Selective production of aminoethylethanolamine

Information

  • Patent Grant
  • 5214215
  • Patent Number
    5,214,215
  • Date Filed
    Friday, March 30, 1990
    34 years ago
  • Date Issued
    Tuesday, May 25, 1993
    31 years ago
Abstract
This invention relates to a process for making amines having a high yield weight percent of aminoethylethanolamine (AEEA) by condensing an amino compound in the presence of a condensation catalyst selected from a Group IVB metal oxide, a Group VIB metal-containing substance and a promoted condensation catalyst. This invention also relates to an alkyleneamines producers composition rich in AEEA.
Description

RELATED APPLICATIONS
The following are related, commonly assigned applications, filed on an even date herewith: U.S. patent application Ser. No. 501,917; U.S. patent application Ser. No. 501,919, now U.S. Pat. No. 5,166,415, U.S. patent application Ser. No. 501,907; U.S. patent application Ser. No. 501,903; U.S. patent application Ser. No. 501,998; U.S. patent application Ser. No. 501,826; and U.S. patent application Ser. No. 501,920; all incorporated herein by reference.
The following are related, commonly assigned applications: U.S. patent application Ser. No. 07/136,615, filed Dec. 22, 1987, now abandoned; U S. patent application Ser. No. 07/390,829, filed Aug. 8, 1989; U.S. patent application Ser. No. 07/390,706, filed Aug. 8, 1989; U.S. patent application Ser. No. 07/,390,709, filed Aug. 8, 1989 (now U.S. Pat. No. 4,983,736); U.S. patent application Ser. No. 07/390,828, filed Aug. 8, 1989 (now U.S. Pat. No. 5,101,074); U.S. patent application Ser. No. 07/390,708, filed Aug. 8, 1989 (now abandoned in favor of continuation Ser. No. 07/742,731, filed Aug. 16, 1991, which in turn has been abandoned in favor of continuation Ser. No. 934,901filed Aug. 26, 1992); and U.S. patent application Ser. No. 07/390,714, filed Aug. 8, 1989; all incorporated herein by reference.
BRIEF SUMMARY OF THE INVENTION
This invention relates to a process for making amines having a high yield weight percent of aminoethylethanolamine (AEEA) by condensing an amino compound in the presence of a condensation catalyst selected from a Group IVB metal oxide, a Group VIB metal-containing substance and a promoted condensation catalyst.
This invention also relates to an alkyleneamines producers composition rich in AEEA.
BACKGROUND OF THE INVENTION
There is a substantial body of literature directed to the use of various acid catalysts to effect intramolecular and intermolecular condensation of amino compounds. U.S. Pat. No. 2,073,671 and U.S. Pat. No. 2,467,205 constitute early prior work on the use of acid condensation catalysts to condense amino compounds. U.S. Pat. No. 2,073,671 discusses, in a general fashion, the catalytic intermolecular condensation of alcohols and amines or ammonia using the same phosphate catalysts later favored by U.S. Pat. No. 2,467,205 for the intramolecular condensation of amines. The two patents are not in harmony over the use of other materials as catalysts. To illustrate this point, U.S. Pat. No. 2,073,671 states:
"Alumina, thoria, blue oxide of tungsten, titania, chromic oxide, blue oxide of molybdenum and zirconia have been mentioned in the literature for use as catalysts in carrying out these reactions but their effectiveness is so low that no practical application has been made of their use."
whereas U.S. Pat. No. 2,467,205 in describing the self-condensation of ethylenediamine (EDA) under vapor phase conditions, to initially produce ethyleneamines, but after recycle, eventually generates piperazine (PIP) through multistep condensation reactions, followed by deamination, recommends "dehydration catalysts" which are thereafter characterized as
"silica gel, titania gel, alumina, thoria, boron phosphate, aluminum phosphate, and the like."
U.S. Pat. No 2,073,671 describes the condensation catalyst in the following terms:
". . . a heated catalyst or contact mass containing phosphorus and especially one or more of the oxygen acids of phosphorus, their anhydrides, their polymers, and their salts; for example, orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, phosphorous pentoxide, dimetaphosphoric acid, trimetaphosphoric acid, primary ammonium phosphate, secondary ammonium phosphate, normal ammonium phosphate, ammonium metaphosphate, secondary ammonium pyrophosphate, normal ammonium pyrophosphate, aluminum phosphate, aluminum acid phosphate and mixtures of two or more of such materials."
whereas U.S. Pat. No. 2,467,205 describes one of the preferred catalysts as "basic aluminum phosphate".
U.S Pat. No. 2,454,404 describes the "catalytic deamination of alkylene polyamines" by reacting DETA vapor over solid catalysts such as activated alumina, bauxite, certain aluminum silicates such as kaolin and oxides of thorium, titanium and zirconium.
U.S. Pat. Nos. 2,073,671 and 2,467,205 demonstrate a common experience in using aluminum phosphate as a condensation catalyst to produce aliphatic amines, and U.S. Pat. Nos. 2,454,404 and 2,467,205 contemplate the other solid catalysts for deamination of amines to make heterocyclic noncyclic amines. In general, the reaction conditions under which deamination to effect cyclization occurs are more severe than those employed for condensation to generate noncyclic molecules, all other factors being comparable.
U.S. Pat. Nos. 4,540,822, 4,584,406 and 4,588,842 depict the use of Group IVB metal oxides as supports for phosphorus catalysts used to effect the condensation of amino compounds with alkanolamines.
U.S. Pat. No. 4,683,335 describes the use of tungstophosphoric acid, molybdophosphoric acid or mixtures deposited on titania as catalysts for the condensation of amines and alkanolamines to make polyalkylenepolyamines.
U.S. Pat. Nos. 4,314,083, 4,316,840, 4,362,886 and 4,394,524 disclose the use of certain metal sulfates as useful catalysts for the condensation of alkanolamine and an amino compound. No distinction is made between the sulfur compounds in respect to catalytic efficacy. Sulfuric acid is as good as any metal sulfate, and all metal sulfates are treated as equivalents. At column 8 of U.S. Pat. No. 4,314,083, it is noted that boron sulfate "gave extremely high selectivity at a low level" of EDA. However, selectivity in general was shown to increase with an increase of EDA relative to monoethanolamine (MEA) in the feed. The only specific metal sulfates disclosed in the patents are antimony sulfate, beryllium sulfate, iron sulfate and aluminum sulfate.
In the typical case of the manufacture of alkyleneamines, mixtures with other alkyleneamines (including a variety of polyalkylenepolyamines and cyclic alkylenepolyamines) are formed. The same holds true when the object of the process is to produce polyalkylenepolyamines whether acyclic or cyclic, in that a variety of amino compounds are also formed. Each of these cyclic and acyclic alkyleneamines can be isolated from the mixture.
The acid catalyzed condensation reaction involving the reaction of an alkanolamine with an amino compound in the presence of an acidic catalyst is believed to proceed through the mechanism of esterifying free surface hydroxyl groups on the acid catalyst with the alkanolamine and/or by protonating the alkanolamine in the presence of the acid catalyst, followed by loss of water and amine condensation of the ester or the hydrated species, as the case may be, to form the alkyleneamine. Illustrative prior art directed primarily to the cyclic polyalkylenepolyamines (heterocyclic polyamines), but not necessarily limited to the aforementioned acid condensation reaction, are: U.S. Pat. Nos. 2,937,176, 2,977,363, 2,977,364, 2,985,658, 3,056,788, 3,231,573, 3,167,555, 3,242,183, 3,297,701, 3,172,891, 3,369,019, 3,342,820, 3,956,329, 4,017,494, 4,092,316, 4,182,864, 4,405,784 and 4,514,567; European Pat. Applications 0 069 322, 0 111 928 and 0 158 319; East German Pat. No. 206,896; Japanese Pat. Publication No. 51-141895; and French Pat. No. 1,381,243. The evolution of the art to the use of the acid catalyzed condensation reaction to generate acyclic alkyleneamines, particularly acyclic polyalkylenepolyamines, as the predominant products stemmed from the initial disclosure in U.S. Pat. No. 4,036,881, though earlier patent literature fairly well characterized such an effect without labeling it so, see U.S. Pat. No. 2,467,205, supra. The acid catalysts are phosphorus compounds and the reaction is carried out in the liquid phase. The trend in this catalyst direction was early set as demonstrated by U.S. Pat. Nos. 2,073,671 and 2,467,205, supra. A modification of this route includes the addition of ammonia to the reaction, see, for example, U.S. Pat. No. 4,394,524 and U.S. Pat. No. 4,463,193 for the purpose of converting alkanolamine such as MEA in situ to alkylene amine such as EDA by reaction with ammonia, and the EDA is in situ reacted with MEA according to the process of U.S. Pat. No. 4,036,881 to form alkyleneamines.
A summary of the prior art employing acid catalysts for making alkyleneamines is set forth in Table I below.
TABLE I______________________________________CITATION CATALYST TYPE REACTANTS______________________________________U.S. 2,467,205 Silica gel, titania gel, Vapor phase con- alumina, thoria, aluminum sation of EDA over phosphate. Preferred a fixed bed of the catalyst is basic catalyst, multipass aluminum phosphate process shifts from polyethylene-poly- amines with the first few cycles.U.S. 4,036,881 Phosphorus containing sub- Alkanolamine and tances selected from the alkyleneamine in group consisting of acidic liquid phase metal phosphates, phos- reaction. phoric acid compounds and their anhydrides, phos- phorus acid compounds and their anhydrides, alkyl or aryl phosphate esters, alkyl or aryl phosphite esters, alkyl or aryl substi- tuted phosphorous and phosphoric acids wherein said alkyl groups have from 1 to about 8 carbon atoms and said aryl groups have from 6 to about 20 carbon atoms, alkali metal monosalts of phosphoric acid, the thioanalogs of the foregoing, and mix- tures of the above.U.S. 4,044,053 Phosphorus containing sub- Alkanepolyols and stances selected from the alkyleneamine in group consiting of acidic liquid phase metal phosphates, phos- reaction. phoric acid compounds and their anhydrides, phos- phorus acid compounds and their anhydrides, alkyl or aryl phosphate esters, alkyl or aryl phos- phite esters, alkyl or aryl substituted phosphorous acids and phosphoric acids wherein said alkyl groups have from 1 to about 8 carbon atoms and said aryl groups have from 6 to about 20 carbon atoms, alkali metal monosalts of phosphoric acid and mix- tures of the above.U.S. 4,314,083 Salt of a nitrogen or sul- Alkanolamine and fur containing substance an alkyleneamine in or the corresponding acid. liquid phase reaction.U.S. 4,316,840 Metal nitrates and sulfates Reforming linear including zirconium polyamines. sulfate.U.S. 4,316,841 Phosphate, preferably Reforming linear boron phosphate. polyamines.U.S. 4,324,917 Phosphorus-containing Alkanolamine and cation exchange results. an alkyleneamine in liquid phase reaction.U.S. 4,362,886 Arsenic, antimony or Alkanolamine and bismuth containing com- an alkyleneamine in pounds. Antimony sulfate liquid phase specifically disclosed. reaction.U.S. 4,399,308 Lewis acid halide. Alkanolamine and an alkyleneamine in liquid phase reaction.U.S. 4,394,524 Phosphorus-containing Ammonia, alkanol- substance or salt of a amine and an alkyl- sulfur-containing sub- amine in liquid stance, or the corres- phase reaction. ponding acid.U.S. 4,448,997 Reacts alumina with EDA with MEA. phosphoric acid, adds ammonium hydroxide.U.S. 4,463,193 Group IIIB metal acid Ammonia, alkanol- phosphate. amine and an alkyleneamine.U.S. 4,503,253 Supported phosphoric acid. Ammonia, alkanol- amine and an alkyleneamine.U.S. 4,521,600 Select hydrogen phos- Alkanolamine and phates and pyrophosphates. an alkyleneamine.U.S. 4,524,143 Phosphorus impregnated Alkanolamine and onto zirconium silicate an alkyleneamine. support.U.S. 4,540,822 Phosphorus compound Alkanolamine and deposited on a Group IVB an alkyleneamine, metal oxide support. regenerates the catalyst with O.sub.2 -containing gas.U.S. 4,547,591 Silica-alumina alone or in An ethyleneamine combination with an acidic and an alkanol- phosphorus cocatalyst. amine; ethylene- amines; or ammonia and an alkanol- amine.U.S. 4,550,209 An intercalatively cata- EDA and MEA. lytically active tetravalent zirconium polymeric reac- tion product of an organo phosphonic acid or an ester thereof with a com- pound of tetravalent zir- conium reactive therewith.U.S. 4,552,961 Phosphorus amide Alkyleneamine and compound. alkanolamine and/or alkylene glycol.U.S. 4,555,582 Phosphorus chemically MEA and EDA. bonded to a zirconium silicate support.U.S. 4,560,798 Rare earth metal or MEA. strontium acid phosphate.U.S. 4,578,517 Group IIIB metal acid Ammonia or p-/s- phosphate. amine and alkanolamine.U.S. 4,578,518 Thermally activated, cal- MEA and EDA. cined, pelleted titania con- taining titanium triphos- phate. " . . . the titania that was used was . . . anatase." (Col. 9, lines 18-19).U.S. 4,578,519 Thermally activated, cal- MEA and EDA cined, pelleted titania with with optional chemically bonded phos- recycle of DETA. phorus derived from polyphosphoric acid.U.S. 4,584,405 Activated carbon, option- MEA and EDA. ally treated to incorporate phosphorus. Activated car- bon may be washed with strong mineral acid to re- move impurities followed by water wash. Optional treatment follows.U.S. 4,584,406 Pelleted Group IVB metal MEA and EDA. oxide with chemically bonded phosphorus de- rived from phosphoryl chloride or bromide.U.S. 4,588,842 Thermally activated pel- MEA and EDA. leted Group IVB metal oxide with chemically bonded phosphorus.U.S. 4,605,770 Group IIA or IIIB metal Alkanolamine and acid phosphate. and alkyleneamine "in liquid phase".U.S. 4,609,761 Thermally activated MEA and EDA. pelleted titania with chemi- cally bonded phosphorus.U.S. 4,612,397 Thermally activated MEA and EDA. pelleted titania with chemi- cally bonded phosphorus.U.S. 4,617,418 Acid catalysts, mentions Ammonia, alkanol- "beryllium sulfate". amine and an alkyleneamine "under vapor phase conditions".Japanese Patent Variety of phosphorus and Ammonia, alkanol-Application metal phosphates including amine and ethyl-#1983-185,871, Group IVB phosphates. eneamine, withPublication ammonia/alkanol-#1985-78,945 amine molar ratio greater than 11.U.S. 4,683,335 Tungstophosphoric acid, Claims reaction of molybdophosphoric acid or MEA and EDA, mixtures deposited on but discloses self- titania. Examples 2-7 condensation characterize titania surface reaction of EDA areas of 51, 60 and 120 and DETA. m.sup.2 /gm.Japanese Patent Group IVB metal oxide Ammonia andApplication with bonded phosphorus. MEA.#1985-078,391,Publication#1986-236,752Japanese Patent Group IVB metal oxide Ammonia andApplication with bonded phosphorus. MEA.#1985-078,392,Publication#1986-236,753U.S. 4,698,427 Titania having phosphorus Diethanolamine thermally chemically and/or hydroxy- bonded to the surface ethyldiethylene- thereof in the form of triamine in EDA. phosphate bonds.U.S. 4,806,517 Pelleted Group IVB metal MEA and EDA. oxide with phosphorus thermally chemically bonded to the surface thereof.European Titania and zirconia MEA and EDA.Patent chemically bonded toApplication phosphorus.331,396______________________________________
A summary of additional prior art for making alkyleneamines is set forth in Table II below.
