therapy, such as cosmetic therapy associated with tattoo removal, in which the LIOB is directed toward an absorptive target (e.g., tattoo pigment particles) within a biological medium. During tissue therapy, a field, such as an electrostatic field (e.g., high voltage with minimal current), is applied to or generated in a biological medium, thereby inhibiting LIOB of the biological medium itself while allowing for selective LIOB at the absorptive target. For example, the field may inhibit formation of remote vacuoles while permitting particle vacuole formation associated with a pigment agglomeration. To illustrate, when a tattoo site is treated with a pulsed laser, the ablation of the pigment particles cause conductive conditions of the dermis to become unstable such that, when the field (e.g., the electrostatic field) is applied to the dermis, internal electromotive forces act to move free electrons. The free electrons can be moved (e.g., dispersed) from the laser pulse path, thereby reducing a concentration of the free elections and thus inhibiting remote vacuole formation while permitting particle vacuole formation.
The present methods, apparatuses, and systems can thereby reduce and/or limit remote vacuole formation as compared to conventional techniques in which a pulse laser is applied without application of a field (e.g., an electrostatic field). Accordingly, laser effectiveness against an absorptive target is greater when the field is applied as compared to conventional techniques when no field is applied. Because application of the field reduces and/or limits remote vacuole formation, laser treatments over the same treatment area may be performed in quick succession and effectively to whitened tattoo areas, and/or without negatively impacting surrounding cellular structures. Additionally, laser fluence during a treatment session does not need to be reduced or limited, which permits a greater desired therapeutic effect to be realized during a single treatment session as compared to conventional techniques. By having a treatment session that is more effective as compared to conventional techniques, a patient has to undergo a fewer total number of treatments and thereby experiences less discomfort and a short treatment duration.
In some embodiments, the selective laser-induced optical breakdown in a conductive biological medium targets an absorptive target within the conductive biological medium. In some embodiments, an electric field is generated in a biological medium thereby inhibiting laser induced optical breakdown of the biological medium itself while allowing for selective laser induced optical breakdown at the absorptive target. A voltage source with high voltage and low current can provide an electrostatic field sufficient to be used in a conductive biological medium to selectively provide LIOB.
If dielectric (or insulator) films are placed between the positive and negative plates of a voltage source with a conductive medium (e.g., salt water) between these insulator films, there will be no electric field standing in the conductive medium. The polarization of the electric charges within the dielectric material creates an internal electric field that reduces the overall field within the dielectric film itself. Therefore, no electric field exists in the conductive medium between the dielectric covered plates. However, if a conductive medium comprises a complex mixture of dielectric and polar molecules—such as a biological medium like skin—and is further perturbed by a high energy source such as a laser thereby generating free electrons, ions, and plasmas, the conductive medium electrically becomes part of the dielectric insulators over the voltage plates. In this scenario, electric fields can be induced causing sufficient electromotive force to move free electrons within the biological media.
Under normal, stable conditions, biological media are typically conductive. When placed in an electrostatic field, a conductive medium should not produce any internal electric field. As a result, with no electric field, no electromotive force exists to move free electrons within the biological medium. However, when treated with a pulsed laser, the conductive biological medium briefly is able to produce internal electromotive forces that act to move free electrons within the biological medium. This results from the biological medium's normal, stable conditions becoming unstable when treated with a laser. Perturbations in the cells within the biological medium from the laser pulse result in localized disturbances in ionic conductivity. As a result, the conductive medium acts like a dielectric material for a brief period of time. This in turn allows an electrostatic field to briefly induce an electric field within the biological medium causing the free electrons to be effected by an electromotive force within the biological medium.
In some implementations, a system for selectively providing LIOB includes a field generator configured to generate a field and to apply the field through a portion of a biological medium. The field generator may include a plurality of electrodes, a magnetic coil, an electret, or a combination thereof. The system also includes a light source, such as a pulse laser (e.g., a QS-laser), configured to deliver laser light to the portion of the biological medium during application of the field. Application of the field to the biological medium may induce movement of free electrons within the portion of the biological medium which may reduce or slow the formation of vacuoles in the biological medium responsive to the laser light.
In one aspect, the light source and the field generator may be integrated into a single device. In some implementations, the wherein the field generator is configured to be removably coupled to the light source. In another aspect, the light source pulses the laser beam between at least two insulated electrodes that are part of an auxiliary device (e.g., the field generator). During each laser pulse, high voltage (1 kV to 5 kV) is placed across the electrodes to create an electrostatic field at the treatment site. Due to this field, free electrons emitted into the dermis during the particle LIOB event may be quickly swept away from the laser beam path. This removal of free electrons aids in impeding the initiation of dermal LIOBs without affecting the laser ablation of the pigment particle. As a result, remote vacuoles and the accompanying dermal damage are significantly reduced.
In some implementations, the system also includes a head device. The head device may be configured to contact a surface of the biological medium. In some implementations, the head device includes the field generator and/or is physically coupled to the light source. Additionally, or alternatively, the head device may include a vacuum head configured to apply suction to a portion of the biological medium, a window through which light can reach the biological medium, or both.
Some embodiments of the present apparatuses (e.g., for providing cosmetic tissue therapy) comprise: a field generator configured to generate a field and to apply the field through a portion of a biological medium; and a light source configured to deliver laser light to the portion of the biological medium during application of the field. In some such embodiments, the field generator is configured to apply the field to the biological medium to induce movement of free electrons within the portion of the biological medium, and delivery of the laser light to the portion of the biological medium provides optical breakdown of tissue pigment particles.
In some embodiments, the field generator comprises a plurality of electrodes configured to provide the field across the plurality of electrodes, and wherein the field comprises an electrical field. In some such embodiments, the plurality of electrodes comprises a first electrode and a second electrode, the first electrode includes an electrically conductive surface configured to contact the biological medium, and the second electrode is configured to be electrically insulated with respect to the biological medium. Additionally, or alternatively, the field generator comprises a magnetic coil, and the field comprises a magnetic field. Additionally, or alternatively, the field generator comprises an electret, and the field comprises an electrical field. In a particular embodiment, the electret is transparent.
In some embodiments, the light source comprises a pulsed laser. In some such embodiments, the light source is configured to deliver the laser beam with a pulse rate of at least 1 Hz and a fluence of 0.5 J/cm2 to 20 J/cm2. In other such embodiments, the light source is configured to deliver the laser beam with a pulse rate of at least 1 Hz and a fluence of 3.5 J/cm2 to 9 J/cm2.
In some embodiments, the present apparatuses further comprise a power source configured to be electrically coupled to the field generator, the light source, or both. The power source may be configured to provide a voltage to the field generator within a range of 500 to 500,000 volts or −500 to −500,000 volts. In other implementations, the power source may be configured to provide a voltage to the filed generator within a range of 1,200 to 5,000 volts or −1,200 to −5,000 volts. Additionally, or alternatively, the present apparatuses further comprise a probe configured to be coupled to the power source, wherein the probe includes the field generator and the light source. In some embodiments, wherein the field generator is configured to be removably coupled to the light source.
In some embodiments, the present apparatuses further comprise a head device configured to contact a surface of the biological medium. In some such embodiments, the head device includes the field generator, the head device is physically coupled to the light source, the head device includes a window through which light can reach the portion of the biological medium, or a combination thereof. In embodiments where the head device includes the window, the window may include an electret. Additionally, or alternatively, the head device comprises a vacuum head configured to be connected to a vacuum source and to apply suction to the portion of the biological medium, the vacuum head configured to permit light to reach the portion of the biological medium during application of the suction.