TABLE II______________________________________CITATION CATALYST TYPE REACTANTS______________________________________Japanese Patent Niobium-containing Ammonia, alkyl-Application substance. eneamine and#1987-312,182, alkylene glycol.Publication#1989-153,659Japanese Patent Niobium-containing Ammonia, alkylene-Application substance added to amine and#1987-325,274, water-containing liquid alkanolamine.Publication#1989-168-647Japanese Patent Niobium oxide obtained Ammonia, alkylene-Application from niobium alkoxide. amine and#1987-321,348, alkanolamine.Publication#1989-163,159Japanese Patent Niobium pentoxide. Ammonia, alkylene-Application amine and#1989-314,132, dialkanolamine.Publication#1989-157,936Japanese Patent Niobium-containing Ammonia, alkylene-Application substance. amine and#1987-290,652, alkanolamine.Publication#1989-132,550Japanese Patent Tantalum-containing Ammonia, alklyene-Application substance. amine and#1987-142,384, alkanolamine.Publication#1989-307,846European Patent Mixed oxide containing Ammonia, alkylene-Application niobium oxide. amine and315,189 alkanolamine.European Patent Niobium-containing Ammonia, alkylene-Application subsance supported amine and328,101 on a carrier. alkanolamine.Japanese Patent Titania and zirconia MEA and EDA.Application chemically bonded with#1989-048,699, phosphorus in the formPublication of a hydroxy-containing#1990-006,854 phosphate group.Japanese Patent Niobium oxide and Ammonia, alkylene-Application titania, alumina, silica amine and#1988-262,861, or zirconia. alkanolamine.Publication#1990-002,876Japanese Patent Niobium oxide Ammonia, alkylene-Application with an acid. amine and#1988-290,106, alkanolamine.Publication#1990-000,735Japanese Patent Niobium-containing Ammonia, alkylene-Application substance on a carrier. amine and#1988-027,489, alkanolamine.Publication#1990-000,736Japanese Patent Three constituent cata- Alcohol or aldehydeApplication lyst-copper; one or more and ammonia, a#1988-261,366 elements selected from primary amine or aPublication chromium, manganese, secondary amine.#1990-000,232 iron and zinc; and a platinum group element.Japanese Patent Four constituent cata- Alcohol or aldehydeApplication lyst-copper; one or more and ammonia, a#1988-261,368, elements selected from primary amine or aPublication chromium, manganese, secondary amine.#1990-000,233 iron, cobalt, nickel and zinc; a platinum group element; and one or more elements selected from lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium and barium.Japanese Patent Four constituent cata- Alcohol or aldehydeApplication lyst-copper; one or more and ammonia, a#1988-261,369, elements selected from primary amine or aPublication chromium, manganese, secondary amine.#1990-000,234 iron, cobalt, nickel and zinc; a platium group element; and one or more elements selected from aluminum, tungsten and molybdenum.______________________________________
The market demand for AEEA has been progressively increasing in recent years. It would be desirable to satisfy the existing demand from a cost standpoint by modifying slightly the commercial processes directed to the manufacture of higher polyalkylene polyamines such as triethylenetetramine (TETA), tetraethylenepentamine (TEPA) and pentaethylenehexamine (PEHA) from suitable starting raw materials to the production of AEEA as a major product.
It would be desirable to have continuously produced compositions, generated by the reaction of MEA and EDA or other suitable starting raw materials over a fixed bed of a condensation catalyst under commercial conditions, that are rich in AEEA and that are not disproportionately high in PIP and other cyclics.
The above features are provided by this invention.
SUMMARY OF THE INVENTION
This invention relates in general to a process of making amines having a high yield weight percent of AEEA which comprises condensing an amino compound in the presence of a condensation catalyst selected from a Group IVB metal oxide, a Group VIB metal-containing substance and a promoted condensation catalyst. The condensation catalysts used herein contain sufficient residual bound hydroxyl groups or other groupings which renders catalyst formation possible by loss of water or its chemical equivalent such as ammonium hydroxide.
More particularly, this invention relates to a process of making amines having a high yield weight percent of AEEA by the (i) intramolecular condensation of an amino compound to an amine having a lower molecular weight or (ii) the intermolecular condensation of an amino compound with one or more of another amino compound or a compound containing an alcoholic hydroxyl group using a particularly defined condensation catalyst. The process of this invention primarily involves intermolecular condensation reactions. A preferred process involves the manufacture of AEEA by an intermolecular condensation reaction utilizing a Group VIB metal-containing substance or a Group IVB metal oxide as the condensation catalyst.
The invention further relates to a continuously generated alkyleneamines producers composition comprising, based on 100 percent of the weight of the composition and exclusive of any water and/or ammonia and/or feed present,
a greater than about 20.0 weight percent of AEEA,
b) less than about 75.0 weight percent of DETA,
c) less than about 10.0 weight percent of the combination of PIP and AEP,
d) less than about 20.0 weight percent of the combination of TETA's and TEPA's,
e) less than about 50 weight percent of others,
f) a DETA to AEEA weight ratio of less than about 5.0, and
g) an AEEA to PIP weight ratio of greater than about 5.0.
As used herein, the term "amino compound" embraces ammonia and any compound containing nitrogen to which is bonded an active hydrogen. Also, as used herein, the term "oxide" embraces oxides, hydroxides and/or mixtures thereof. Further, as used herein, the term "others" embraces higher polyalkylene polyamines, byproducts and the like.
For purposes of this invention, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 67th Ed., 1986-87, inside cover. Also, for purposes of this invention, Group IIIB metal oxides embraces the lanthanides and actinides.





DETAILED DESCRIPTION
AEEA is a very useful commercial product for a variety of applications including fuel oil additives, corrosion inhibitors, fabric softeners, epoxy curing agents and others. There is a need for the ability to commercially generate larger production quantities of AEEA and that is the direction of this invention. The process of this invention provides for the reaction of MEA and EDA or other suitable starting raw materials to produce in a continuous manner a reaction product mixture, termed herein an "alkyleneamines producers composition", in which AEEA is a principal product of the reaction.
The process of this invention is distinctive insofar as it achieves the generation of high concentrations of AEEA in a manner which can be suitably employed in a commercial process, particularly a continuous process, for the manufacture of alkyleneamines. In particular, the process of this invention allows the production of AEEA in relatively high yields without generating large amounts of cyclic alkyleneamine products.
As indicated above, this invention relates to a process of making amines having a high yield weight percent of AEEA which comprises condensing an amino compound in the presence of a catalytically effective amount of a condensation catalyst selected from a Group IVB metal oxide, a Group VIB metal-containing substance and a promoted condensation catalyst.
As also indicated above, this invention relates to a continuously generated alkyleneamines producers composition comprising, based on 100 percent of the weight of the composition and exclusive of any water and/or ammonia and/or feed present,
a) greater than about 20.0 weight percent of AEEA,
b) less than about 75.0 weight percent of DETA,
c) less than about 10.0 weight percent of the combination of PIP and AEP,
d) less than about 20.0 weight percent of the combination of TETA's and TEPA's,
e) less than about 50 weight percent of others,
f) a DETA to AEEA weight ratio of less than about 5.0, and
g) an AEEA to PIP weight ratio of greater than about 5.0.
The alkyleneamines producers composition of this invention can be subjected to conventional separations techniques for recovering the individual components of the composition. Such techniques are well known in the art and include, for example, distillation.
This invention contemplates the catalyzed condensation by (i) intramolecular condensation of an amino compound to an amine having a lower molecular weight, and (ii) intermolecular condensation of an amino compound with one or more of another amino compound or a compound containing an alcohol hydroxyl group to an amine having a lower, same or higher molecular weight than the reactants, in the presence of a particularly defined condensation catalyst. The process of this invention primarily involves intermolecular condensation reactions.
A wide variety of condensation catalysts can be used in this invention. Illustrative of suitable condensation catalysts for use in this invention include, for example, Group IVB metal oxides, Group VIB metal-containing substances and promoted condensation catalysts.
The Group IVB metal oxide condensation catalysts are preferred catalysts for use in this invention. Suitable Group IVB metal oxide condensation catalysts are disclosed in U.S. patent application Ser. No. 07/390,829, filed Aug. 8, 1989 and incorporated herein by reference. Illustrative of Group IVB metal oxide condensation catalysts include, for example, titanium oxide and zirconium oxide, preferably titanium dioxide and zirconium dioxide including mixtures thereof.
The Group VIB metal-containing condensation catalysts are also preferred catalysts for use in this invention. Suitable Group VIB metal-containing condensation catalysts are disclosed in the above-cited related U.S. patent application Ser. No. 07/390,708, filed Aug. 8, 1989 and incorporated herein by reference. Illustrative of Group VIB metal-containing condensation catalysts include, for example, one or more oxides of tungsten, chromium, molybdenum or mixtures thereof.
A variety of promoted condensation catalysts are also desirable for use in this invention. Suitable promoted condensation catalysts are disclosed in U.S. patent application Ser. No. 07/390,714, filed Aug. 8, 1989 and incorporated herein by reference. The condensation catalysts are promoted by a condensation catalyst promoter as described hereinafter. Illustrative of such condensation catalysts include, for example, one or more Group IVB metal oxides and Group VIB metal-containing substances.
The condensation catalyst promoter for use in this invention should be capable of promoting the condensation catalyst. The promoting effect can relate to catalytic activity, product selectivity and/or catalyst stability (mechanical or dimensional strength of the catalyst). Illustrative of condensation catalyst promoters for use in this invention can include, for example, one or more metal oxides, one or more metallic phosphates which may or may not have a cyclic structure, one or more metallic polyphosphates having a condensed structure, one or more Group VIB metal-containing substances and one or more conventional materials such as mineral acids or compounds derived from mineral acids. Mixtures of condensation catalyst promoters may also be employed in this invention. For purposes of this invention, the condensation catalyst Promoter should be different from the condensation catalyst; however, the condensaton catalyst promoter and the performance moderator described hereinafter can be the same or different.
This invention also embraces the use of vicinal di(hetero)alkylene organometalates in the selective preparation of AEEA. Suitable vicinal di(hetero)alkylene organometalates are disclosed in U.S. patent application Ser. No. 07/390,828, filed Aug. 8, 1989 and incorporated herein by reference (now U.S. Pat. No. 5,101,074).
The level of activity of the condensation catalysts of the invention is that level which of itself makes the catalysts at least as active in the condensation of amines as, for example, is phosphoric acid on an equivalent basis. Preferably, the condensation catalysts on a support should have a surface area greater than about 20 m.sup.2 /gm to as high as about 260 m.sup.2 /gm or greater depending upon which metal oxide described below that is employed. In the case of titanium oxides, the surface area should be greater than about 140 m.sup.2 /gm to as high as about 260 m.sup.2 /gm, more preferably, greater than about 160 m.sup.2 /gm to as high as about 260 m.sup.2 /gm, determined according to the single point N.sub.2 method. In the case of zirconia oxides, the surface area should be greater than about 70 m.sup.2 /gm to as high as about 150 m.sup.2 /gm, more preferably, greater than about 90 m.sup.2 /gm to as high as about 135 m.sup.2 /gm, determined according to the single point N.sub.2 method. It is appreciated that the performance moderators described below which can be used association with the condensation catalyst and the condensation catalyst promoters described above can affect the surface area of the condensation catalyst. While surface areas described above may be preferred, for purposes of this invention, the surface area of the condensation catalyst should be sufficient to contribute to product selectivity, catalytic activity and/or mechanical or dimensional strength of the catalyst.
Though the condensation catalyst of the invention provides sufficient activity to effect the condensation reaction, certain combinations of reactants and/or product formation can be benefited by treating the catalyst with a catalyst moderator, hereinafter termed a "Performance moderator". Performance moderators are widely used to promote the performance of catalysts in areas of selectivity to certain products and the repression of a catalyst's proclivity to generate a broad range of reaction products. A range of suitable materials may impact the condensation catalysts of this invention in the variety of reaction products. The performance moderator may be any material which impacts the condensation catalyst's selection of reaction products or which changes the proportion of any one or more of the reaction products which the condensation catalyst generates at comparable processing conditions. In addition to contributing to product selectivity, the performance moderator may be any material which contributes to catalytic activity and/or catalyst stability (mechanical or dimensional strength).
Illustrative performance moderators for use in this invention can include, for example, one or more metal oxides, one or more metallic phosphates which may or may not have a cyclic structure, one or more metallic polyphosphates having a condensed structure, one or more Group VIB metal-containing substances and one or more conventional materials such as mineral acids or compounds derived from mineral acids. Mixtures of performance moderators may also be employed in this invention. For purposes of this invention, the performance moderator should be different from the condensation catalyst; however, the performance moderator and the condensation catalyst promoter can be the same or different.
Illustrative of metal oxides which may be utilized as performance moderators in association with the condensation catalyst include, for example, one or more of the following: Group IA metal oxides, Group IIA metal oxides, Group IIIB metal oxides (including lanthanides and actinides), Group VB metal oxides, Group VIB metal oxides, Group VIIB metal oxides, Group VIII metal oxides, Group IB metal oxides, Group IIB metal oxides, Group IIIA metal oxides, Group IVA metal oxides, Group VA metal oxides, Group VIA metal oxides and Group IVB metal oxides or mixtures thereof. Certain of these metal oxides may also be used as condensation catalysts in accordance with this invention such as Group IVA and IVB metal oxides. Preferred metal oxides are amphoteric or slightly acidic or slightly basic. Preferred metal oxides which may be utilized in association with the condensation catalyst include, for example, one or more oxides of beryllium, scandium, yttrium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, tungsten, iron, cobalt, zinc, silver, aluminum, gallium, indium, silicon, germanium, tin, lead, arsenic, antimony and bismuth.
Group IVB metal oxides such as titanium dioxide and zirconium dioxide and Group IVA metal oxides such as silica and germania are preferred for use in this invention. For mixed metal oxides in which at least one of the metals is titanium, suitable metals in association with titanium may include, for example, one or more of the following: Group IIIB metals such as scandium, yttrium and lanthanum including the lanthanides, Group VB metals such as niobium and tantalum, Group VIB metals such as chromium, molybdenum and tungsten, Group VIII metals such as iron, cobalt and nickel, Group IIB metals such as zinc and cadmium, Group IIIA metals such as boron, aluminum, gallium and indium, Group IVA metals such as silicon, germanium, tin and lead, Group VA metals such as arsenic, antimony and bismuth, and Group IVB metals such as zirconium and hafnium. For mixed metal oxides in which at least one of the metals is zirconium, suitable metals in association with zirconium may include, for example, one or more of the following: Group IVA metals such as silicon, germanium, tin and lead, Group VB metals such as niobium and tantalum, and Group VIB metals such as chromium, molybdenum and tungsten. Certain of these metal oxides may also be effective as condensation catalysts for use in this invention.
Illustrative of mixed metal oxides which may be used as performance moderators in association with the condensation catalyst include, for example, TiO.sub.2 --SiO.sub.2, TiO.sub.2 --Al.sub.2 O.sub.3, TiO.sub.2 --CdO, TiO.sub.2 --Bi.sub.2 O.sub.3, TiO.sub.2 --Sb.sub.2 O.sub.5, TiO.sub.2 --Sn.sub.2 O, TiO.sub.2 --ZrO.sub.2 O, TiO.sub.2 --BeO, TiO.sub.2 --MgO, TiO.sub.2 --CaO, TiO.sub.2 --SrO, TiO.sub.2 --ZnO, TiO.sub.2 --Ga.sub.2 O.sub.3, TiO.sub.2 --Y.sub.2 O.sub.3, TiO.sub.2 --La.sub.2 O.sub.3, TiO.sub.2 --MoO.sub.3, TiO.sub.2 --Mn.sub.2 O.sub.3, TiO.sub.2 --Fe.sub.2 O.sub.3, TiO.sub.2 --Co.sub.3 O.sub.4, TiO.sub.2 --WO.sub.3, TiO.sub.2 --V.sub.2 O.sub.5, TiO.sub.2 --Cr.sub.2 O.sub.3, TiO.sub.2 --ThO.sub.2, TiO.sub.2 --Na.sub.2 O, TiO.sub.2 --BaO, TiO.sub.2 --CaO, TiO.sub.2 --HfO.sub.2, TiO.sub.2 --Li.sub.2 O, TiO.sub.2 --Nb.sub. 2 O.sub.5, TiO.sub.2 --Ta.sub.2 O.sub.5, TiO.sub.2 --Gd.sub.2 O.sub.3, TiO.sub.2 --Lu.sub.2 O.sub.3, TiO.sub.2 --Yb.sub.2 O.sub.3, TiO.sub.2 --CeO.sub.2, TiO.sub.2 --Sc.sub.2 O.sub.3, TiO.sub.2 --PbO, TiO.sub.2 --NiO, TiO.sub.2 --CuO, TiO.sub.2 --CoO, TiO.sub.2 --B.sub.2 O.sub.3, ZrO.sub.2 --SiO.sub.2, ZrO.sub.2 --Al.sub.2 O.sub.3, ZrO.sub.2 --SnO, ZrO.sub.2 --PbO, ZrO.sub.2 --Nb.sub.2 O.sub.5, ZrO.sub.2 --Ta.sub.2 O.sub.5, ZrO.sub.2 --Cr.sub.2 O.sub.3, ZrO.sub.2 --MoO.sub.3, ZrO.sub.2 --WO.sub.3, ZrO.sub.2 --TiO.sub.2, ZrO.sub.2 --HfO.sub.2, TiO.sub.2 --SiO.sub.2 --Al.sub.2 O.sub.3, TiO.sub.2 --SiO.sub.2 --ZnO, TiO.sub.2 --SiO.sub.2 --ZrO.sub.2, TiO.sub.2 --SiO.sub.2 --CuO, TiO.sub.2 --SiO.sub.2 --MgO, TiO.sub.2 --SiO.sub.2 Fe.sub.2 O.sub.3, TiO.sub.2 --SiO.sub.2 --B.sub.2 O.sub.3, TiO.sub.2 --SiO.sub.2 --WO.sub.3, TiO.sub.2 --SiO.sub.2 --Na.sub.2 O, TiO.sub.2 --SiO.sub.2 --MgO, TiO.sub.2 --SiO.sub.2 --La.sub.2 O.sub.3, TiO.sub.2 --SiO.sub.2 --Nb.sub.2 O.sub.5, TiO.sub.2 --SiO.sub.2 --Mn.sub.2 O.sub.3, TiO.sub.2 --SiO.sub.2 --Co.sub.3 O.sub.4, TiO.sub.2 --SiO.sub.2 --NiO, TiO.sub.2 --SiO.sub.2 --PbO, TiO.sub.2 --SiO.sub.2 --Bi.sub.2 O.sub.3, TiO.sub.2 --Al.sub.2 O.sub.3 --ZnO, TiO.sub.2 --Al.sub.2 O.sub.3 --ZrO.sub.2, TiO.sub.2 --Al.sub.2 O.sub.3 --Fe.sub.2 O.sub.3, TiO.sub.2 --Al.sub.2 O.sub.3 --WO.sub.3, TiO.sub.2 --Al.sub.2 O.sub.3 --La.sub.2 O.sub.3, TiO.sub.2 --Al.sub.2 O.sub.3 --Co.sub.3 O.sub.4, ZrO.sub.2 --SiO.sub.2 --Al.sub.2 O.sub.3, ZrO.sub.2 --SiO.sub.2 --SnO, ZrO.sub.2 --SiO.sub.2 --Nb.sub.2 O.sub.5, ZrO.sub.2 --SiO.sub.2 --WO.sub.3, ZrO.sub.2 --SiO.sub.2 --TiO.sub.2, ZrO.sub.2 --SiO.sub.2 --MoO.sub.3, ZrO.sub.2 --SiO.sub.2 --HfO.sub.2, ZrO.sub.2 --SiO.sub.2 -- Ta.sub.2 O.sub.5, ZrO.sub.2 --Al.sub.2 O.sub.3 --SiO.sub.2, ZrO.sub.2 --Al.sub.2 O.sub.3 --PbO, ZrO.sub.2 --Al.sub.2 O.sub.3 --Nb.sub.2 O.sub.5, ZrO.sub.2 --Al.sub.2 O.sub.3 --WO.sub.3, ZrO.sub.2 --Al.sub.2 O.sub.3 --TiO.sub.2, ZrO.sub.2 --Al.sub.2 O.sub.3 --MoO.sub.3, ZrO.sub.2 --HfO.sub.2 --Al.sub.2 O.sub.3, ZrO.sub.2 --HfO.sub.2 --TiO.sub.2, and the like. Other suitable mixed metal oxides embraced within the scope of this invention are disclosed by Tanabe et al., Bulletin of the Chemical Society of Japan, Vol. 47(5), pp. 1064-1066 (1974).
The metal oxides described herein which can be used as performance moderators in association with the condensation catalyst may contribute to product selectivity and/or catalytic activity of the reaction and/or stability of the catalyst. The catalyst structure can comprise from about 0 to about 90 percent or greater by weight of the metal oxide, preferably from about 0 to about 75 percent by weight of the metal oxide, and more preferably from about 0 to about 50 percent by weight of the metal oxide, the remainder being the weight of the condensation catalyst. For mixed metal oxides containing titania, higher concentrations of titania can provide very desirable AEEA selectivities. As discussed hereinafter, the condensation catalyst of this invention may also contain support(s), binding agent(s) or other additives to stabilize or otherwise help in the manufacture of the catalyst.
The metallic phosphate and polyphosphate performance moderators may or may not have a cyclic structure and may or may not have a condensed structure. Suitable metallic phosphates having a cyclic structure or an acyclic structure are disclosed in U.S. patent application Ser. No. 07/390,706, filed Aug. 8, 1989 and incorporated herein by reference. Suitable metallic polyphosphates having a condensed structure are disclosed in U.S. patent application Ser. No. 07/390,709, filed Aug. 8, 1989 and incorporated herein by reference (now U.S. Pat. No. 4,983,736). Illustrative of metallic phosphate and polyphosphate performance moderators include, for example, metallic orthophosphates (PO.sub.4.sup.-3), metallic pyrophosphates ((P.sub.2 O.sub.7.sup.-4) metallic polyphosphates (including tripolyphosphates (P.sub.3 O.sub.10.sup.-5), tetrapolyphosphates (P.sub.4 O.sub.13.sup.-6), pentapolyphosphates (P.sub.5 O.sub.16.sup.-7) and higher polyphosphates), metallic metaphosphates (including trimetaphosphates (P.sub.3 O.sub.9.sup.-3), tetrametaphosphates (P.sub.4 O.sub.12.sup.-4) and other lower and higher metaphosphates) and metallic ultraphosphates (condensed phosphates containing more P.sub.2 O.sub.5 than corresponds to the metaphosphate structure). Corresponding metallic metaphosphimates, metallic phosphoramidates and metallic amido- and imidophosphates of the above may also be used as performance moderators in accordance with this invention. Suitable metals which can be incorporated into the metallic phosphate and polyphosphate performance moderators include, for example, Group IA metals, Group IIA metals, Group IIIB metals, Group IVB metals, Group VB metals, Group VIB metals, Group VIIB metals, Group VIII metals, Group IB metals, Group IIB metals, Group IIIA metals, Group IVA metals, Group VA metals, Group VIA metals and mixtures thereof.
Illustrative of metallic orthophosphates which may be utilized in this invention include, for example, NaH.sub.2 PO.sub.4, KH.sub.2 PO.sub.4, RbH.sub.2 PO.sub.4, LiH.sub.2 PO.sub.4, CsH.sub.2 PO.sub.4, MgHPO.sub.4, CaHPO.sub.4, YPO.sub.4, CePO.sub.4, LaPO.sub.4, ThPO.sub.4, MnPO.sub.4, FePO.sub.4, BPO.sub.4, AlPO.sub.4, BiPO.sub.4, Mg(H.sub.2 PO.sub.4).sub.2, Ba(H.sub.2 PO.sub.4).sub.2, Mg(NH.sub.4).sub.2 PO.sub.4, Ca(H.sub.2 PO.sub.4).sub.2, La(H.sub.2 PO.sub.4).sub.3 and the like. Illustrative of metallic pyrophosphates which may be utilized in this invention include, for example, Na.sub.2 H.sub.2 P.sub.2 O.sub.7, Ca.sub.2 P.sub.2 O.sub.7, Mg.sub.2 P.sub.2 O.sub.7, KMnP.sub.2 O.sub.7, AgMnP.sub.2 O.sub.7, BaMnP.sub.2 O.sub.7, NaMnP.sub.2 O.sub.7, KCrP.sub.2 O.sub.7, NaCrP.sub.2 O.sub.7, Na.sub.4 P.sub.2 O.sub.7, K.sub.4 P.sub.2 O.sub.7, Na.sub.3 HP.sub.2 O.sub.7,NaH , SiP.sub.2 O.sub.7, NaH.sub.3 P.sub.2 O.sub.7, SiP.sub.2 O.sub.7, ZrP.sub.2 O.sub.7, Na.sub.6 Fe.sub.2 (P.sub.2 O.sub.7).sub.3, Na.sub.8 Fe.sub.4 (P.sub.2 O.sub.7).sub.5, Na.sub.6 Cu(P.sub.2 O.sub.7).sub.2, Na.sub.32 Cu.sub.14 (P.sub.2 O.sub.7).sub.15, Na.sub.4 Cu.sub.18 (P.sub.2 O.sub.7).sub.5, Na(NH.sub.4).sub.2 P.sub.2 O.sub.7, Ca(NH.sub.4).sub.2 P.sub.2 O.sub.7, MgH.sub.2 P.sub.2 O.sub.7, Mg(NH.sub.4).sub.2 P.sub.2 O.sub.7) and the like. Illustrative of metallic polyphosphates which may be utilized in this invention include, for example, NaSr.sub.2 P.sub.3 O.sub.10, NaCa.sub.2 P.sub.3 O.sub.10, NaNi.sub.2 P.sub.3 O.sub.10, Na.sub.5 P.sub.3 O.sub.10, K.sub.5 P.sub.3 O.sub.10, Na.sub.3 MgP.sub.3 O.sub.10, Na.sub.3 CuP.sub.3 O.sub.10, Cu.sub.5 (P.sub.3 O.sub.10).sub.2, Na.sub.3 ZnP.sub.3 O.sub.10, Na.sub.3 CdP.sub.3 O.sub.10, Na.sub.6 Pb(P.sub.3 O.sub.10).sub.2, Na.sub.3 CoP.sub.3 O.sub.10, K.sub.3 CoP.sub.3 O.sub.10, Na.sub.3 NiP.sub.3 O.sub.10, K.sub.2 (NH.sub.4).sub.3 P.sub.3 O.sub.10, Ca(NH.sub.4).sub.2 P.sub.3 O.sub.10, La(NH.sub.4).sub.3 P.sub.3 O.sub.10, NaMgH.sub.2 P.sub.3 O.sub.10 and the like. Illustrative of metallic metaphosphates which may be utilized in this invention include, for example, Na.sub.3 P.sub.3 O.sub.9, K.sub.3 P.sub.3 O.sub.9, Ag.sub.3 P.sub.3 O.sub.9, Na.sub.4 P.sub.4 O.sub.12, K.sub.4 P.sub.4 O.sub.12, Na.sub.2 HP.sub.3 O.sub.9, Na.sub.4 Mg(P.sub.3 O.sub.9).sub.2, NaSrP.sub.3 O.sub.9, NaCaP.sub.3 O.sub.9, NaBaP.sub.3 O.sub.9, KBaP.sub.3 O.sub.9, Ca.sub.3 (P.sub.3 O.sub.9).sub.2, Ba(P.sub.3 O.sub.9).sub.2, Na.sub.2 Ni.sub.2 (P.sub.3 O.sub.9).sub.2, Na.sub.4 Ni(P.sub.3 O.sub.9).sub.2, Na.sub.4 Co(P.sub.3 O.sub.9).sub.2, Na.sub.4 Cd(P.sub.3 O.sub.9).sub.2 and the like. Illustrative of metallic ultraphosphates which may be utilized in this invention include, for example, CaP.sub.4 O.sub.11, Ca.sub.2 P.sub.6 O.sub.17, Na.sub.8 P.sub.10 O.sub.29, Na.sub.6 P.sub.8 O.sub.23, Na.sub.2 CaP.sub.6 O.sub.17, Na.sub.2 P.sub.4 O.sub.11, NaBaP.sub.7 O.sub.18, Na.sub.2 P8O.sub.21, K.sub.4 P.sub.6 O.sub.17 and the like. The preferred metallic phosphate and polyphosphate performance moderators for use in this invention include Group IA metal dihydrogen orthophosphates, Group IA metal metaphosphates and Group IA metal dihydrogen pyrophosphates, more preferably NaH.sub.2 PO.sub.4, Na.sub.3 P.sub.3 O.sub.9, Na.sub.4 P.sub.4 O.sub.12 and Na.sub.2 H.sub.2 P.sub.2 O.sub.7. Other suitable metallic phosphate and polyphosphate performance moderators which are embraced within the scope of this invention are disclosed by Van Wazer, J.R., Phosphorus and Its Compounds, Vol. 1, Interscience Publishers, Inc., New York (1958).