Some embodiments of the present apparatuses (e.g., for providing tissue therapy) comprise: a voltage source; and a plurality of electrodes configured to provide an electrical field across the plurality of electrodes; where the voltage source is electrically connected to the electrodes; where a first one of the electrodes comprises an electrically conductive surface configured to contact the biological medium, and a second one of the electrodes is configured to not conduct current to the biological medium; and where the plurality of electrodes are configured to apply the electric field to a portion of a biological medium such that free electrons are affected in the portion of the biological medium. In some embodiments, the plurality of electrodes are configured to apply the electric field to a portion of a biological medium such that free electrons are moved in the portion of the biological medium. In some embodiments, the electric field is a negative electric field. In some embodiments, the second one of the electrodes is spaced from the biological medium or includes an electrically insulating material configured to impede electrical conduction between the second electrode and the biological medium.
Some embodiments of the present apparatuses further comprise: a vacuum head configured to be connected to a vacuum source; where the plurality of electrodes are contained within the vacuum head; where the vacuum head is configured to apply suction to the portion of the biological medium; and where the vacuum head is configured to permit light to reach the portion of the biological medium when suction is applied. In some embodiments, the vacuum head comprises a window through which light can reach the portion of the biological medium. In some embodiments, the vacuum source that the vacuum head is configured to be connected to is a central vacuum system. In some embodiments, the vacuum head is disposable.
Some embodiments of the present apparatuses further comprise: a therapeutic laser system configured to deliver a laser beam through the window to the portion of the biological medium; where the laser beam has an axis; and where the electrical field applied to the portion of the biological medium, when suction is applied to the portion of the biological medium by the vacuum head, is perpendicular to the axis of the laser beam. In some embodiments, the therapeutic laser system includes a pulsed laser. In some embodiments, the therapeutic laser system is configured to deliver laser light to the portion of the biological medium; the plurality of electrodes extend from the therapeutic laser system; and the plurality of electrodes are configured to provide the electrical field when the therapeutic laser system is positioned to deliver the laser light to the portion of the biological medium.
Some embodiments of the present apparatuses further comprise: a magnetic coil; where the voltage source is further configured to provide power to the magnetic coil; and where the magnetic coil, when so powered, is configured to induce a magnetic field in the portion of the biological medium.
Some embodiments of the present systems utilize an electret, instead of or in addition to the electrodes and voltage source, to provide an electric field. Some such embodiments comprise: an electret configured to provide an electrical field; where the electret is configured to apply the electric field to a portion of a biological medium such that free electrons are affected in the portion of the biological medium. In some embodiments, the electret is configured to apply the electric field to a portion of a biological medium such that free electrons are moved in the portion of the biological medium. To illustrate, the free electrons may be removed from the portion of the biological medium, as an illustrative, non-limiting example. In some embodiments, the electret is transparent. In some embodiments, the electret is configured to be spaced from the biological medium or includes an electrically insulating material configured to impede electrical conduction between the electret and the biological medium. In some embodiments, the electret is configured to contact the biological material. Some embodiments further comprise: a therapeutic laser system configured to deliver a laser beam to the portion of the biological medium; where the electret is configured to permit transmission of the laser beam through the electret; and where the therapeutic laser system is further configured to deliver the laser beam to the portion of the biological medium by transmitting the laser beam through the electret.
Some embodiments of the present methods comprise: actuating an electric field generation system to apply an electric field through a portion of a biological medium; and delivering laser light to the portion of the biological medium. In some embodiments, the electric field generation system includes an electret. In some embodiments, the electrical field applied across the plurality of electrodes is a negative electrical field. In some embodiments, the electrical field applied across the plurality of electrodes is a positive electrical field.
Some embodiments of the present methods comprise: actuating a field generator to generate a field; applying the field through a portion of a biological medium; and delivering laser light from a light source to the portion of the biological medium during application of the field. In some such embodiments, applying the field includes moving free electrons within the portion of the biological medium. Additionally, or alternatively, the present methods may further comprise, prior to actuating the field generator, positioning the field generator adjacent to the biological medium at a first location; and, prior to delivering the laser light, positioning the light source with respect to the portion of the biological medium to deliver the laser light to the portion.
In some embodiments, the present methods further comprise providing optical breakdown of tissue pigment particles. Additionally, or alternatively, the present methods may further comprise placing a vacuum head in contact with a surface of the biological medium; and applying a negative pressure to the vacuum head to stabilize at least the portion of the biological medium, wherein the at least the portion of the biological medium is stabilized during delivery of the laser light to the portion.
In some embodiments, the present methods further comprise, after delivering the laser light: positioning the field generator adjacent to the biological medium at a second location; positioning the light source with respect to another portion of the biological medium; actuating the field generator to generate another field; applying the other field through the other portion of the biological medium; and delivering additional laser light from the light source to the other portion of the biological medium during application of the other field.
Some embodiments of the present methods comprise: placing a vacuum head containing a plurality of electrodes in contact with the surface of a biological medium, where the plurality of electrodes are spaced apart from each other, a first one of the electrodes comprises an electrically conductive surface contacting the biological medium, and a second one of the electrodes configured to not conduct current to the biological medium; applying a negative pressure to the vacuum head to stabilize the biological medium; applying an electrical potential across the plurality of electrodes creating an electric field in the biological medium; and delivering laser light to the biological medium at a point between the plurality of electrodes. In some embodiments, the second one of the electrodes is spaced from the biological medium or is separated from the biological medium by an electrically insulating material.
Some embodiments of the present methods comprise: placing a plurality of electrodes relative to a surface of a biological medium such that the electrodes are spaced apart from each other, an electrically conductive surface of a first one of the electrodes contacts the biological medium, and a second one of the electrodes is configured to not conduct current to the biological medium; applying an electrical potential across the plurality of electrodes to create an electric field in the biological medium; and delivering laser light to the biological medium at a point between the plurality of electrodes. In some embodiments, the second one of the electrodes is spaced from the biological medium or is separated from the biological medium by an electrically insulating material. In some embodiments, the electrical potential applied across the plurality of electrodes is a negative electrical potential. In some embodiments, electrical potential applied across the plurality of electrodes is a positive electrical potential. In some embodiments, the laser beam delivered in the space between the plurality of electrodes is a pulsed laser beam.
As used herein, various terminology is for the purpose of describing particular implementations only and is not intended to be limiting of implementations. For example, as used herein, an ordinal term (e.g., “first,” “second,” “third,” etc.) used to modify an element, such as a structure, a component, an operation, etc., does not by itself indicate any priority or order of the element with respect to another element, but rather merely distinguishes the element from another element having a same name (but for use of the ordinal term). The term “coupled” is defined as connected, although not necessarily directly, and not necessarily mechanically; two items that are “coupled” may be unitary with each other. The terms “a” and “an” are defined as one or more unless this disclosure explicitly requires otherwise. The term “substantially” is defined as largely but not necessarily wholly what is specified (and includes what is specified; e.g., substantially 90 degrees includes 90 degrees and substantially parallel includes parallel), as understood by a person of ordinary skill in the art. In any disclosed embodiment, the terms “substantially,” “approximately,” and “about” may be substituted with “within [a percentage] of” what is specified, where the percentage includes 0.1, 1, 5, and 10 percent. The phrase “and/or” means and or. To illustrate, A, B, and/or C includes: A alone, B alone, C alone, a combination of A and B, a combination of A and C, a combination of B and C, or a combination of A, B, and C. In other words, “and/or” operates as an inclusive or. In the disclosed embodiments, the term “adjacent” is generally defined as located immediately adjacent to the absorptive target on the side that is closest to the pulsed laser.
The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”) and “contain” (and any form of contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, a system or apparatus that “comprises,” “has,” “includes” or “contains” one or more elements possesses those one or more elements, but is not limited to possessing only those elements. Likewise, a method that “comprises,” “has,” “includes” or “contains” one or more steps possesses those one or more steps, but is not limited to possessing only those one or more steps.
Any of the present systems, apparatuses, and methods described herein can consist of or consist essentially of—rather than comprise/include/contain/have—any of the described steps, elements, and/or features. Thus, in any of the claims, the term “consisting of” or “consisting essentially of” can be substituted for any of the open-ended linking verbs recited above, in order to change the scope of a given claim from what it would otherwise be using the open-ended linking verb. Additionally, it will be understood that the term “wherein” may be used interchangeably with “where.”
Further, a device, system, or structure (e.g., a component of an apparatus) that is configured in a certain way is configured in at least that way, but it can also be configured in other ways than those specifically described. The feature or features of one embodiment may be applied to other embodiments, even though not described or illustrated, unless expressly prohibited by this disclosure or the nature of the embodiments.
Some details associated with the embodiments are described above, and others are described below. Not all embodiments of the present disclosure include one or more of the described aspects. Other implementations, advantages, aspects, and features of the present disclosure will become apparent after review of the entire application, including the following sections: Brief Description of the Drawings, Detailed Description, and the Claims.
The following drawings illustrate by way of example and not limitation. For the sake of brevity and clarity, every feature of a given structure is not always labeled in every figure in which that structure appears. Identical reference numbers do not necessarily indicate an identical structure. Rather, the same reference number may be used to indicate a similar feature or a feature with similar functionality, as may non-identical reference numbers. The figures are drawn to scale (unless otherwise noted), meaning the sizes of the depicted elements are accurate relative to each other for at least the embodiment depicted in the figures.
Referring to
System include a light source 208 and a field generator 212. Light source 208 is configured to generate therapeutic light 224 and deliver at least a portion of light 224 (e.g., therapeutic light) to biological medium 204. To illustrate, as an illustrative, non-limiting example, light source 208 includes a therapeutic laser system configured to deliver a laser light to target 206 of biological medium 204. Light source 208 may include a pulsed laser, such as a Q-switched (QS) laser. For example, in some implementations, light source 208 can include a short-pulsed, high fluence laser, such as a nanosecond 1064 nm Q-switched Nd:YAG laser or a picosecond-laser). To illustrate, light source 208 may be configured to deliver light 224 (e.g., a laser beam) with at least a pulse rate of 1 Hertz (Hz) and a fluence of 3.5 J/cm2 to 9 J/cm2, as an illustrative, non-limiting example. In other implementations, the pulse rate may be greater than or less than 1 Hz. For example, the pulse rate may be within a range of 1-10 Hz or may be greater than 10 Hz. Additionally, or alternatively, the fluence may be less than 3.5 J/cm2 or greater than 9 J/cm2. In a particular implementation, the fluence may be within a range of 0.5 J/cm2 to 20 J/cm2.
The field generator 212 is configured to generate a field 228, such as an electrostatic field, that is applied to biological medium 204. In some implementations, field 228 includes an electrical field, a magnetic field, or both. Field 228 applied to biological medium 204 may cause free electrons, such as representative free electron 232, within target 206 to be affected such that the free electrons (e.g., 232) vacate or are otherwise diverted away from target 206. To illustrate, application of field 228 may repel free electrons (e.g., 232) away from a portion (including a tattoo pigment agglomeration) of biological medium 204 that is targeted to receive light 224. Field generator 212 may be configured to configured to provide field 228 when light source 208 (e.g., the therapeutic laser system) is positioned to deliver light 224 to target 206. For example, field generator 212 may be configured to apply field 228 to biological medium 204 prior to, during, and/or subsequent to application of light 224 to biological medium 204. In some implementations, an intensity of field 228 is varied such that periods of greater intensity are applied during delivery of light 224.
Field generator 212 may include a plurality of electrodes, a magnetic coil, an electret, or a combination thereof. For example, field generator 212 may include a plurality of electrodes configured to provide the field across the plurality of electrodes, as described at least with reference to
During operation of the system of
Field generator 212 is positioned adjacent (e.g., next to) biological medium 204. For example, field generator 212 may be positioned in contact with at least a portion of biological medium 204, such as a portion at or near target 206. Light source 208 is positioned to deliver light 224 (e.g., laser light) to target 206.
Field generator 212, such as a field generation system, is activated to apply field 228 through target 206 of biological medium 204. For example, a field generator system that includes field generator 212 may be turned on and field generator may generate field 228 responsive to power supplied to field generator 212.
During application of field 228 to target 206, light source 208 generates light 224, a portion of which is provided to target 206. The portion of light 224 may cause an LIOB event at the surface of a pigment agglomeration (included in target 206). The LIOB event can lead to ablation damage to target 206 and to the formation of a particle vacuole (e.g., 100) located immediately adjacent to the pigment agglomeration on the side that is closest to light source 208.
Application of field 228 prior to and/or during delivery of light 224 to target 206 affects free electrons in at least a portion (i.e., target 206) of the biological medium 204. For example, free electrons (e.g., 232) may be moved, removed, swept, or otherwise diverted away from target 206 responsive to field 228. Due to field 228, free electrons (e.g., 232) emitted into biological medium 204 are moved away from a light path of light 224. To illustrate, free electrons (e.g., 232) emitted into the dermis of biological medium 204 during the particle LIOB event are swept away from a laser beam path (of light source 208) based on field 228. This removal of free electrons (e.g., 232) aids in impeding the initiation of dermal LIOBs without adversely affecting the laser ablation of the pigment particle. As a result, remote vacuoles and the accompanying dermal damage are significantly reduced as compared to a conventional laser treatment which does not utilize (or apply) a field to a target region of a biological medium.
In some implementations, the system optionally includes head device 236. Head device 236 may be configured to contact biological medium 204 to help position light source 208 (e.g., by stabilizing the skin, positioning and/or orienting the skin). For example, head device 236 may be positioned adjacent to or in contact with a surface of biological medium 204 that includes target 206 so that the surface is normal (e.g., perpendicular) to a longitudinal axis of light 224 applied to target 206. Head device 236 may include a vacuum head configured to apply suction to a portion of biological medium 204, as described with reference to
In some implementations, the system may include a power source (not shown), such as a voltage source. The power source may be coupled to light source 208, field generator 212, head device 236, or a combination thereof. To illustrate, power source may be configured to provide power to light source 208 for generation of light 224. Additionally, or alternatively, power source may be configured to provide power, such as high voltage and low current, to field generator 212 to enable field generator 212 to generate field 228 (e.g., an electrostatic field). To illustrate, the voltage source may be configured to provide a voltage to the field generator from +1,200 to +5,000 volts or −1,200 to −5,000 volts, as illustrative, non-limiting examples. Additionally, or alternatively, power source may provide power to head device 236 to enable operation of one or more vacuum components of head device 236.
In some implementations, field generator 212 and light source 208 are incorporated into a single device, such as a probe, as described with reference to
Thus, the system of
Referring to
In some implementations, an electric potential is applied across electrodes 302 and at least a portion of the “positive” electrode is in contact with the biological medium 204 which results in a relative negative electric field created between the electrodes. In instances where a pulsed laser (e.g., 208) is used on an absorptive target 206 in biological medium 204, this polar field causes the free electrons emitted into biological medium 204 from the absorptive target LIOB event to be removed from the pulse path of pulsed laser source 208 by repulsion from the negative electrode. This removal of free electrons from the laser path reduces the buildup of a critical density of free electrons in biological medium 204 that could initiate LIOBs. Because the laser interaction with absorptive target 206 is the source of a large quantity of free electrons, sufficient density exists to allow LIOB events at the absorptive target 206 surface, even with electric field sweeping.