The metallic phosphate and polyphosphate performance moderators can be prepared by conventional methods known in the art. Sodium is believed to be one of a small group of cations effective for stabilizing six-membered cyclic metaphosphates at their temperatures of fusion (about 625.degree. C.) without decomposition to linear and/or other condensed phosphates including mixtures. The formation of cyclic and acyclic metallic phosphate and polyphosphate structures appears to depend on the cation ionic size, the coordination number of the cation and the ionic or covalent nature of the metal-oxygen bond.
While not wishing to be bound to any particular theory, it is believed that those metallic phosphate and polyphosphate performance moderators and promoters encompassed within the scope of this invention having a cyclic structure and possessing ionic character and/or ion exchange capacity contribute to desired activity and product selectivity when used in appropriate amounts as described hereinbelow. While the reaction mixture may initially include one or more metallic phosphates and/or metallic polyphosphates other than metallic phosphates and polyphosphates having a cyclic structure and possessing ionic character and/or ion exchange capacity, it is believed to be desirable that such metallic phosphates and polyphosphates having a cyclic structure and possessing ionic character and/or ion exchange capacity be formed in situ in order to contribute to desired activity and product selectivity. In such instances, the preparation conditions or reaction conditions should allow for the formation of metallic phosphates and polyphosphates having a cyclic structure and possessing ionic character and/or ion exchange capacity. Mixtures of metallic phosphates and polyphosphates having a cyclic structure and possessing ionic character and/or ion exchange capacity with metallic phosphates and polyphosphates having other than a cyclic structure and other than ionic character and/or ion exchange capacity are believed to contribute to desired activity and product selectivity.
Illustrative of Group VIB metal-containing substances which can be utilized as performance moderators in association with the condensation catalyst are described hereinabove. Such Group VIB metal-containing substances can contribute to product selectivity, catalytic activity and/or catalyst stability (mechanical or dimensional strength of the catalyst). Certain of these Group VIB metal-containing substances may also be effective as condensation catalysts for use in this invention.
Illustrative of conventional materials which can be utilized as performance moderators in association with the condensation catalyst include a mineral acid or a compound derived from a mineral acid. Suitable for use as performance moderators are one or more phosphoric acid or a salt of phosphoric acid, hydrogen fluoride, hydrofluoric acid or a fluoride salt, sulfuric acid or a salt of sulfuric acid, and the like. The performance moderator may also be organic esters of phosphoric acid or a salt of phosphoric acid, hydrogen fluoride organic complexes, hydrofluoric acid organic complexes or a fluoride salt organic complexes, organic esters of sulfuric acid or a salt of sulfuric acid, and the like. Suitable salts of phosphoric acid include sodium dihydrogen phosphate, disodium hydrogen phosphate and the like.
A variety of conventional phosphorus-containing substances may be suitable for use as performance moderators in this invention. The conventional substances should be capable of functioning as a performance moderator. Illustrative of conventional phosphorus-containing substances may include, for example, those disclosed in U.S. Pat. No. 4,036,881, U.S. Pat. No. 4,806,517, U.S. Pat. No. 4,617,418, U.S. Pat. No. 4,720,588, U.S. Pat. No. 4,394,524, U.S. Pat. No. 4,540,822, U.S. Pat. No. 4,588,842, U.S. Pat. No. 4,605,770, U.S. Pat. No. 4,683,335, U.S. Pat. No. 4,316,841, U.S. Pat. No. 4,463,193, U.S. Pat. No. 4,503,253, U.S. Pat. No. 4,560,798 and U.S. Pat. No. 4,578,517.
Suitable conventional phosphorus-containing substances which can be employed as performance moderators in this invention include acidic metal phosphates, phosphoric acid compounds and their anhydrides, phosphorous acid compounds and their anhydrides, alkyl or aryl phosphate esters, alkyl or aryl phosphite esters, alkyl or aryl substituted phosphorous acids and phosphoric acids, alkali metal monosalts of phosphoric acid, the thioanalogs of the foregoing, and mixtures of any of the above.
For purposes of this invention, the phosphorus-containing substances used as promoters and performance moderators herein should only be employed in amounts sufficient so as to not adversely affect AEEA product selectivity. While not wishing to be bound to any particular theory, it is believed that phosphorus-containing substances are catalytically selective for the reaction of AEEA and an alkyleneamine such as EDA to higher polyalkylene polyamines. Therefore, the amount of a phosphorus-containing substance used as a promoter or performance moderator herein is considered important to achieving amines products having a high yield weight percent of AEEA.
The amount of the performance moderator of the mineral acid type used with the condensation catalyst of the invention is not narrowly critical. Generally, the amount does not exceed 25 weight percent of the weight of the catalyst. As a rule, it is desirable to use at least 0.01 weight percent of the weight of the catalyst. Preferably, the amount of performance moderator will range from about 0.2 to about 10 weight percent of the weight of the catalyst. Most preferably, the amount of performance moderator will range from about 0.5 to about 5 weight percent of the weight of the catalyst.
The amount of performance moderator other than the mineral acid type used with the condensation catalyst is not narrowly critical. Generally, the amount does not exceed 90 weight percent of the weight of the catalyst. The amount of performance moderator can range from about 0 to about 90 or greater weight percent of the weight of the catalyst, preferably from about 0 to about 75 weight percent of the weight of the catalyst, and more preferably from about 0 to about 50 weight percent of the weight of the catalyst. Most preferably, the amount of performance moderator will range from about 0.5 to about 25 weight percent of the weight of the catalyst.
The performance moderator can be provided to the condensation catalyst by conventional procedures known in the art. For example, the performance moderator can be provided to the catalyst by impregnating particles or monolithic structures comprising the catalyst with liquid comprising the performance moderator. This is a well known procedure in the art for incorporating additives to a solid support material. The condensation catalyst of the invention may be utilized as solid powders or as fused, bonded or compressed solid pellets, or larger structures in association with the one or more metal oxides, or as coated, fused, bonded or compressed solid pellets, or larger structures, composited with one or more support materials, in association with one or more metal oxides. These solid structures may be treated with the performance moderator by mixing a liquid body of the performance moderator with the solid structure. For example, the condensation catalyst solids may be slurried in the performance moderator, drained, washed and suctioned to remove excess performance moderator and then dried with heat to remove any volatiles accompanying the performance moderator. The drying temperature chosen will depend on the nature of the volatiles to be removed. Usually, the time/temperature for effecting drying will be below the conditions for effecting dehydration to remove bound water from the metal oxide in association with the condensation catalyst. Normally the drying temperature will be greater than about 120.degree. C. and below about 600.degree. C. depending on the thermal stability of the catalyst or the fusion temperature of the particular phosphate specie used if any. The drying time will generally go down as the drying temperature rises and vice versus, and may extend from 5 seconds to about 24 hours.
Alternatively, the performance moderator can be provided to the condensation catalyst at the time of preparing the catalyst in association with one or more metal oxides. For example, one or more metal oxides may be condensed from their respective hydrolyzable monomers to the desired oxides to form oxide powders which can thereafter be blended and compressed with the catalyst to form pellets and larger structures of the metal oxide-containing condensation catalyst of this invention. The one or more metal oxides which can be used in association with the condensation catalyst in accordance with this invention can be provided from metal salts which can be heated to form the metal oxide. It is appreciated that the performance moderator can be incorporated into the molecular bonding configuration of the metal oxide-containing condensation catalyst by conventional procedures known in the art.
The condensation catalysts in association with one or more metal oxides prior to the optional treatment of the performance moderator may be prepared in a wide variety of ways. For example, one or more metal oxides may be provided as a partial condensate on a support, such as a silica or alpha, beta or gamma alumina, silicon carbide, and the like, and then condensed by heating to effect polymerization to the desired oxide form. The metal oxide(s) may be condensed from hydrolyzable monomers to the desired oxide, indeed, to form an oxide powder which can thereafter be compressed in the presence of a condensation catalyst to form pellets and larger structures of the metal oxide-containing condensation catalyst of the invention. A blend of the powder and condensation catalyst can be made into a shapeable paste which can be extruded and cut into pellets according to conventional procedures. The extrudate may thereafter be fired to cure the condensation catalyst and fix the structure. The cut extrudate may be blended with a support material such as those characterized above, and the blend fired to fuse the metal oxide-containing catalyst to the support.
In a preferred embodiment of this invention, a high surface area silica, germania, titania or zirconia can be slurried with an aqueous solution of ammonium metatungstate or silicotungstic acid, extruded, and calcined at a temperature of about 400.degree. C.
A preferred catalyst structure comprises a Group VIB and/or IVB metal oxide having a surface area of at least about 140 m.sup.2 /gm which may or may not be bonded to a support material. The term "support," as used herein and in the claims, means a solid structure which does not adversely affect the catalytic properties of the catalyst and is at least as stable as the catalyst to the reaction medium. The support can function as an amine condensation catalyst independent of the condensation catalyst used herein, although it may have lower catalytic activity to the reaction. The support may act in concert with the catalyst to moderate the reaction. Some supports may contribute to the selectivity of the reaction. The catalyst structure can comprise from about 2 to about 60 percent by weight or greater of the support, more preferably from about 10 to about 50 percent by weight of the support, the remainder being the weight of the metal oxide(s) and condensation catalyst. Included in the weight of the support is the weight of any binding agent such as phosphates, sulfates, silicates, fluorides, and the like, and any other additive provided to stabilize or otherwise help in the manufacture of the catalyst. The support may be particles as large or larger than the catalyst component and "glued" to the condensation catalyst and/or metal oxide by virtue of a binding medium.
The support may constitute a separate phase in the process of extruding the catalytic structure. In this embodiment, the support forming material, Preferably as a paste is blended with a paste of the condensation catalyst and one or more metal oxides or a partial condensate thereof. The paste may comprise the oxide forms of the support and the condensation catalyst, each blended with water, and/or binding agents. The extrudate of the blend is passed through a multiorificed die and chopped into pellets of the desired sizes. The particles may be doughnut shaped, spherical, and the like. Then the particles are calcined to dry them and complete any condensation reaction in the support and/or the metal oxide-containing condensation catalyst.
The use of supports for the condensation catalyst provides a number of significant advantages. It has been determined that some of the condensation catalysts are not as stable in the amines reaction media when utilized over an extended period of time. When the reaction is effected as a batch reaction, this matter is not a problem. However, when the reaction is effected with the condensation catalyst as part of a fixed bed in a tubular reactor, the preferred procedure for carrying out the invention, it is desirable to have the catalyst be more stable. When the condensation catalyst is combined with the support, it has greater stability for the reaction medium, and therefore, it is better able to be used in a fixed bed of a continuous reactor. The supported catalysts suffer only minimally from the leaching problems that the catalyst per se may have or the problems that are associated with certain conventional catalysts, such as acidic phosphorus compounds on silica.
The reactants used in the condensation process of the invention may be ammonia or organic compound containing -NH- and any compound possessing an alcoholic hydroxyl group, subject to the following: the intramolecular condensation of an amino compound produces an amine having a lower molecular weight, and the intermolecular condensation of an amino compound with one or more of another amino compound or a compound containing an alcoholic hydroxyl group produces an amine having a lower, same or higher molecular weight than the reactants.
Illustrative of suitable reactants in effecting the overall process of the invention, include by way of example:
Ammonia
MEA--monoethanolamine
DEA--diethanolamine
EDA--ethylenediamine
DiHEED--dihydroxyethylethylenediamine
MeEDA--methylethylenediamine
EtEDA--ethylethylenediamine
AEEA--N-(2-aminoethyl)ethanolamine
HEP--N-(2-hydroxyethyl)piperazine
DETA--diethylenetriamine
HEDETA--hydroxyethyldiethylenetriamine
HETETA--hydroxyethyltriethylenetetramine
HETEPA--hydroxyethyltetraethylenepentamine
AEP--N-(2-aminoethyl)piperazine
HPA--higher polyalkylene polyamines
HPA Isomers
TETA Isomers (TETA's)
TAEA--trisaminoethylamine
TETA--triethylenetetramine
DPE--dipiperazinoethane
DAEP--diaminoethylpiperazine
PEEDA--piperazinoethylethylenediamine
TEPA Isomers (TEPA's)
AETAEA--aminoethyltrisaminoethylamine
TEPA--tetraethylenepentamine
AEDPE--aminoethyldipiperazinoethane
AEDAEP--aminoethyldiaminoethylpiperazine
AEPEEDA--aminoethylpiperazinoethylethylenediamine
iAEPEEDA--isoaminoethylpiperazinoethylethylenediamine
BPEA--bispiperazinoethylamine
The foregoing also can represent the products of the reaction. For example, ammonia and MEA are frequently employed to produce EDA along with a variety of other amines, most of which are set forth above. Further, alkylene oxides such as ethylene oxide can be employed with ammonia and a variety of other amines to produce polyalkylene polyamines in accordance with this invention.
Glycol compounds can also be employed in the preparation of amines in accordance with this invention. Glycol compounds embrace diols and polyols. Illustrative of glycol compounds include alkylene glycols such as ethylene glycol, propylene glycol, 1,3-propane diol or mixtures thereof. For purposes of this invention, suitable glycol compounds include ethylene glycol.
The feed space velocity, feed mole ratio and reaction temperature and pressure are not narrowly critical and can vary over a wide range. The selection of these operating variables is dependent on desired conversions and product selectivity.
In particular, when MEA and EDA are employed as reactants in the process of this invention, an increase in MEA space velocity or EDA/MEA feed mole ratio will decrease conversion, while an increase in temperature will increase conversion. Typically, it is desired to operate at a high enough pressure to maintain the reactants primarily in the liquid phase. At a particular MEA space velocity, EDA/MEA feed mole ratio and temperature, the conversion will generally decrease if the pressure is lowered until the flow changes from liquid to vapor.
Lower reaction temperatures generally provide higher selectivity to desired products. As the EDA/MEA feed mole ratio increases, the selectivity to desired products increases. The EDA/MEA feed mole ratio may be used to adjust the relative amounts of DETA and AEEA. As the EDA/MEA feed mole ratio is increased, the DETA to AEEA weight ratio increases.
The process may be effected in the liquid or vapor or supercritical liquid states or mixtures thereof though the actual reaction is believed to occur on the catalyst's solid surface in the absorbed state. In this context, the vapor phase reaction is intended to refer to the general vapor state of the reactants. Though the reaction conditions may range from subatmospheric to superatmospheric conditions, it is desirable to run the reaction from about 50 psig to about 3,000 psig, preferably from about 200 psig to about 2,000 psig.
The temperature of the reaction may be as low as about 125.degree. C. to about 400.degree. C. Preferably, the reaction temperature ranges from about 150.degree. C. to about 350.degree. C., and most preferably from about 225.degree. C. to about 325.degree. C.
The reaction may be effected by the incremental addition of one of the reactants to the other or by the joint addition of the reactants to the catalyst. The preferred process effects the reaction in a continuous manner over a fixed bed of the condensation catalyst in a tubular reactor. However, the reaction may be carried out by slurrying the catalyst in the reactants or in a batch mode in an autoclave. An inert such as nitrogen, methane, hydrogen and the like can be used in the reaction process.
The preferred overall process involves the formation of alkyleneamines from the intermolecular condensation of alkanolamines and alkyleneamines or the intramolecular condensation of alkyleneamines or alkanolamines. Illustrative of such reactions are the following reactant combinations:
______________________________________REACTANT REACTANT PRODUCTS______________________________________Ammonia MEA EDA, DETA, AEEA, TETA, TEPA, PIP, AEPMEA, Ammonia EDA EDA, AEEA, HEP, DETA, AEP, TETA, TEPA, PEHA, TETA Isomers: TAEA, TETA, DAEP, PEEDA, DPE, TEPA, TEPA Isomers: AETAEA, AEPEEDA, AEDAEP, AEDPE, BPEAMEA EDA AEEA, HEP, DETA, AEP, TETA, TEPA, PEHA, TETA Isomers: TAEA, TETA, DAEP, PEEDA, DPE, TEPA, TEPA Isomers: AETAEA, AEPEEDA, AEDAEP, AEDPE, BPEAAmmonia DEA AEEA, DETA, PIP, AEPEG, Ammonia EDA AEEA, DETA, MEA, PIPAmmonia EG MEA, AEEA, DETA, PIPEG EDA AEEA, TETAEG, Ammonia MEA AEEA, EDA, DETA, TETA, DEA______________________________________
The process of the invention provides the ability to selectively generate the manufacture of desirable AEEA without generating large amounts of cyclic alkyleneamine products such as PIP, AEP and HEP. The alkyleneamines producers composition of this invention has an AEEA to PIP weight ratio of greater than about 5.0 and a DETA to AEEA weight ratio of less than about 5.0.
This invention is further illustrated by certain of the following examples:
EXAMPLES
In the examples set forth in the tables below, the catalyst of choice was placed in a tubular reactor having an outside diameter of 1 inch and an overall length of 30 inches. The catalyst portion of the reactor comprised a length of 24 inches, capable of accommodating 150 cubic centimeters of catalyst. The reactor was made of 316 stainless steel.
For each of the examples, the tubular reaction system was brought to the designated conditions. The MEA and EDA were premixed to the appropriate feed mole ratio and then pressure fed to the system. The liquid feed was then mixed with nitrogen (if used) and this mixture was passed to a preheater prior to entering the reaction zone.
The reaction mixture was passed through the reaction zone in a downflow fashion. The pressure in the reaction zone was controlled by a motor valve at the outlet of the reactor. After leaving the reaction zone, the pressure of the stream was reduced from that of the reaction zone to slightly above atmospheric. This stream was then passed through a trap where the nitrogen (if used) was separated from the condensables which were collected in a semi-batch fashion. The condensable sample, which contains unreacted MEA and EDA and the products of the reaction, was then analyzed for water by a Karl-Fisher procedure and for organics (amines) by capillary gas chromatography.
The catalysts employed in the examples are identified as follows:
______________________________________Designation Composition Physical Properties______________________________________A TiO.sub.2 (anatase)/WO.sub.3 Particle size: 1/16 inch TiO.sub.2 /WO.sub.3 wt. cylindrical extrudates. ratio = 80/20B TiO.sub.2 (anatase)/WO.sub.3 Particle size: 1/8 inch TiO.sub.2 /WO.sub.3 wt. cylindrical extrudates; ratio = 80/20 Catalyst surface area: 227.9 m.sup.2 /gm.C TiO.sub.2 (anatase)/WO.sub.3 Particle size: 1/16 inch TiO.sub.2 /WO.sub.3 wt. cylindrical extrudates; ratio = 80/20 Catalyst surface area: 166.3 m.sup.2 /gm.D TiO.sub.2 (anatase)/WO.sub.3 Particle size: 1/16 inch TiO.sub.2 /WO.sub.3 wt. cylindrical extrudates. ratio = 80/20E TiO.sub.2 (anatase)/WO.sub.3 Particle size: 1/16 inch TiO.sub.2 /WO.sub.3 wt. cylindrical extrudates. ratio = 80/20F TiO.sub.2 (anatase)/WO.sub.3 Particle size: 1/16 inch TiO.sub.2 /WO.sub.3 wt. cylindrical extrudates; ratio = 80/20 Catalyst surface area: 166.3 m.sup.2 /gm.G TiO.sub.2 (anatase)/WO.sub.3 Particle size: 1/16 inch TiO.sub.2 /WO.sub.3 wt. cylindrical extrudates; ratio = 80/20 Catalyst surface area: 166.3 m.sup.2 /gm.H TiO.sub.2 (anatase)/WO.sub.3 / Particle size: 1/16 inch SiO.sub.2 (10 wt. %) cylindrical extrudates. TiO.sub.2 /WO.sub.3 wt. ratio = 70/30I TiO.sub.2 (anatase)/WO.sub.3 / Particle size: 1/16 inch Al.sub.2 O.sub.3 (10 wt. %) cylindrical extrudates. TiO.sub.2 /WO.sub.3 wt. ratio = 70/30J TiO.sub.2 (anatase)/WO.sub.3 / Particle size: 1/16 inch TiO.sub.2 /WO.sub.3 wt. cylindrical extrudates. ratio = 70/30K TiO.sub.2 (anatase)/WO.sub.3 / Particle size: 1/16 inch SiO.sub.2 (10 wt. %) cylindrical extrudates. TiO.sub.2 /WO.sub.3 wt. ratio = 70/30L TiO.sub.2 (anatase)/WO.sub.3 / Particle size: 1/16 inch Al.sub.2 O.sub.3 (10 wt. %) cylindrical extrudates. TiO.sub.2 /WO.sub.3 wt. ratio = 70/30M ZrO.sub.2 /WO.sub.3 Particle size: 1/16 inch ZrO.sub.2 /WO.sub.3 wt. cylindrical extrudates. ratio = 80/20N TiO.sub. 2 (anatase)/WO.sub.3 Particle size: 1/16 inch TiO.sub.2 /WO.sub.3 wt. cylindrical extrudates. ratio = 70/30O Al.sub.2 /O.sub.3 /WO.sub.3 Particle size: 1/16 inch Al.sub.2 O.sub.3 /WO.sub.3 wt. cylindrical extrudates. ratio = 70/30P TiO.sub.2 (anatase)/ Particle size: 1/16 inch SiO.sub.2 /WO.sub.3 (7 wt. %) cylindrical extrudates. TiO.sub.2 /SiO.sub.2 wt. ratio = 70/30Q TiO.sub.2 (anatase)/ Particle size: 1/16 inch SiO.sub.2 /WO.sub.3 (7 wt. %) cylindrical extrudates; TiO.sub.2 /SiO.sub.2 wt. Catalyst surface area: ratio = 70/30 224.1 m.sup.2 /gm.R TiO.sub.2 (anatase)/ Particle size: 1/16 inch WO.sub.3 (5 wt. %) cylindrical extrudates; Catalyst surface area: 247.0 m.sup.2 /gm.S TiO.sub.2 (anatase)/WO.sub.3 Particle size: 1/16 inch TiO.sub.2 /WO.sub.3 wt. cylindrical extrudates; ratio = 80/20 Catalyst surface area: 166.3 m.sup.2 /gm.T TiO.sub.2 (anatase)/WO.sub.3 Particle size: 1/16 inch TiO.sub.2 /WO.sub.3 wt. cylindrical extrudates. ratio = 80/20U TiO.sub.2 (anatase)/WO.sub.3 Particle size: 1/16 inch TiO.sub.2 /WO.sub.3 wt. cylindrical extrudates. ratio = 80/20V TiO.sub.2 (anatase)/ Particle size: 1/16 inch SiO.sub.2 /H.sub.2 WO.sub.4 cylindrical extrudates; (1.85 wt. % W)/ Catalyst surface area: Na.sub.3 P.sub.3 O.sub.9 181.8 m.sup.2 /gm. (1.12 wt. % P) TiO.sub.2 /SiO.sub.2 wt. ratio = 72/28W SiO.sub.2 /La.sub.3 P.sub.3 O.sub.9 / Particle size: 1/16 inch Na.sub.5 P.sub.3 O.sub.10 cylindrical extrudates; (4.21 wt. % P) Catalyst surface area: 4.8 m.sup.2 /gm.X TiO.sub.2 /(NH.sub.4).sub.2 HPO.sub.4 Particle size: 1/8 inch cylindrical extrudates; Catalyst surface area: 0.54 m.sup.2 /gm.Y TiO.sub.2 (anatase)/ Particle size: 1/16 inch SiO.sub.2 /ABl cylindrical extrudates; (14.7 wt. % P) Catalyst surface area: TiO.sub.2 /SiO.sub.2 wt. 29.1 m.sup.2 /gm. ratio = 10/90Z SiO.sub.2 /La.sub.3 P.sub.3 O.sub.9 Particle size: 1/16 inch (12.3 wt. % P) cylindrical extrudates; Catalyst surface area: 24.45 m.sup.2 /gm.AA TiO.sub.2 (anatase)/ Particle size: 1/16 inch SiO.sub.2 /NaBaP.sub.3 O.sub.9 cylindrical extrudates; (11.6 wt. % P) Catalyst surface area: TiO.sub.2 /SiO.sub.2 wt. 87.3 m.sup.2 /gm. ratio = 90/10BB TiO.sub.2 (anatase)/ Particle size: 1/16 inch ABl (5.7 wt. % P) cylindrical extrudates; Catalyst surface area: 97.3 m.sup.2 /gm.CC TiO.sub.2 (anatase)/ Particle size: 1/16 inch SiO.sub.2 /La.sub.3 P.sub.3 O.sub.9 cylindrical extrudates; (10.0 wt. % P) Catalyst surface area: TiO.sub.2 /SiO.sub.2 wt. 46.3 m.sup.2 /gm. ratio = 88/12DD SiO.sub.2 /WO.sub.3 / Particle size: 1/16 inch NaBaP.sub.3 O.sub.9 cylindrical extrudates; (9.7 wt. % P) Catalyst surface area: SiO.sub.2 /WO.sub.3 wt. 28.0 m.sup.2 /gm. ratio = 50/50______________________________________
As used herein, ABl refers to a material obtained from Norton Company, Akron, Ohio, which is sodium trimetaphosphate and minor amounts of sodium salts of orthophosphates and pyrophosphates. As used in the tables below, acyclic (N.sub.4) refers to the weight percent of TETA+TAEA.
For examples 296-344, the initial feed was a 6/2/1 mole ratio of nitrogen/EDA/MEA and the nitrogen was turned off after 46 hours. For examples 345-363, the initial feed was a 6/2/1 mole ratio of nitrogen/EDA/MEA and the nitrogen was turned off after 280 hours. For examples 364-406, the initial feed was a 6/2/1 mole ratio of nitrogen/EDA/MEA and the nitrogen was truned off after 126 hours. For examples 407-421, the initial feed was a 6/2/1 mole ratio of nitrogen/EDA/MEA and the nitrogen was turned off after 98 hours. For examples 422-455, the initial feed was a 6/2/1 mole ratio of nitrogen/EDA/MEA and the nitrogen was turned off after 73 hours.
The catalysts and/or supports employed in the examples hereinafter were obtained from Norton Company, Akron, Ohio. Certain of the catalysts and/or supports were subsequently treated as follows:
Catalyst A Preparation: Silicotungstic acid (18.0 grams) was dissolved in distilled water (45 milliliters) and an aliquot sufficient to wet the TiO.sub.2 /WO.sub.3 support (55 grams) was used. After wetting, the catalyst was calcined at a temperature of 350.degree. C. for a period of 1 hour. The impregnation and calcination steps were repeated twice more to give the catalyst.
Catalyst D Preparation: A total of 100 grams of TiO.sub.2 /WO.sub.3 was washed with distilled water in a Soxhlet extractor for a period of about 27 hours. The material was then calcined in air at a temperature of 350.degree. C. for a period of 2 hours.
Catalyst E Preparation: The TiO.sub.2 /WO.sub.3 material was extracted with hot monoethanolamine for a period of about 12 hours using a Soxhlet apparatus. After the extraction period, the material was washed with hot water for a period of 8 hours and then calcined in air at a temperature of 350.degree. C. for a period of 2 hours.
Catalyst J Preparation: The TiO.sub.2 /WO.sub.3 material was calcined in air at a temperature of 600.degree. C. for a period of about 20 hours.
Catalyst K Preparation: The TiO.sub.2 /WO.sub.3 /SiO.sub.2 material was calcined in air at a temperature of 600.degree. C. for a period of about 20 hours.
Catalyst L Preparation: The TiO.sub.2 /WO.sub.3 /Al.sub.2 O.sub.3 material was calcined in air at a temperature of 600.degree. C. for a period of about 20 hours.
Catalyst N Preparation: The TiO.sub.2 /WO.sub.3 material was calcined in air at a temperature of 475.degree. C. for a period of about 20 hours.
Catalyst P Preparation: Ammonium metatungstate (12.14 grams) was dissolved in distilled water (45 milliliters) and an aliquot sufficient to wet the TiO.sub.2 /SiO.sub.2 /WO.sub.3 support (55 grams) was used. After wetting, the catalyst was calcined at a temperature of 350.degree. C. for a period of 1 hour. The impregnation and calcination steps were repeated twice more to give the catalyst.
Catalyst T Preparation: The TiO.sub.2 /WO.sub.3 material was extracted with hot monoethanolamine for a period of about 12 hours using a Soxhlet apparatus. After the extraction period, the material was washed with hot water for a period of 8 hours and then calcined in air at a temperature of 350.degree. C. for a period of 2 hours.
Catalyst U Preparation: The TiO.sub.2 /WO.sub.3 material was extracted with hot monoethanolamine for a period of about 12 hours using a Soxhlet apparatus. After the extraction period, the material was washed with hot water for a period of 8 hours and then calcined in air at a temperature of 350.degree. C. for a period of 2 hours.
Catalyst V Preparation: Tungstic acid/sodium trimetaphosphate (10.0 grams) and distilled water (203.5 grams) were added to a tared porcelain dish. The resulting mixture was heated to a temperature of 70.degree. C. to effect solution. The TiO.sub.2 /SiO.sub.2 support (140 grams) was then added slowly and mixed. The catalyst was allowed to stand at room temperature for a period of 1 hour and excess water was evaporated off. The catalyst was dried at a temperature of 100.degree. C. for a period of 1 hour and then calcined at a temperature of 400.degree. C. for a period of 16 hours.