In other implementations, an electric potential is applied across electrodes 302 and at least a portion of the “negative” electrode is in contact with the biological medium 204 which results in a relative positive electric field created between the electrodes. In instances in which a pulsed laser source 208 (e.g., a laser) is used on an absorptive target 206 in biological medium 204, this polar field can cause the free electrons emitted into biological medium 204 from the absorptive target LIOB event to be concentrated and energized in the laser pulse path by attraction toward the positive electrode. This concentration of energized free electrons in the laser path can aid in building a critical density of free electrons in biological medium 204. As a result, LIOBs can be produced in biological medium 204 without using high laser fluence.
As shown, vacuum head 400 is configured to be used with the components depicted in
As described above, voltage source 300 may provide a negative potential across electrodes 302. In some embodiments, vacuum head 400 pulls the biological medium 204 (e.g., the skin of a patient) into the vacuum head 400 such that an electric field 404 (e.g., 228) generated by the plurality of electrodes 302 is perpendicular to the axis of the laser beam. As shown, the housing of vacuum head 400 defines one or more internal channels 412 and one or more openings (e.g., an annular opening 414) through which vacuum is communicated (e.g., continuously or at multiple points around a perimeter of a treatment area) to apply suction to the skin or other biological medium. As used in this disclosure, the term “vacuum” refers to a pressure that is lower than ambient atmospheric pressure, rather than a complete absence of matter.
In the examples shown in
In the examples shown in
Referring to
Referring to
During operation of the device of
Referring to
Referring to
Method 900 also includes applying an electrical potential of at least 10 volts to the electrodes from the voltage source, at 904. For example, the voltage source may include or correspond to voltage source 300 (or 300a).
Method 900 further includes causing a pulsed laser beam to propagate in the space between electrodes where the pulsed laser is targeting an absorptive target within the biological medium, at 906. For example, the pulsed laser beam may include or correspond to light 224 generated by light source 208 (e.g., pulsed laser). The absorptive target within the biological medium may include or correspond to target 206 within biological medium 204.
In some implementations of method 900, a negative electric potential is applied across electrodes thereby creating a negative electric field. In such implementations, the negative electric field causes the free electrons emitted into the medium from the absorptive target LIOB even to be removed from the laser pulse path. Accordingly, method 900 of
Referring to
Method 1000 also includes applying a negative pressure to the vacuum head causing the electrodes to contact the surface of the biological medium, at 1004, and applying an electrical potential across the electrodes from a voltage source, at 1006. For example, the voltage source may include or correspond to voltage source 300 (or 300a).
Method 1000 further includes causing a pulsed laser beam to propagate in the space between the electrodes where the pulsed laser is targeting an absorptive target within the biological medium, at 1006. For example, the pulsed laser beam may include or correspond to light 224 generated by light source 208 (e.g., pulsed laser). The absorptive target within the biological medium may include or correspond to target 206 within biological medium 204.
Experiments were conducted on Gottingen minipigs to observe the effects of selective LIOB in laser skin treatments using some embodiments of the present disclosure. A study was undertaken to demonstrate the reduction of “whitening” caused by intradermal vacuoles as a result of laser treatment while generating an electric field in the treated tissue.
Two pigs were tattooed with patterns containing black pigment. These tattoos were left to mature for over four months. Six tattoo sites were treated with either laser only (“Laser Only”), laser under a positive electric field (“Laser+EF(+)”) or laser under a negative electric field (“Laser+EF(−)”). Additionally, one non-tattooed skin site was treated with the laser as a control (“Negative Control”). For the initial study, each site tested was placed under a negative pressure utilizing a device similar to those shown in
Prior to the laser treatment, colorimetric readings were taken at each tattoo site. Immediately after treatment, another set of colorimetric readings were taken. For each tattoo site, each pre-treatment colorimetric reading was normalized to the post-treatment colorimetric reading to provide an indication of dermal vacuole formation. A higher normalized post-treatment colorimetric reading indicates greater dermal vacuole formation. Additionally, biopsies of each treatment site were taken within 1 minute of the laser treatment (“Day 0”) and 48 hours post laser treatment (“Day 2”) for histological evaluation.
Referring to
Referring to
Based on the difference in results from the laser treatment of non-tattooed skin (Negative Control) and laser treatment of the tattoo sites, the formation of both particle vacuoles 100 and remote vacuoles 102 are a direct result of the action of the pulsed laser on the tattoo pigment agglomerations 104. When the pulsed laser is absorbed into the pigment agglomeration 104, a plasma plume quickly forms. This plume causes the water surrounding the pigment agglomeration 104 to undergo a phase change resulting in a particle vacuole 100 (via steam production). Additionally, the plasma plume violently emits free electrons, ions and nano-size pigment particles 1600 from the surface of the pigment agglomeration 104 (e.g., a surface of a pigment particle included in the pigment agglomeration 104) into the dermis. It is believed that these violently emitted free electrons result in formation of a critical density of free electrons in the dermis. These free electrons are then able to absorb laser photons leading to an LIOB event and remote vacuole 102 formation.
Comparing the histology of the Laser+EF(+) site (
On the other hand, comparing the histology of the Laser+EF(−) site (
Laser+EF(−) only results in a minimal number of remote vacuoles 102 being generated. The free electrons emitted from the LIOB of the pigment agglomeration 104, were quickly dispersed from the laser path in the dermis before a critical electron density could form. This in turn inhibited the formation of LIOB in the medium resulting in the selective suppression of the formation of remote vacuoles 102.
Laser treatment of pigment agglomerations 104 while within an electric field, results in greater transport of the pigment particles 1600 into the deep dermis. Ablating pigment agglomerations 104 while within an electric field results in the generation of electrostatically charged pigment particles. These charged and/or smaller particles are then more easily carried away from the tattoo site which further aids in the fading of treated tattoo sites.
A second study was conducted to evaluate the relationships between: 1) Laser induced dermal vacuole formation (i.e., whitening) and dermal injury, and 2) laser induced dermal vacuole formation and tattoo fading. The secondary objective was to evaluate the EFE Laser treatments compared to standard 1064 Q-switched Nd:YAG laser (Q-switched laser) tattoo removal treatments for dermal vacuole formation, dermal injury and tattoo fading. The dermal vacuole formation and dermal injury were assessed histologically. Accelerated tattoo fading was assessed colorimetrically
The EFE Laser was evaluated at a CRO animal facility (MPI, Kalamazoo, Mich.). A tattooed porcine animal model, approved by the Animal Care Committee, was used in this study. Gottingen Mini-pigs (˜30 kg) were tattooed by a professional tattoo artist on both lateral sides, under general anesthesia, with multiple circular (1 cm diameter) black tattoo spots (See, e.g.,
An EFE Laser and standard Q-switched laser were evaluated in a study using Gottingen Mini-pigs (˜30 kg) tattooed with multiple circular (1 cm2) black tattoo spots. Tattoo sites were treated with either a single-pass laser treatment using an unmodified Q-switched laser (Laser-Only) or using a 1064 nm Q-switched laser in conjunction with an external electrostatic field (EFE Laser). Vacuole formation was assessed histologically immediately post treatment and dermal injury was assessed histologically 2 to 6 days post treatment. Fading of the treated tattoo sites was assessed by comparing colorimetric readings of the tattoos pre-treatment and at 8 weeks following treatment using a spectrophotometer (Konica Minolta CM-700d, Konica Minolta Sensing Americas, Inc., Ramsey, N.J.).