Catalyst W Preparation: Sodium tripolyphosphate (3.1 grams) was dissolved in distilled water (24.3 grams). This solution was used to impregnate the SiO.sub.2 /La.sub.3 P.sub.3 O.sub.9 support (31.0 grams). The catalyst was dried at a temperature of 100.degree. C. for a period of 1 hour and then calcined at a temperature of 400.degree. C. for a period of 16 hours.
Catalyst X Preparation: Low surface area TiO.sub.2 pellets (150 cubic centimeters) were slurried with diammonium hydrogen phosphate in water (50.5 grams) for a period of 2 hours with stirring under vacuum (210 mm Hg). The catalyst was filtered, washed with water (3.times.100 milliliters), dried at a temperature of 100.degree. C. for a period of 16 hours and then dried at a temperature of 250.degree. C. for a period of 16 hours.
TABLE I__________________________________________________________________________ Example No. 1 2 3 4 5 6 7 8 9 10__________________________________________________________________________Process ParametersCatalyst Type A A A A A A A A A ACatalyst Weight, gm. 50 50 50 50 50 50 50 50 50 50Temperature, .degree.C. 260 270 270 280 270 280 270 280 280 279.9Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 164.5 169 189 193.25 212.5 217.7 247.2 252.3 260 285.25MEA SV, gmol/hr/kgcat 5.73 9.69 8.79 10.22 8.42 10.69 9.87 10.54 8.51 8.03EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00Crude ProductComposition, wt. %PIP 3.68 3.72 3.66 4.44 3.77 4.97 3.47 4.18 4.50 4.14DETA 69.53 68.35 67.35 55.23 68.15 64.17 72.73 64.32 61.52 62.81AEEA 6.30 6.18 6.61 10.36 6.54 4.76 6.36 5.90 5.23 5.71AEP 2.63 2.17 2.45 4.40 2.33 4.01 1.64 3.13 3.57 3.20TETA's 10.85 10.70 10.72 13.51 9.57 10.82 8.10 11.68 13.00 12.60TEPA's 1.33 2.13 1.46 3.17 1.74 1.25 0.25 1.90 3.02 1.94Others 5.67 6.81 8.24 8.88 7.91 10.03 7.44 8.89 9.16 9.58Calculated ResultsMEA Conversion, % 42.88 44.43 44.50 53.94 42.81 49.21 38.48 49.08 53.00 53.58EDA Conversion, % 21.45 22.51 22.96 31.98 20.73 24.52 17.24 23.57 25.79 26.42DETA/AEEA, weight ratio 11.04 11.07 10.19 5.33 10.42 13.48 11.43 10.90 11.76 10.99DETA/PIP, weight ratio 18.88 18.39 18.38 12.43 18.07 12.92 20.93 15.38 13.67 15.15Acyclic (N4), % 91.92 94.37 96.51 84.67 96.25 94.72 95.78 91.36 82.01 86.65__________________________________________________________________________
TABLE II__________________________________________________________________________ Example No. 11 12 13 14 15 16 17 18 19 20__________________________________________________________________________Process ParametersCatalyst Type B B B B B B B B B BCatalyst Weight, gm. 50 50 50 50 50 50 50 50 50 50Temperature, .degree.C. 260 270 270 280 270 280 270 280 280 279.9Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 164.5 169 189 193.25 212.5 217.7 247.2 252.3 260 285.25MEA SV, gmol/hr/kgcat 5.67 9.04 8.50 9.83 8.34 10.22 9.80 10.23 8.59 8.36EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00Crude ProductComposition, wt. %PIP 0.56 0.56 0.63 0.84 0.64 0.82 0.56 0.80 0.88 0.88DETA 76.97 74.54 75.77 72.06 75.94 75.45 79.07 74.95 74.29 73.94AEEA 9.83 11.18 9.74 8.31 10.03 6.85 10.06 7.64 7.24 7.17AEP 0.55 0.53 0.34 0.59 0.34 0.51 0.31 0.48 0.54 0.56TETA's 7.11 7.97 7.68 11.22 7.63 9.25 4.65 8.96 9.34 8.69TEPA's 1.69 0.52 0.99 1.43 1.08 1.68 0.86 1.19 1.81 1.69Others 3.29 4.69 4.86 5.56 4.35 5.75 4.49 5.98 5.89 7.07Calculated ResultsMEA Conversion, % 40.87 41.57 42.94 51.37 41.26 48.02 36.83 46.98 51.66 52.35EDA Conversion, % 16.64 17.26 15.48 19.88 15.28 17.73 12.10 15.76 17.37 17.68DETA/AEEA, weight ratio 7.83 6.66 7.78 8.67 7.57 10.98 7.86 9.81 10.26 10.31DETA/PIP, weight ratio 136.65 133.10 119.95 85.90 118.16 92.01 140.99 93.16 84.13 83.83Acyclic (N4), % 95.26 95.06 94.73 96.27 96.53 94.51 96.78 94.34 94.41 93.23__________________________________________________________________________
TABLE III__________________________________________________________________________ Example No. 21 22 23 24 25 26 27 28 29 30__________________________________________________________________________Process ParametersCatalyst Type C C C C C C C C C CCatalyst Weight, gm. 50 50 50 50 50 50 50 50 50 50Temperature, .degree.C. 260 270 270 280 270 280 270 280 280 279.9Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 164.5 169 189 193.25 212.5 217.7 247.2 252.3 260 285.25MEA SV, gmol/hr/kgcat 5.64 8.86 8.26 9.29 8.19 9.67 9.01 10.16 9.91 7.76EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00Crude ProductComposition, wt. %PIP 0.57 0.71 0.72 0.94 0.69 0.88 0.60 0.84 0.82 0.81DETA 73.57 75.90 76.64 67.66 76.75 74.44 80.33 74.78 73.54 73.54AEEA 10.46 8.87 9.06 10.08 9.99 7.26 8.73 8.22 8.03 7.92AEP 0.93 0.37 0.35 0.78 0.32 0.53 0.29 0.46 0.55 0.56TETA's 7.36 7.47 6.79 8.80 5.42 8.68 1.43 6.38 7.84 7.65TEPA's 1.07 0.77 0.56 1.38 1.20 1.43 0.56 1.15 1.08 1.51Others 6.05 5.90 5.88 8.36 5.57 6.79 8.05 8.16 8.15 8.01Calculated ResultsMEA Conversion, % 40.0 38.8 39.3 48.1 37.5 43.9 33.0 42.5 45.4 46.0EDA Conversion, % 17.2 15.2 14.7 19.3 13.5 16.1 12.0 14.2 17.3 17.8DETA/AEEA, weight ratio 7.0 8.6 8.5 6.9 7.7 10.3 9.2 9.1 9.2 9.3DETA/PIP, weight ratio 129.1 106.3 106.5 74.2 111.9 84.5 134.2 88.9 90.1 90.3Acyclic (N4), % 92.2 93.4 96.1 94.4 96.6 93.7 87.3 94.7 92.5 92.3__________________________________________________________________________
TABLE IV__________________________________________________________________________ Example No. 31 32 33 34 35 36 37 38 39 40__________________________________________________________________________Process ParametersCatalyst Type D D D D D D D D D DCatalyst Weight, gm. 50 50 50 50 50 50 50 50 50 50Temperature, .degree.C. 270.8 280.2 270 285.3 275.5 289.8 280.7 280.8 280.3 280.4Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 132 137.5 156 161 180.5 185.75 204.5 228 253 278.5MEA SV, gmol/hr/kgcat 6.99 8.58 4.40 8.66 9.30 7.51 6.50 5.52 6.09 5.28EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03Crude ProductComposition, wt. %PIP 0.78 0.89 1.02 1.06 1.06 1.24 1.06 1.03 1.04 1.15DETA 75.27 72.46 72.34 73.24 63.40 70.34 74.89 72.61 70.76 73.31AEEA 7.62 7.07 6.19 6.17 7.04 4.51 5.75 6.57 6.84 5.65AEP 0.39 0.55 0.70 0.74 1.14 1.11 0.75 0.69 0.69 0.85TETA's 7.04 8.59 9.72 9.28 10.41 11.63 8.08 8.59 9.19 9.49TEPA's 3.24 3.41 2.85 1.70 7.85 2.21 1.16 2.07 2.50 1.26Others 5.67 7.02 7.17 7.82 9.12 8.97 8.31 8.44 8.98 8.28Calculated ResultsMEA Conversion, % 45.04 46.51 54.20 48.78 40.19 59.16 47.88 46.78 48.15 48.66EDA Conversion, % 16.06 16.38 19.18 16.99 11.97 22.61 17.35 18.65 19.35 18.12DETA/AEEA, weight ratio 9.88 10.65 11.68 11.87 9.01 15.60 13.01 11.05 10.35 12.96DETA/PIP, weight ratio 97.11 81.10 70.67 69.23 59.93 56.59 70.36 70.62 68.35 63.78Acyclic (N4), % 92.21 92.33 93.95 92.24 91.75 93.70 91.38 92.90 92.44 93.39__________________________________________________________________________ Example No. 41 42 43 44 45 46 47 48 49 50__________________________________________________________________________Process ParametersCatalyst Type D D D D D D D D D DCatalyst Weight, gm. 50 50 50 50 50 50 50 50 50 50Temperature, .degree.C. 285.3 280.4 290.1 294.9 299.9 270.2 280 279.7 270.6 280Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 282.5 302.5 306.5 326.5 330.5 349.5 354.5 374.5 378.5 397MEA SV, gmol/hr/kgcat 6.14 5.69 5.82 5.73 6.18 4.69 4.81 5.12 5.88 6.64EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00Crude ProductComposition, wt. %PIP 1.21 1.04 1.30 1.92 2.13 0.69 1.06 0.99 0.58 0.83DETA 70.95 74.87 68.57 59.29 48.36 74.21 72.50 71.78 79.22 73.06AEEA 5.57 5.32 3.87 1.07 2.10 8.08 5.42 5.93 7.03 6.81AEP 0.93 0.77 1.35 2.14 3.33 0.45 0.89 0.82 0.47 0.65TETA's 10.15 8.31 13.47 15.80 19.00 1.61 2.11 2.09 1.51 1.88TEPA's 2.85 1.40 2.09 6.76 12.79 1.61 0.83 1.34 0.23 1.79Others 8.34 8.29 9.35 13.02 12.28 13.35 17.18 17.05 10.95 14.98Calculated ResultsMEA Conversion, % 52.53 47.67 62.85 76.05 86.36 44.54 52.68 52.18 39.90 46.73EDA Conversion, % 19.24 17.50 25.81 29.78 34.96 20.22 21.43 21.32 16.40 19.50DETA/AEEA, weight ratio 12.74 14.08 17.74 55.56 23.01 9.19 13.37 12.10 11.26 10.73DETA/PIP, weight ratio 58.86 72.32 52.76 30.91 22.67 108.11 68.16 72.79 135.56 87.70Acyclic (N4), % 92.94 92.88 92.03 93.56 76.62 57.57 55.59 58.95 94.02 58.51__________________________________________________________________________ Example No. 51 52 53 54 55 56 57__________________________________________________________________________ Process Parameters Catalyst Type D D D D D D D Catalyst Weight, gm. 50 50 50 50 50 50 50 Temperature, .degree.C. 280 280.4 290.3 230.8 240.8 250.5 260.3 Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 Time on Organics, hrs. 420.75 446.5 450.5 470 474.5 494 498.5 MEA SV, gmol/hr/kgcat 5.97 6.85 6.75 5.26 5.41 5.18 5.21 EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Crude Product Composition, wt. % PIP 0.87 0.80 1.11 0.00 0.00 0.00 0.43 DETA 72.63 73.53 67.04 65.60 80.57 80.21 77.34 AEEA 6.68 6.71 4.89 15.58 0.00 4.37 12.84 AEP 0.70 0.62 1.12 1.33 1.15 0.53 0.79 TETA's 2.01 1.75 13.47 0.00 0.00 0.60 2.60 TEPA's 1.02 1.48 3.16 0.00 0.00 0.00 0.00 Others 16.08 15.11 9.20 17.49 18.27 14.29 6.00 Calculated Results MEA Conversion, % 48.60 44.12 60.23 7.37 9.29 15.55 23.68 EDA Conversion, % 20.73 18.45 24.95 2.65 4.50 6.83 10.13 DETA/AEEA, weight ratio 10.87 10.96 13.71 4.21 -- 18.36 6.02 DETA/PIP, weight ratio 83.46 91.50 60.27 -- -- -- 180.00 Acyclic (N4), % 61.28 59.09 91.95 -- -- -- 71.83__________________________________________________________________________
TABLE V__________________________________________________________________________ Example No. 58 59 60 61 62 63 64 65 66 67__________________________________________________________________________Process ParametersCatalyst Type E E E E E E E E E ECatalyst Weight, gm. 50 50 50 50 50 50 50 50 50 50Temperature, .degree.C. 270.8 280.2 270 285.3 275.5 289.8 280.7 280.8 280.3 280.4Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 132 137.5 156 161 180.5 185.75 204.5 228 253 278.5MEA SV, gmol/hr/kgcat 6.67 6.93 5.01 6.70 6.23 6.65 5.81 4.96 5.35 6.86EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03Crude ProductComposition, wt. %PIP 1.14 1.21 1.19 1.38 1.07 1.57 1.25 1.21 1.33 1.30DETA 67.93 65.74 65.01 64.40 67.80 66.90 68.68 67.47 68.62 68.18AEEA 17.38 16.25 13.89 11.95 12.78 8.93 11.48 12.39 12.01 11.86AEP 0.24 0.21 0.20 0.96 0.82 1.02 0.87 0.88 0.85 0.83TETA's 2.35 2.33 2.57 2.27 2.52 2.08 1.69 1.66 1.66 1.51TEPA's 0.41 1.73 1.23 2.64 1.41 1.39 1.95 1.47 2.07 2.01Others 10.55 12.54 15.90 16.41 13.59 18.10 14.08 14.92 13.46 14.32Calculated ResultsMEA Conversion, % 26.09 31.83 34.09 38.10 29.37 45.19 34.70 32.97 34.49 33.77EDA Conversion, % 6.08 7.26 10.20 9.65 7.52 12.90 10.71 10.67 11.25 11.49DETA/AEEA, weight ratio 3.91 4.05 4.68 5.39 5.30 7.49 5.98 5.44 5.71 5.75DETA/PIP, weight ratio 59.64 54.31 54.67 46.77 63.21 42.60 55.08 55.88 51.60 52.55Acyclic (N4), % 82.82 81.53 64.91 62.61 63.46 63.34 79.81 82.79 79.16 89.66__________________________________________________________________________ Example No. 68 69 70 71 72 73 74 75 76 77__________________________________________________________________________Process ParametersCatalyst Type E E E E E E E E E ECatalyst Weight, gm. 50 50 50 50 50 50 50 50 50 50Temperature, .degree.C. 285.3 280.4 290.1 294.9 299.9 270.2 280 279.7 270.6 280Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 282.5 302.5 306.5 326.5 330.5 349.5 354.5 374.5 378.5 397MEA SV, gmol/hr/kgcat 5.45 5.14 5.36 53.4 5.54 4.44 4.49 4.81 5.63 7.75EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00Crude ProductComposition, wt. %PIP 1.45 1.20 1.44 2.00 2.30 0.87 1.26 1.09 0.85 0.93DETA 64.51 67.24 62.74 58.38 55.36 68.11 65.02 64.42 71.00 65.07AEEA 11.13 11.36 9.46 6.43 0.14 16.79 11.41 11.57 15.66 14.65AEP 1.01 1.01 1.33 1.59 0.14 0.91 1.04 1.00 1.06 0.98TETA's 1.77 1.97 2.45 13.08 13.33 1.68 1.18 2.27 2.42 3.48TEPA's 1.95 0.53 1.24 5.30 7.01 0.80 2.21 0.46 0.00 1.36Others 18.19 16.68 21.35 13.21 21.71 10.84 17.88 19.19 9.02 13.54Calculated ResultsMEA Conversion, % 40.65 34.80 48.17 58.98 69.86 26.14 38.56 39.99 22.52 33.22EDA Conversion, % 12.06 11.63 17.04 20.57 22.47 10.78 13.59 15.40 7.92 11.89DETA/AEEA, weight ratio 5.80 5.92 6.63 9.08 400.16 4.06 5.70 5.57 4.53 4.44DETA/PIP, weight ratio 44.61 55.83 43.51 29.16 24.03 78.38 51.63 59.28 83.41 70.07Acyclic (N4), % 67.71 74.28 54.94 84.56 86.23 73.50 82.03 58.71 66.91 68.72__________________________________________________________________________ Example No. 78 79 80 81 82 83 84__________________________________________________________________________ Process Parameters Catalyst Type E E E E E E E Catalyst Weight, gm. 50 50 50 50 50 50 50 Temperature, .degree.C. 280 280.4 290.3 230.8 240.8 250.5 260.3 Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 Time on Organics, hrs. 420.75 446.5 450.5 470 474.5 494 498.5 MEA SV, gmol/hr/kgcat 5.59 6.39 6.34 5.14 5.19 4.85 5.00 EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Crude Product Composition, wt. % PIP 0.95 0.94 1.13 0.00 0.00 0.00 0.63 DETA 65.06 67.96 60.18 0.00 28.20 74.32 72.39 AEEA 14.78 11.22 10.91 46.15 33.43 6.91 4.86 AEP 1.04 0.98 1.20 3.14 2.62 1.17 0.61 TETA's 1.71 2.53 2.65 0.00 0.00 0.00 2.34 TEPA's 0.87 0.81 3.24 0.00 0.00 0.00 0.00 Others 15.60 15.56 20.69 50.71 35.75 17.60 19.16 Calculated Results MEA Conversion, % 33.87 30.12 46.28 2.90 6.07 8.27 13.46 EDA Conversion, % 12.75 10.24 18.08 1.22 1.11 3.53 4.73 DETA/AEEA, weight ratio 4.40 6.05 5.52 0.00 0.84 10.76 14.91 DETA/PIP, weight ratio 68.40 72.49 53.03 -- -- -- 114.23 Acyclic (N4), % 58.03 71.25 56.98 -- -- -- 100.00__________________________________________________________________________
TABLE VI__________________________________________________________________________ Example No. 85 86 87 88 89 90 91 92 93 94__________________________________________________________________________Process ParametersCatalyst Type F F F F F F F F F FCatalyst Weight, gm. 50 50 50 50 50 50 50 50 50 50Temperature, .degree.C. 270.7 270.8 280.2 270 285.3 275.5 289.8 280.7 280.8 280.3Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 113 132 137.5 156 161 180.5 185.75 204.5 228 253MEA SV, gmol/hr/kgcat 7.19 6.34 6.62 4.01 6.53 5.81 6.23 5.73 4.70 5.18EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03Crude ProductComposition, wt. %PIP 0.48 0.84 0.93 1.01 0.80 0.86 1.61 1.03 1.01 1.02DETA 79.01 76.36 74.83 73.97 80.15 75.16 69.68 74.82 73.57 72.96AEEA 6.73 8.29 7.39 6.74 4.72 7.28 4.89 6.14 6.85 6.51AEP 0.21 0.39 0.53 0.62 0.50 0.49 0.93 0.66 0.60 0.65TETA's 1.80 6.90 7.78 8.97 6.74 6.83 11.19 8.36 7.61 8.33TEPA's 3.13 1.59 1.15 3.36 0.98 2.46 2.39 1.24 2.54 2.45Others 8.64 5.63 7.39 7.32 6.12 6.92 9.31 7.75 7.82 8.08Calculated ResultsMEA Conversion, % 50.6 44.5 46.4 50.7 56.7 43.8 61.2 49.9 46.4 48.2EDA Conversion, % 0.6 14.7 15.3 17.3 25.9 15.1 21.6 18.4 17.6 18.7DETA/AEEA, weight ratio 11.7 9.2 10.1 11.0 17.0 10.3 14.2 12.2 10.7 11.2DETA/PIP, weight ratio 164.1 91.3 80.5 73.4 100.6 87.5 43.3 72.7 72.9 71.7Acyclic (N4), % 70.3 92.8 93.3 93.2 92.5 94.8 93.4 91.1 95.9 95.9__________________________________________________________________________ Example No. 95 96 97 98 99 10 101 102 103 104__________________________________________________________________________Process ParametersCatalyst Type F F F F F F F F F FCatalyst Weight, gm. 50 50 50 50 50 50 50 50 50 50Temperature, .degree.C. 280.4 285.3 280.4 290.1 294.9 299.9 270.2 280 279.7 270.6Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 278.5 282.5 302.5 306.5 326.5 330.5 349.5 354.5 374.5 378.5MEA SV, gmol/hr/kgcat 4.88 5.20 5.21 5.21 5.18 5.40 4.36 4.24 4.67 5.25EDA/MEA mole ratio 2.03 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00Crude ProductComposition, wt. %PIP 1.11 1.19 0.96 1.15 1.79 2.28 0.68 0.96 0.93 0.65DETA 73.56 72.56 73.39 68.54 63.67 56.10 75.28 71.47 71.29 76.27AEEA 6.39 6.10 6.29 5.02 2.06 0.21 9.19 7.00 6.73 6.97AEP 0.70 0.78 0.63 1.02 1.58 0.12 0.43 0.67 0.69 0.54TETA's 7.71 9.17 8.35 13.00 12.95 15.17 0.92 1.96 1.76 1.72TEPA's 1.67 1.88 2.14 2.45 4.57 7.43 0.71 1.79 1.61 0.32Others 8.86 8.33 8.24 8.82 13.37 18.69 12.79 16.1 16.99 13.52Calculated ResultsMEA Conversion, % 49.8 52.7 48.4 60.3 67.8 80.9 41.2 51.6 52.5 41.3EDA Conversion, % 18.3 18.7 18.2 25.4 26.2 29.4 17.9 21.7 22.2 16.4DETA/AEEA, weight ratio 11.5 11.9 11.7 13.7 30.9 270.9 8.2 10.2 10.6 10.9DETA/PIP, weight ratio 66.2 60.8 76.4 59.5 35.5 24.6 110.7 74.4 76.3 117.3Acyclic (N4), % 93.0 93.9 95.3 93.1 95.4 87.4 87.5 63.6 72.8 40.9__________________________________________________________________________ Example No. 105 106 107 108 109 110 111 112__________________________________________________________________________ Process Parameters Catalyst Type F F F F F F F F Catalyst Weight, gm. 50 50 50 50 50 50 50 50 Temperature, .degree.C. 280 280 280.4 290.3 230.8 240.8 250.5 260.3 Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 Time on Organics, hrs. 397 420.75 446.5 450.5 470 474.5 494 498.5 MEA SV, gmol/hr/kgcat 6.27 5.73 6.22 6.12 4.96 4.94 4.88 4.84 EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Crude Product Composition, wt. % PIP 0.80 0.86 0.75 1.04 0.00 0.00 0.00 0.42 DETA 73.59 72.30 74.38 67.85 61.18 62.81 79.29 77.74 AEEA 7.58 6.89 7.71 6.54 19.61 16.97 3.67 7.09 AEP 0.59 0.65 0.55 0.91 1.55 1.57 0.63 0.37 TETA's 1.87 1.79 0.98 2.10 0.00 0.00 1.09 2.45 TEPA's 0.88 2.05 0.97 2.34 0.00 0.00 0.00 0.00 Others 14.69 15.46 14.65 19.21 17.66 18.66 15.32 11.93 Calculated Results MEA Conversion, % 46.4 49.3 42.6 58.7 6.1 7.5 13.8 20.0 EDA Conversion, % 19.6 20.6 17.1 24.6 2.4 3.9 6.2 7.9 DETA/AEEA, weight ratio 9.7 10.5 9.6 10.4 3.1 3.7 21.6 11.0 DETA/PIP, weight ratio 91.9 84.0 99.2 65.2 -- -- -- 184.4 Acyclic (N4), % 61.9 61.4 91.0 54.8 -- -- -- 73.3__________________________________________________________________________
TABLE VII__________________________________________________________________________ Example No. 113 114 115 116 117 118 119 120__________________________________________________________________________Process ParametersCatalyst Type G G G G G G G GCatalyst Weight, gm. 50 50 50 50 50 50 50 50Temperature, .degree.C. 258.4 268 258.6 272.6 268.7 278.2 274 284.8Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 22.4 26.6 46 50.5 70 74.75 94 98.5MEA SV, gmol/hr/kgcat 6.38 5.96 4.95 5.57 5.05 6.64 5.15 6.11EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00Crude ProductComposition, wt. %PIP 0.42 0.68 0.48 0.92 0.82 1.01 0.90 1.05DETA 74.91 71.78 73.68 68.91 69.50 66.69 68.49 57.47AEEA 15.60 12.72 15.24 11.33 11.98 9.69 10.87 7.67AEP 0.21 0.41 0.21 0.56 0.51 0.72 0.55 1.04TETA's 4.66 8.33 5.76 9.96 9.49 11.87 10.24 16.65TEPA's 0.00 0.49 0.35 1.39 1.27 2.26 1.77 4.71Others 4.20 5.59 4.28 6.94 6.44 7.75 7.18 11.42Calculated ResultsMEA Conversion, % 34.53 48.88 36.94 57.33 53.93 68.65 61.73 79.01EDA Conversion, % 13.86 18.62 13.90 22.95 21.86 27.62 24.40 40.45DETA/AEEA, weight ratio 4.80 5.64 4.83 6.08 5.80 6.88 6.30 7.50DETA/PIP, weight ratio 177.87 105.44 152.75 75.03 84.84 65.72 76.47 54.80Acyclic (N4), % 97.06 98.58 97.39 98.37 97.79 97.25 97.43 95.68__________________________________________________________________________ Example No. 121 122 123 124 125 126__________________________________________________________________________ Process Parameters Catalyst Type G G G G G G Catalyst Weight, gm. 50 50 50 50 50 50 Temperature, .degree.C. 270 269 269.3 274.6 274.4 279.9 Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 Time on Organics, hrs. 116.75 141 166.5 170.5 191 194.5 MEA SV, gmol/hr/kgcat 5.68 6.03 6.06 7.26 7.27 6.77 EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 Crude Product Composition, wt. % PIP 0.66 0.54 0.62 0.72 0.59 0.80 DETA 67.44 68.53 67.91 67.03 66.63 61.79 AEEA 12.01 13.08 12.97 12.13 12.71 10.90 AEP 0.45 0.36 0.37 0.44 0.41 0.63 TETA's 9.93 8.50 9.01 9.20 9.51 11.77 TEPA's 1.72 1.45 1.36 1.78 1.72 3.06 Others 7.79 7.54 7.76 8.70 8.43 11.04 Calculated Results MEA Conversion, % 52.13 45.06 48.10 50.28 51.00 64.37 EDA Conversion, % 23.98 24.95 21.00 24.21 27.12 32.11 DETA/AEEA, weight ratio 5.61 5.24 5.24 5.53 5.24 5.67 DETA/PIP, weight ratio 102.66 127.28 108.88 92.74 112.85 77.41 Acyclic (N4), % 95.54 95.28 95.45 95.62 95.46 94.66__________________________________________________________________________
TABLE VIII__________________________________________________________________________ Example No. 127 128 129 130 131 132 133 134__________________________________________________________________________Process ParametersCatalyst Type H H H H H H H HCatalyst Weight, gm. 50 50 50 50 50 50 50 50Temperature, .degree.C. 258.4 268 258.6 272.6 268.7 278.2 274 284.8Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 22.4 26.6 46 50.5 70 74.75 94 98.5MEA SV, gmol/hr/kgcat 5.99 5.86 4.61 5.00 4.51 5.64 4.67 5.45EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00Crude ProductComposition, wt. %PIP 0.82 1.46 1.16 2.16 1.97 2.71 2.57 2.70DETA 68.75 61.90 63.92 53.20 54.29 47.55 50.54 37.60AEEA 15.96 11.21 15.00 6.70 7.74 3.11 4.42 1.23AEP 0.50 1.10 0.76 2.32 2.04 3.34 2.91 4.82TETA's 8.26 13.41 10.93 15.94 15.64 16.54 15.85 17.63TEPA's 0.48 3.75 1.87 8.92 8.32 10.98 10.15 12.65Others 5.24 7.16 6.36 10.76 9.99 15.76 13.58 23.37Calculated ResultsMEA Conversion, % 43.40 61.82 48.72 76.23 72.18 87.08 81.44 94.38EDA Conversion, % 15.21 20.87 17.92 22.86 22.54 25.63 23.25 38.80DETA/AEEA, weight ratio 4.31 5.52 4.26 7.94 7.01 15.28 11.44 30.67DETA/PIP, weight ratio 83.54 42.39 54.94 24.62 27.52 17.52 19.68 13.92Acyclic (N4), % 98.36 97.13 97.84 90.49 95.52 85.29 88.28 82.73__________________________________________________________________________ Example No. 135 136 137 138 139 140__________________________________________________________________________ Process Parameters Catalyst Type H H H H H H Catalyst Weight, gm. 50 50 50 50 50 50 Temperature, .degree.C. 270 269 269.3 274.6 274.4 279.9 Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 Time on Organics, hrs. 116.75 141 166.5 170.5 191 194.5 MEA SV, gmol/hr/kgcat 5.00 5.54 5.68 6.59 6.62 5.87 EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 Crude Product Composition, wt. % PIP 1.66 1.30 1.55 1.40 1.40 1.84 DETA 52.30 58.61 56.08 50.13 56.83 43.33 AEEA 8.05 11.06 9.94 8.07 9.55 4.47 AEP 1.89 1.09 1.41 1.55 1.22 2.55 TETA's 16.45 14.49 15.32 17.97 14.05 19.19 TEPA's 7.98 4.40 5.94 8.47 5.59 11.62 Others 11.67 9.06 9.77 12.41 11.35 16.99 Calculated Results MEA Conversion, % 69.60 60.09 61.86 70.06 63.58 82.06 EDA Conversion, % 27.03 23.89 25.19 31.02 25.38 34.13 DETA/AEEA, weight ratio 6.50 5.30 5.64 6.21 5.95 9.70 DETA/PIP, weight ratio 31.50 45.01 36.09 35.81 40.56 23.60 Acyclic (N4), % 91.55 96.11 93.30 92.86 95.55 86.78__________________________________________________________________________