Prior to the start of treatments, the animals where placed under general anesthesia. Selected tattoo sites were then treated with either a standard short pulse laser (Laser Only) or an EFE Laser. The laser used in both Laser Only and EFE Laser studies was a 1064 nm QS Laser (MedLite IV, Continuum Biomedical, acquired by Hologic, Inc., Marlboro, Mass.) The laser parameters used for Laser Only and EFE Laser treatments during each individual study were comparable and included the following: Pulse rate of 1 Hz; laser fluences ranging from 4.0 J/cm2 to 9.0 J/cm2 per pass; and, laser spot sizes ranging from 3 mm to 4 mm.
Referring to
Following the laser treatments, histological examination of biopsied tissue was performed to assess the number of vacuoles formed and the amount of dermal injury. For the assessment of vacuoles, a 3 mm punch biopsy of the tattoo treatment site was performed immediately following the Laser Only or EFE Laser treatment. Hematoxylin and eosin (H&E) stained slides were prepared from the biopsied tissue. Dermal vacuole formation for each treatment was determined by counting the number of vacuoles in a defined area of the histology image.
To assess dermal injury, a 3 mm punch biopsy of the tattoo treatment site was performed 2-6 days following Laser Only or EFE Laser treatment. Herovici stained slides were prepared from the biopsied tissue. Dermal injury for each treatment was determined using a 5-point dermal injury scale by assessing damage to the epidermis and dermis. The 5-point scale ranged from no injury to significant epidermis and dermal collagen injury as denoted by substantial Herovici staining. (‘0’=No injury; ‘1’=Minimal collagen injury; ‘2’=Mild collagen injury; ‘3’=Localized loss of epidermis plus minimal collagen injury; ‘4’=No loss of epidermis, but major collagen injury; and, ‘5’=Lost of epidermis plus major collagen injury).
Fading of the treated tattoo sites was assessed using a handheld spectrophotometry (Konica Minolta CM-700d, Konica Minolta Sensing Americas, Inc., Ramsey, N.J.) configured to record the L*a*b* color space values. Tattoo fading was calculated by percentage change of the colorimetric difference (distance in color space) metric ΔE*, where ΔE*=((ΔL*)2+(Δa*)2+(Δb*)2)1/2. The colorimetric distance metric ΔE* for tattoo readings taken at 8 weeks was compared to the pre-treatment colorimetric ΔE* value to calculate the percentage tattoo fading.
Referring to
Referring to
In contrast, as shown in
Referring to
The secondary objective of this study was to evaluate the EFE Laser treatments, in comparison to standard laser tattoo removal treatments, for dermal vacuole formation, dermal injury and tattoo fading. Referring to
Referring to
Referring to
This study demonstrated that greater laser induced dermal vacuole formation increases dermal injury and decreases tattoo fading efficacy. The EFE Laser was able to minimize the amount of laser induced dermal vacuole formation during laser treatment of tattoo sites resulting in reduced dermal injury and improved tattoo fading. It is believed that lower vacuole formation results in a reduction of laser shielding and light scattering allowing more laser energy to reach the tattoo ink particle.
This study provided evidence that the EFE Laser in the treatment of the tattoo sites results in the formation of fewer dermal vacuoles, less dermal injury and improved tattoo fading when compared to standard laser treatments. In addition to improving laser based tattoo treatments, the use of an electric field can mitigate free electrons from thermionic emissions during laser ablation treatments (hair removal, vein removal, etc.) to provide safer, more effective treatments.
The above description and examples provide a complete description of the structure and use of illustrative embodiments. Although certain embodiments have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the scope of this disclosure. As such, the various illustrative embodiments of the methods and systems are not intended to be limited to the particular forms disclosed. Rather, they include all modifications and alternatives falling within the scope of the claims, and embodiments other than the one shown may include some or all of the features of the depicted embodiment. For example, elements may be omitted or combined as a unitary structure, connections may be substituted, or both. Further, where appropriate, aspects of any of the examples described above may be combined with aspects of any of the other examples described to form further examples having comparable or different properties and/or functions, and addressing the same or different problems. Similarly, it will be understood that the benefits and advantages described above may relate to one embodiment or may relate to several embodiments. Accordingly, no single implementation described herein should be construed as limiting and implementations of the disclosure may be suitably combined without departing from the teachings of the disclosure.
The claims are not intended to include, and should not be interpreted to include, means-plus- or step-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase(s) “means for” or “step for,” respectively.
This application is a national phase application under 35 U.S.C. § 371 of International Application No. PCT/US2018/018596 filed Feb. 19, 2018, which claims benefit of U.S. Provisional Patent Application No. 62/460,867 filed Feb. 19, 2017, all of which are incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/018596 | 2/19/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/152460 | 8/23/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3364708 | Padberg | Jan 1968 | A |
3475646 | Chapman | Oct 1969 | A |
3604641 | Wilson et al. | Sep 1971 | A |
3613069 | Cary | Oct 1971 | A |
3735764 | Balev | May 1973 | A |
3769963 | Goldman et al. | Nov 1973 | A |
3942531 | Hoff | Mar 1976 | A |
4005314 | Zinn | Jan 1977 | A |
4311147 | Hausler | Jan 1982 | A |
4556051 | Maurer | Dec 1985 | A |
4715376 | Nowacki et al. | Dec 1987 | A |
4858597 | Kurtze et al. | Aug 1989 | A |
4896673 | Rose et al. | Jan 1990 | A |
4905671 | Senge et al. | Mar 1990 | A |
4928671 | Reichenberger et al. | May 1990 | A |
4955143 | Hagelauer | Sep 1990 | A |
4962752 | Reichenberger et al. | Oct 1990 | A |
4979501 | Valchanov et al. | Dec 1990 | A |
5009232 | Hassler et al. | Apr 1991 | A |
5015929 | Cathignol et al. | May 1991 | A |
5030196 | Inoue | Jul 1991 | A |
5071422 | Watson et al. | Dec 1991 | A |
5146912 | Eizenhoefer | Sep 1992 | A |
5149406 | Mullen | Sep 1992 | A |
5150713 | Okazaki | Sep 1992 | A |
5193527 | Schafer | Mar 1993 | A |
5195508 | Muller et al. | Mar 1993 | A |
5204820 | Strobel et al. | Apr 1993 | A |
5231976 | Wiksell | Aug 1993 | A |
5240005 | Viebach | Aug 1993 | A |
5245988 | Einars et al. | Sep 1993 | A |
5259368 | Wiksell | Nov 1993 | A |
5284143 | Rattner | Feb 1994 | A |
5304170 | Green | Apr 1994 | A |
5304207 | Stromer | Apr 1994 | A |
5327890 | Matura et al. | Jul 1994 | A |
5360447 | Koop | Nov 1994 | A |
5374236 | Hassler | Dec 1994 | A |
5393296 | Rattner | Feb 1995 | A |
5409446 | Rattner | Apr 1995 | A |
5419327 | Rohwedder et al. | May 1995 | A |
5423803 | Tankovich et al. | Jun 1995 | A |
5435304 | Oppelt et al. | Jul 1995 | A |
5458652 | Uebelacker | Oct 1995 | A |
5509200 | Frankeny et al. | Apr 1996 | A |
5529572 | Spector | Jun 1996 | A |
5595178 | Voss et al. | Jan 1997 | A |
5618275 | Bock | Apr 1997 | A |
5658239 | Delmenico | Aug 1997 | A |
5675495 | Biermann et al. | Oct 1997 | A |
5676159 | Navis | Oct 1997 | A |
5709676 | Alt | Jan 1998 | A |
5722411 | Suzuki | Mar 1998 | A |
5737462 | Whitehouse | Apr 1998 | A |
5790305 | Marcellin-Dibon et al. | Aug 1998 | A |
5827204 | Grandia et al. | Oct 1998 | A |
6013122 | Klitzman et al. | Jan 2000 | A |
6036661 | Schwarze et al. | Mar 2000 | A |
6039694 | Larson et al. | Mar 2000 | A |
6058932 | Hughes | May 2000 | A |
6080119 | Schwarze et al. | Jun 2000 | A |
6096029 | O'Donnell, Jr. | Aug 2000 | A |
6113559 | Klopotek | Sep 2000 | A |
6113560 | Simnacher | Sep 2000 | A |
6123679 | Lafaut et al. | Sep 2000 | A |
6176839 | Deluis et al. | Jan 2001 | B1 |
6186963 | Schwarze et al. | Feb 2001 | B1 |
6210329 | Christmas et al. | Apr 2001 | B1 |
6217531 | Reitmajer | Apr 2001 | B1 |
6309355 | Cain et al. | Oct 2001 | B1 |
6325769 | Klopotek | Dec 2001 | B1 |
6350245 | Cimino | Feb 2002 | B1 |
6368929 | Hill et al. | Apr 2002 | B1 |
6390995 | Ogden et al. | May 2002 | B1 |
6450979 | Miwa et al. | Sep 2002 | B1 |
6454713 | Ishibashi et al. | Sep 2002 | B1 |
6487447 | Weimann et al. | Nov 2002 | B1 |
6491685 | Visuri | Dec 2002 | B2 |
6500141 | Irion et al. | Dec 2002 | B1 |
6515842 | Hayworth et al. | Feb 2003 | B1 |
6519376 | Biagi et al. | Feb 2003 | B2 |
6551308 | Muller et al. | Apr 2003 | B1 |
6666834 | Restle et al. | Dec 2003 | B2 |
6755821 | Fry | Jun 2004 | B1 |
6800122 | Anderson et al. | Oct 2004 | B2 |
6905467 | Bradley | Jun 2005 | B2 |
6942663 | Vargas et al. | Sep 2005 | B2 |
6948843 | Laugharn et al. | Sep 2005 | B2 |
6972116 | Brill et al. | Dec 2005 | B2 |
7189209 | Ogden et al. | Mar 2007 | B1 |
7250047 | Anderson et al. | Jul 2007 | B2 |
7311678 | Spector | Dec 2007 | B2 |
7364554 | Bolze et al. | Apr 2008 | B2 |
7405510 | Kaminski et al. | Jun 2008 | B2 |
7470240 | Schultheiss et al. | Dec 2008 | B2 |
7507213 | Schultheiss et al. | Mar 2009 | B2 |
7588547 | Deem et al. | Sep 2009 | B2 |
7867178 | Simnacher | Jan 2011 | B2 |
7985189 | Ogden et al. | Jul 2011 | B1 |
7988631 | Bohris | Aug 2011 | B2 |
8057408 | Cain et al. | Nov 2011 | B2 |
8088073 | Simnacher et al. | Jan 2012 | B2 |
8092401 | Schultheiss | Jan 2012 | B2 |
8102734 | Sliwa et al. | Jan 2012 | B2 |
8235899 | Hashiba | Aug 2012 | B2 |
8257282 | Uebelacker et al. | Sep 2012 | B2 |
8298162 | Del Giglio | Oct 2012 | B2 |
8323220 | Babaev | Dec 2012 | B2 |
8343420 | Cioanta et al. | Jan 2013 | B2 |
8357095 | Anderson et al. | Jan 2013 | B2 |
8672721 | Camilli | Mar 2014 | B2 |
8684970 | Koyfman | Apr 2014 | B1 |
20020009015 | Laugharn et al. | Jan 2002 | A1 |
20020193831 | Smith | Dec 2002 | A1 |
20030167964 | Anderson et al. | Sep 2003 | A1 |
20030233045 | Vaezy | Dec 2003 | A1 |
20040006288 | Spector et al. | Jan 2004 | A1 |
20040181219 | Goble et al. | Sep 2004 | A1 |
20050015023 | Ein-Gal | Jan 2005 | A1 |
20050049543 | Anderson et al. | Mar 2005 | A1 |
20050107852 | Levernier et al. | May 2005 | A1 |
20050150830 | Laugharn et al. | Jul 2005 | A1 |
20060036168 | Liang et al. | Feb 2006 | A1 |
20060064082 | Bonutti | Mar 2006 | A1 |
20060158956 | Laugharn et al. | Jul 2006 | A1 |
20060173388 | Ginter et al. | Aug 2006 | A1 |
20060184071 | Klopotek | Aug 2006 | A1 |
20060200116 | Ferren et al. | Sep 2006 | A1 |
20060211958 | Rosenberg et al. | Sep 2006 | A1 |
20060259102 | Slatkine | Nov 2006 | A1 |
20070016112 | Schultheiss et al. | Jan 2007 | A1 |
20070038060 | Cerwin et al. | Feb 2007 | A1 |
20070049829 | Kaminski et al. | Mar 2007 | A1 |
20070055157 | Bohris | Mar 2007 | A1 |
20070055180 | Deem et al. | Mar 2007 | A1 |
20070065420 | Johnson | Mar 2007 | A1 |
20070135755 | Bernabei et al. | Jun 2007 | A1 |
20070198068 | Chan et al. | Aug 2007 | A1 |
20070219760 | Yang et al. | Sep 2007 | A1 |
20070239072 | Schultheiss et al. | Oct 2007 | A1 |
20070239082 | Schultheiss et al. | Oct 2007 | A1 |
20070239084 | Voss | Oct 2007 | A1 |
20070249939 | Gerbi et al. | Oct 2007 | A1 |
20080009774 | Capelli et al. | Jan 2008 | A1 |
20080009885 | Del Giglio | Jan 2008 | A1 |
20080021447 | Davison et al. | Jan 2008 | A1 |
20080071198 | Ogden et al. | Mar 2008 | A1 |
20080107744 | Chu | May 2008 | A1 |
20080132810 | Scoseria et al. | Jun 2008 | A1 |
20080146971 | Uebelacker et al. | Jun 2008 | A1 |
20080154157 | Altshuler et al. | Jun 2008 | A1 |
20080183200 | Babaev | Jul 2008 | A1 |
20080194967 | Sliwa et al. | Aug 2008 | A1 |
20080195003 | Sliwa et al. | Aug 2008 | A1 |
20080262483 | Capelli et al. | Oct 2008 | A1 |
20080269163 | Sostaric | Oct 2008 | A1 |
20080269608 | Anderson et al. | Oct 2008 | A1 |
20080319356 | Cain et al. | Dec 2008 | A1 |
20090018472 | Soltani et al. | Jan 2009 | A1 |
20090062644 | McMorrow et al. | Mar 2009 | A1 |
20090088824 | Baird | Apr 2009 | A1 |
20090275832 | Gelbart et al. | Nov 2009 | A1 |
20100049098 | Shalgi et al. | Feb 2010 | A1 |
20100076349 | Babaev | Mar 2010 | A1 |
20100082019 | Neev | Apr 2010 | A1 |
20100087899 | Erez et al. | Apr 2010 | A1 |
20100168575 | Hashiba | Jul 2010 | A1 |
20100204617 | Ben-Ezra | Aug 2010 | A1 |
20100208467 | Dross | Aug 2010 | A1 |
20100249768 | Avramenko et al. | Sep 2010 | A1 |
20100274161 | Azhari et al. | Oct 2010 | A1 |
20100280420 | Barthe et al. | Nov 2010 | A1 |
20100331741 | Cioanta et al. | Dec 2010 | A9 |
20110034832 | Cioanta et al. | Feb 2011 | A1 |
20110087157 | Cioanta et al. | Apr 2011 | A1 |
20120157892 | Reitmajer et al. | Jun 2012 | A1 |
20120167174 | Saxena et al. | Jun 2012 | A1 |
20120253240 | Uebelacker et al. | Oct 2012 | A1 |
20120253416 | Erez et al. | Oct 2012 | A1 |
20120310232 | Erez | Dec 2012 | A1 |
20120323147 | Scheirer | Dec 2012 | A1 |
20120330288 | Clementi et al. | Dec 2012 | A1 |
20130018287 | Capelli | Jan 2013 | A1 |
20130046179 | Humayun | Feb 2013 | A1 |
20130046207 | Capelli | Feb 2013 | A1 |
20130345600 | Katragadda et al. | Dec 2013 | A1 |
20140005576 | Adams et al. | Jan 2014 | A1 |
20140094718 | Feldman | Apr 2014 | A1 |
20140228820 | Blaskowski et al. | Aug 2014 | A1 |
20140243715 | Cioanta et al. | Aug 2014 | A1 |
20140243847 | Hakala et al. | Aug 2014 | A1 |
20140257144 | Capelli et al. | Sep 2014 | A1 |
20140276693 | Altshuler et al. | Sep 2014 | A1 |
20140276722 | Parihar et al. | Sep 2014 | A1 |
20140277219 | Nanda | Sep 2014 | A1 |
20140378740 | Wagner et al. | Dec 2014 | A1 |
20150105702 | Wagner et al. | Apr 2015 | A1 |
20150126913 | Jurna et al. | May 2015 | A1 |
20150217111 | Stevenson et al. | Aug 2015 | A1 |
20160016013 | Capelli et al. | Jan 2016 | A1 |
20160067139 | Katragadda et al. | Mar 2016 | A1 |
20160166837 | Strommer et al. | Jun 2016 | A1 |
20160262778 | Du | Sep 2016 | A1 |
20160271419 | Varghese | Sep 2016 | A1 |
20180116905 | Capelli et al. | May 2018 | A1 |
20180221688 | Cioanta et al. | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
1245410 | Feb 2000 | CN |
101028525 | Sep 2007 | CN |
101146574 | Mar 2008 | CN |
101155614 | Apr 2008 | CN |
100530868 | Aug 2009 | CN |
101610736 | Dec 2009 | CN |
102057422 | May 2011 | CN |
102247661 | Nov 2011 | CN |
105209117 | Dec 2015 | CN |
105246419 | Jan 2016 | CN |
3150430 | Jul 1983 | DE |
3710371 | Oct 1988 | DE |
60008898 | Jan 2005 | DE |
102007046902 | Apr 2009 | DE |
0008647 | Mar 1980 | EP |
0243650 | Nov 1987 | EP |
0322473 | Jul 1989 | EP |
0326620 | Aug 1989 | EP |
2964326 | Jan 2016 | EP |
3626307 | Mar 2020 | EP |
2605874 | May 1988 | FR |
2303552 | Feb 1997 | GB |
53-111689 | Sep 1978 | JP |
S61-293447 | Dec 1986 | JP |
S 61-293447 | Dec 1986 | JP |
62-192150 | Aug 1987 | JP |
S 63-023775 | Feb 1988 | JP |
S63-183050 | Jul 1988 | JP |
S 63-183050 | Jul 1988 | JP |
6-7365 | Jan 1994 | JP |
H06-505648 | Jun 1994 | JP |
H 06-505648 | Jun 1994 | JP |
H0673654 | Oct 1994 | JP |
8-140984 | Jun 1996 | JP |
H 08140984 | Jun 1996 | JP |
8-194079 | Jul 1996 | JP |
1996-222472 | Aug 1996 | JP |
H0-8224253 | Sep 1996 | JP |
9-103434 | Apr 1997 | JP |
H09103434 | Apr 1997 | JP |
H 10192289 | Jul 1998 | JP |
H 10328192 | Dec 1998 | JP |
2003-500126 | Jan 2003 | JP |
2004526507 | Sep 2004 | JP |
2005514142 | May 2005 | JP |
2007-000218 | Jan 2007 | JP |
2009-506870 | Feb 2009 | JP |
2009-518126 | Apr 2009 | JP |
2009-527262 | Jul 2009 | JP |
2009-543614 | Dec 2009 | JP |
2012-516170 | Jul 2012 | JP |
2013-537559 | Oct 2013 | JP |
2014-507990 | Apr 2014 | JP |
2014-525782 | Oct 2014 | JP |
2016523602 | Aug 2016 | JP |
2017-500078 | Jan 2017 | JP |
61-73644 | Aug 2017 | JP |
101886863 | Aug 2018 | KR |
2121812 | Nov 1998 | RU |
2151559 | Jun 2000 | RU |
200604017 | Feb 2006 | TW |
I 292341 | Jan 2008 | TW |
I 350249 | Oct 2011 | TW |
WO 9110227 | Jul 1991 | WO |
WO 2000071207 | Nov 2000 | WO |
WO 2002030256 | Apr 2002 | WO |
WO 2004080147 | Sep 2004 | WO |
WO 2007067563 | Jun 2007 | WO |
WO 2007088546 | Aug 2007 | WO |
WO 2007146988 | Dec 2007 | WO |
WO 2008052198 | May 2008 | WO |
WO 2008074005 | Jun 2008 | WO |
WO 2008137942 | Nov 2008 | WO |
WO 2010086301 | Aug 2010 | WO |
WO 2010122517 | Oct 2010 | WO |
WO 2011077466 | Jun 2011 | WO |
WO 2011091020 | Jul 2011 | WO |
WO 2012107830 | Aug 2012 | WO |
WO 2013012724 | Jan 2013 | WO |
WO 2014138582 | Sep 2014 | WO |
WO 2014191263 | Dec 2014 | WO |
WO 2015176001 | Nov 2015 | WO |
WO 2017165595 | Sep 2017 | WO |
WO 2018136514 | Jul 2018 | WO |
Entry |
---|
Baumler et al., Q-Switch Laser and Tattoo Pigments: First Results of the Chemical and Photophysical Analysis of 41 Compounds, Lasers in Surgery and medicine 26:13-21 (2000), pp. 13-21. |
Bickle, Abdominal X Rays Made Easy: Calcification, Student BMJ vol. 10, Aug. 2002, 272-274. |
Burov, et al., “Nonlinear Ultrasound: Breakdown of Microscopic Biological Structures and Nonthermal Impact on Malignant Tumor,” Doklady Biochemistry and Biophysics, 383(3), pp. 101-104. (2002). |
Chen et al., “The disappearance of ultrasound contrast bubbles: Observations of bubble dissolution and Cavitation nucleation”, Ultrasound in Med. & Biol., vol. 28, No. 6, pp. 793-803, 2002. |
Delius, et al., “Biological Effects of Shock Waves: Kidney Haemorrhage by Shock Waves in Dogs—Administration Rate Dependence,” Ultrasound Med Biol., 14(8), 689-694, 1988. |
Eisenmenger, W. et al., “The First Clinical Results of Wide-Focus and Low-Pressure ESWL” Ultrasound in Med. & Biol., vol. 28, No. 6, pp. 769-774, 2002. |
Eisenmenger, Wolfgang, “The Mechanisms of Stone Fragmentation in ESWL”, Ultrasound in Med. & Biol., vol. 27, No. 5, pp. 683-693, 2001. |
Falco, “Single-Point Nonlinearity Indicators for the Propagation of High Amplitude Acoustic Signals,” Ph.D. Thesis. Graduate Program in Acoustics, The Pennsylvania State University, University Park, PA, May 2007. |
Fernando, “A Nonlinear Computational Method for the Propagation of ShockWaves in Aero-Engine Inlets Towards a New Model for Buzz-Saw Noise Prediction,” 15th AIAA/CEAS Aerocoustics Conference (30th Aerocoustics Conference) May 11-13, 2009, 1-18. |
Gillitzer, et al., “Low-Frequency Extracorporeal Shock Wave Lithotripsy Improves Renal Pelvic Stone Disintegration An a Pig Model,” BJU Int, 176, 1284-1288, 2009. |
Ho et al., “Laser-Tattoo Removal—A Study of the Mechanism and the Optimal Treatment Strategy via Computer Simulations”, Lasers in Surgery and medicine 30:389-391 (2002). |
International Preliminary Report on Patentability Issued in Corresponding PCT Patent Application No. PCT/US2018/018596, dated Jun. 23, 2019. |
International Search Report and Written Opinion Issued in Corresponding PCT Patent Application No. PCT/US2018/018596, dated May 17, 2018. |
Kuhn et al., “Impact of extracorporeal shock waves on the human skin with cellulite: A case study of an unique instance”, Clinical Interventions of Aging, 3(1):201-210, 2008. |
Kuperman-Beade et al., “Laser Removal of Tattoos”, Am J Clin Dermatol 2001: 2(1):21-25. |
Kuzmin et al., “Ultrasonic Cavitational Chemical Technologies”, XI Session of the Russian Acoustical Society, Moscow, Nov. 19-23, 2001. |
Liu, et al., “Optimized Design of LED Freeform Lens for Uniform Circular Illumination,” Journal of Zhejiang University—Science C, Computer & Electron, 13(12), 929-936, 2012. |
Madbouly, et al., “Slow Versus Fast Shock Wave Lithotripsy Rate for Urolithiasis: A Prospective Randomized Study,” The Journal of Urology, 173, 127-130, 2005. |
Nana, et al., “Application of the Multiple Low-Energy Q-Switched Laser for the Treatment of Tattoos in 21 Cases,” China Aesthetic Medicine, 4(21), 621-622, 2012. (English Abstract). |
Ng et al., “Therapeutic Ultrasound: Its Application in Drug Delivery”, Medicinal Research Reviews, vol. 22, No. 2, 204-223, 2002. |
Ogden et al., Principles of Shook Wave Therapy, Clinical Orthopaedics and Related Research, No. 387, pp. 8-17. |
Reichenberger, “Electromagnetic Acoustic Source for Extracorporeal Generation of Shock Waves in Lithotripsy,” Siemens Forsch, 1986, 187-194. |
Ross et al., “Comparison of Responses of Tattoos to Picosecond and Nanosecond Q-Switched Neodymium: YAG Lasers” ARCH Dermatol/vol. 134, Feb. 1998, pp. 167-171. |
Sheth and Pandya, “Melsama: A comprehensive update (Part I)”, Journal of the American Academy of Dermatology, 65:689-697, 2011. |
Sheth and Pandya, “Melsama: A comprehensive update (Part II)”, Journal of the American Academy of Dermatology, 65:699-714, 2011. |
Solis et al., “Experimental Nonsurgical Tattoo Removal in a Guinea Pig Model with Topical Imiquimod and Tretinoin”, Dermatol Surg. 2002, 28:83-87. |
Timko et al., “In Vitro Quantitative Chemical Analysis of Tattoo Pigments”, ARCH Dermatol/vol. 137, Feb. 2001, pp. 143-147. |
Varma, S., “Tattoo Ink Darkening of a yellow Tattoo after Q-Switched Laser Treatment”, 2002 Blackwell Science Ltd., Clinical and Experimental Dermatology, 27, 461-463. |
Vogel, et al., “ShockWave Emission and Cavitation Bubble Generation by Picosecond and Nanosecond Optical Breakdown in Water,” J. Acoust. Soc. Am., 100 (1) Jul. 1996. |
Wolfrum et al., “Shock wave induced interaction of microbubbles and boundaries”, Physics of Fluids, vol. 15, No. 10, Oct. 2003, pp. 2916-2922. |
Office Action Issued in Chinese Patent Application No. 201910058064, dated Feb. 8, 2021. |
Boxman, et al., “Handbook of Vacuum Arc Science and Technology: Fundamentals and Applications,” Park Ridge, New Jersey: Noyes Publications, pp. 316-319, 1995. |
Extended European Search Report Issued in Corresponding European Patent Application No. 20153807.1, dated Jun. 9, 2020. |
International Preliminary Report on Patentability Issued in Corresponding PCT Application No. PCT/US2017/042122, dated Jan. 22, 2019. |
International Search Report and Written Opinion Issued in Corresponding PCT Application No. PCT/US2017/042122, dated Jan. 9, 2018. |
International Search Report and Written Opinion Issued in Corresponding PCT Application No. PCT/US14/21746, dated Sep. 12, 2014. |
Office Action Issued in Corresponding Japanese Patent Application No. 2019-012062, dated Jun. 16, 2020. |
Partial Supplementary Search Report Issued in Corresponding European Patent Application No. EP18754679.1, dated Jul. 29, 2020. |
Schmitz, et al., “Treatment of Chronic Plantar Fasciopathy with Extracorporeal Shock Waves (Review),” Journal of Orthopaedic Surgery and Research, 8(1); 31, 2013. |
Ushakov, et al., “Impulse Breakdown of Liquids,” New York, New York: Springer. |
International Search Report and Written Opinion issued in Corresponding PCT Application No. PCT/US2020/026425, dated Sep. 2, 2020. |
Office Action and Search Report issued in Corresponding Chinese Application No. 201780056472.0, dated Jan. 19, 2022 (English Translation provided). |
Office Action issued in Australian Patent Application No. 2021201670, dated Jun. 20, 2022. |
Office Action issued in U.S. Appl. No. 16/478,611, dated Jun. 30, 2022. |
Troilius, “Effective Treatment of traumatic Tattoos with a Q-switched Nd:YAG laser,” Lasers Surg. Med., 22:103-108, 1998. |
Carlberg, “Upgrading from Stepper to Servo,” Yaskawa America Inc., pp. 1-7, 2011. |
Manousakas et al., “Development of a system of automatic gap-adjusted electrodes for shock wave generators,” Review of Scientific Instruments, 75(11):4811-4819, 2004. |
Office Action issued in U.S. Appl. No. 16/478,611, dated Oct. 31, 2022. |
English translation of Office Action issued in Japanese Patent Application No. 2021-184610, dated Nov. 18, 2022. |
Office Action issued in Australian Patent Application No. 2018221251, dated Nov. 10, 2022. |
Official Action issued in Japanese Patent Application No. 2019-544631, dated Sep. 16, 2022. |
English translation of Office Action issued in Korean Patent Application No. 10-2019-7005043 dated Sep. 28, 2022. |
Office Action issued in U.S. Appl. No. 16/087,976 dated Oct. 13, 2022. |
Notice of Allowance issued in U.S. Appl. No. 17/648,790, dated Feb. 28, 2023. |
Office Communication issued in Japanese Patent Application No. 2018-550349, dated Mar. 7, 2023. |
Office Communication issued in U.S. Appl. No. 16/904,125, dated Mar. 23, 2023. |
Office Communication issued in U.S. Appl. No. 17/096,932, dated Mar. 28, 2023. |
Office Communication issued in U.S. Appl. No. 16/319,509, dated Apr. 10, 2023. |
Number | Date | Country | |
---|---|---|---|
20200238100 A1 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
62460867 | Feb 2017 | US |