TABLE IX__________________________________________________________________________ Example No. 141 142 143 144 145 146 147 148__________________________________________________________________________Process ParametersCatalyst Type I I I I I I I ICatalyst Weight, gm. 50 50 50 50 50 50 50 50Temperature, .degree.C. 258.4 268 258.6 272.6 268.7 278.2 274 284.8Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 22.4 26.6 46 50.5 70 74.75 94 98.5MEA SV, gmol/hr/kgcat 6.43 5.84 4.63 5.21 4.68 5.71 5.05 5.64EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00Crude ProductComposition, wt. %PIP 0.55 0.96 0.61 1.04 1.05 1.37 1.20 1.57DETA 74.25 70.19 72.10 69.76 69.58 66.24 68.17 61.73AEEA 16.69 13.67 17.49 11.93 12.02 9.38 10.61 7.20AEP 0.26 0.56 0.27 0.63 0.60 0.94 0.77 1.36TETA's 4.19 7.93 4.55 9.19 9.29 11.53 10.30 13.96TEPA's 0.00 0.75 0.13 1.32 1.23 2.72 1.96 3.62Others 4.07 5.94 4.86 6.13 6.23 7.81 6.99 10.56Calculated ResultsMEA Conversion, % 29.1 40.9 32.0 49.2 49.1 63.0 55.7 73.6EDA Conversion, % 11.3 17.1 13.6 19.6 20.2 25.0 22.1 32.5DETA/AEEA, weight ratio 4.4 5.1 4.1 5.8 5.8 7.1 6.4 8.6DETA/PIP, weight ratio 133.8 72.8 118.6 67.3 66.2 48.3 57.0 39.2Acyclic (N4), % 97.6 97.6 97.8 97.8 97.5 96.8 97.1 96.0__________________________________________________________________________ Example No. 149 150 151 152 153 154__________________________________________________________________________ Process Parameters Catalyst Type I I I I I I Catalyst Weight, gm. 50 50 50 50 50 50 Temperature, .degree.C. 270 269 269.3 274.6 274.4 279.9 Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 Time on Organics, hrs. 116.75 141 166.5 170.5 191 194.5 MEA SV, gmol/hr/kgcat 5.10 5.45 4.87 5.60 5.54 5.49 EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 Crude Product Composition, wt. % PIP 0.80 0.79 0.92 1.02 0.93 1.06 DETA 67.21 67.96 67.31 66.20 64.57 60.68 AEEA 11.68 12.87 11.97 11.03 11.31 9.73 AEP 0.58 0.49 0.62 0.69 0.71 0.82 TETA's 10.19 8.92 9.64 10.54 11.13 13.39 TEPA's 2.30 1.59 1.91 2.29 1.43 3.94 Others 7.24 7.38 7.63 8.22 9.92 10.39 Calculated Results MEA Conversion, % 48.0 41.3 45.8 50.5 50.8 62.5 EDA Conversion, % 25.8 18.7 22.5 22.1 25.0 31.9 DETA/AEEA, weight ratio 5.8 5.3 5.6 6.0 5.7 6.2 DETA/PIP, weight ratio 83.7 86.6 73.1 64.7 69.1 57.5 Acyclic (N4), % 95.3 96.1 96.1 95.1 94.7 94.6__________________________________________________________________________
TABLE X__________________________________________________________________________ Example No. 155 156 157 158 159 160 161 162 163 164__________________________________________________________________________Process ParametersCatalyst Type J J J J J J J J J JCatalyst Weight, gm. 50 50 50 50 50 50 50 50 50 50Temperature, .degree.C. 259.1 269.6 270.5 274.4 269.8 270.6 274.1 284.8 279.6 289.9Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 23 27.5 47 51.5 70 94 119.5 123.5 143.5 147.5MEA SV, gmol/hr/kgcat 5.76 6.03 5.50 5.29 5.82 5.79 5.52 5.76 5.49 5.26EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00Crude ProductComposition, wt. %PIP 0.55 0.73 0.74 0.86 1.29 0.91 1.08 1.23 1.13 1.16DETA 65.89 67.08 67.31 66.17 69.08 69.62 64.07 60.19 61.29 57.76AEEA 16.93 15.92 16.10 14.55 15.46 17.66 14.41 12.63 13.44 11.11AEP 0.30 0.48 0.49 0.51 0.57 0.36 0.42 0.64 0.79 0.89TETA's 2.65 4.02 4.12 4.51 4.35 3.85 4.35 6.96 5.99 10.30TEPA's 1.70 0.61 0.76 0.66 0.20 0.31 0.89 1.14 1.03 3.02Others 11.97 11.15 10.48 12.74 9.04 7.30 14.77 17.22 16.34 15.76Calculated ResultsMEA Conversion, % 13.85 27.40 27.62 33.84 32.88 27.39 33.45 47.01 40.97 57.27EDA Conversion, % 14.39 12.45 14.10 15.22 13.53 12.29 10.89 16.70 13.95 33.03DETA/AEEA, weight ratio 3.89 4.21 4.18 4.55 4.47 3.94 4.45 4.77 4.56 5.20DETA/PIP, weight ratio 120.06 91.28 91.20 77.32 53.60 76.67 59.52 49.06 54.33 49.63Acyclic (N4), % 84.94 88.98 89.29 90.32 92.45 90.60 87.93 91.33 90.22 90.79__________________________________________________________________________
TABLE XI__________________________________________________________________________ Example No. 165 166 167 168 169 170 171 172 173 174__________________________________________________________________________Process ParametersCatalyst Type K K K K K K K K K KCatalyst Weight, gm. 50 50 50 50 50 50 50 50 50 50Temperature, .degree.C. 259.1 269.6 270.5 274.4 269.8 270.6 274.1 284.8 279.6 289.9Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 23 27.5 47 51.5 70 94 119.5 123.5 143.5 147.5MEA SV, gmol/hr/kgcat 5.38 5.66 5.18 5.21 5.47 5.47 5.40 5.46 5.25 5.14EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00Crude ProductComposition, wt. %PIP 0.72 0.79 0.82 1.13 0.78 0.80 1.04 1.07 1.17 1.23DETA 66.75 67.49 67.89 66.59 67.47 67.39 65.59 62.82 64.21 57.86AEEA 17.16 17.66 17.14 15.97 16.77 16.21 16.75 14.05 14.83 12.35AEP 0.33 0.37 0.50 0.54 0.31 0.44 0.30 0.63 0.50 0.89TETA's 3.29 4.32 4.10 4.56 2.87 2.76 4.55 7.74 6.27 10.61TEPA's 0.79 0.35 0.62 0.52 0.58 0.79 0.58 1.24 0.92 2.56Others 10.97 9.01 8.93 10.69 11.22 11.62 11.19 12.45 12.10 14.50Calculated ResultsMEA Conversion, % 21.23 26.67 26.91 32.24 26.76 25.25 30.33 43.08 38.95 54.77EDA Conversion, % 5.79 13.67 12.78 14.48 12.14 12.38 9.51 22.71 12.50 29.05DETA/AEEA, weight ratio 3.89 3.82 3.96 4.17 4.02 4.16 3.91 4.47 4.33 4.69DETA/PIP, weight ratio 92.87 85.01 83.00 59.01 86.21 84.62 62.89 58.49 54.86 46.93Acyclic (N4), % 90.20 90.46 90.30 90.90 82.15 84.97 89.50 91.58 91.89 91.78__________________________________________________________________________
TABLE XII__________________________________________________________________________ Example No. 175 176 177 178 179 180 181 182 183 184__________________________________________________________________________Process ParametersCatalyst Type L L L L L L L L L LCatalyst Weight, gm. 50 50 50 50 50 50 50 50 50 50Temperature, .degree.C. 259.1 269.6 270.5 274.4 269.8 270.6 274.1 284.8 279.6 289.9Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 23 27.5 47 51.5 70 94 119.5 123.5 143.5 147.5MEA SV, gmol/hr/kgcat 4.48 4.73 4.25 4.32 4.63 5.08 4.45 4.58 4.34 4.18EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00Crude ProductComposition, wt. %PIP 0.82 0.86 1.12 1.25 0.74 0.75 1.05 1.17 1.44 1.84DETA 69.50 69.98 69.20 68.98 68.29 68.63 67.54 63.43 64.79 60.79AEEA 17.56 17.25 17.28 15.52 18.29 18.37 16.08 14.35 14.31 11.31AEP 0.26 0.37 0.37 0.58 0.30 0.29 0.45 0.73 0.60 1.00TETA's 3.19 3.96 4.03 4.50 3.81 3.70 4.88 8.30 6.42 9.14TEPA's 0.72 0.25 0.31 0.22 0.57 0.54 0.57 1.21 0.78 1.83Others 7.95 7.31 7.70 8.95 7.99 7.72 9.43 10.81 11.66 14.10Calculated ResultsMEA Conversion, % 17.2 27.0 28.6 32.8 25.4 24.8 27.2 45.4 40.6 54.7EDA Conversion, % 7.5 12.4 13.4 14.2 11.8 10.7 18.2 25.0 12.9 18.9DETA/AEEA, weight ratio 4.0 4.1 4.0 4.4 3.7 3.7 4.2 4.4 4.5 5.4DETA/PIP, weight ratio 84.6 81.0 62.0 55.1 92.3 91.8 64.6 54.3 45.1 33.1Acyclic (N4), % 90.1 91.1 92.5 91.7 87.7 90.6 90.3 92.4 92.4 92.9__________________________________________________________________________
TABLE XIII__________________________________________________________________________ Example No. 185 186 187 188 189 190 191 192__________________________________________________________________________Process ParametersCatalyst Type M M M M M M M MCatalyst Weight, gm. 50 50 50 50 50 50 50 50Temperature, .degree.C. 259.4 270 268.7 274.8 269.6 269.8 274.4 284.8Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 22 27 45 49.5 69 93 117.5 121.5MEA SV, gmol/hr/kgcat 4.88 5.70 5.94 6.14 4.49 5.24 4.82 6.16EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00Crude ProductComposition, wt. %PIP 0.83 1.26 1.16 1.25 1.32 0.98 1.26 1.82DETA 71.41 68.96 68.90 67.79 68.98 70.94 67.25 65.49AEEA 17.56 14.75 15.37 14.55 14.31 15.13 14.64 10.68AEP 0.31 0.43 0.38 0.48 0.51 0.40 0.55 0.80TETA's 4.27 6.85 6.47 7.49 7.95 6.47 7.80 9.84TEPA's 0.17 0.74 0.61 0.90 0.88 0.51 1.18 1.74Others 5.45 7.00 7.10 7.53 6.04 5.58 7.31 9.63Calculated ResultsMEA Conversion, % 21.01 28.47 27.19 28.89 28.75 22.48 28.86 42.32EDA Conversion, % 5.48 10.53 8.87 13.82 16.13 14.56 19.25 13.45DETA/AEEA, weight ratio 4.07 4.68 4.48 4.66 4.82 4.69 4.59 6.13DETA/PIP, weight ratio 86.16 54.62 59.20 54.21 52.08 72.43 53.31 36.07Acyclic (N4), % 88.86 93.41 94.27 92.76 94.71 94.30 92.74 93.93__________________________________________________________________________ Example No. 193 194 195 196 197 198 199__________________________________________________________________________Process ParametersCatalyst Type M M M M M M MCatalyst Weight, gm. 50 50 50 50 50 50 50Temperature, .degree.C. 280.7 289.9 294.8 299.3 269.9 274.5 269.8Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 141.5 145.5 165.5 169.5 189 193.5 213MEA SV, gmol/hr/kgcat 6.63 6.86 6.45 6.93 6.07 6.45 4.72EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00Crude ProductComposition, wt. %PIP 1.32 1.98 2.19 2.17 0.96 1.26 1.16DETA 68.37 63.06 61.47 53.56 68.06 66.71 66.53AEEA 14.20 9.16 8.36 5.30 16.18 15.14 17.00AEP 0.51 1.02 1.23 2.03 0.43 0.49 0.50TETA's 7.46 11.15 12.32 16.42 6.81 7.56 6.93TEPA's 1.34 1.13 1.19 2.35 1.36 1.65 1.29Others 6.80 12.50 13.24 18.18 6.20 7.19 6.59Calculated ResultsMEA Conversion, % 27.18 47.25 49.86 63.64 21.13 28.72 24.25EDA Conversion, % 16.89 16.80 22.53 35.00 11.31 11.48 12.91DETA/AEEA, weight ratio 4.82 6.89 7.35 10.11 4.21 4.41 3.91DETA/PIP, weight ratio 51.84 31.78 28.09 24.69 70.86 52.75 57.46Acyclic (N4), % 93.41 93.12 92.96 91.01 92.38 93.55 93.53__________________________________________________________________________
TABLE XIV__________________________________________________________________________ Example No. 200 201 202 203 204 205 206 207__________________________________________________________________________Process ParametersCatalyst Type N N N N N N N NCatalyst Weight, gm. 50 50 50 50 50 50 50 50Temperature, .degree.C. 259.4 270 268.7 274.8 269.6 269.8 274.4 284.8Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 22 27 45 49.5 69 93 117.5 121.5MEA SV, gmol/hr/kgcat 4.34 5.22 5.60 5.54 3.96 4.89 4.47 7.49EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00Crude ProductComposition, wt. %PIP 0.51 0.74 0.66 0.65 0.67 0.57 0.72 0.81DETA 69.90 67.06 68.01 66.45 64.70 67.55 64.97 60.38AEEA 16.21 13.57 14.31 13.78 13.32 13.66 12.76 11.17AEP 0.25 0.39 0.35 0.41 0.45 0.35 0.46 0.59TETA's 5.34 8.45 7.61 9.07 10.32 8.04 9.67 11.92TEPA's 0.72 1.12 0.61 0.68 0.81 1.17 0.93 2.85Others 7.06 8.67 8.45 8.96 9.74 8.65 10.49 12.29Calculated ResultsMEA Conversion, % 33.42 46.31 39.81 46.43 49.69 39.78 47.93 56.19EDA Conversion, % 11.03 16.87 21.74 26.84 27.22 22.24 27.67 31.14DETA/AEEA, weight ratio 4.31 4.94 4.75 4.82 4.86 4.94 5.09 5.41DETA/PIP, weight ratio 136.38 90.52 103.38 102.27 96.87 118.72 90.54 74.68Acyclic (N4), % 92.39 94.40 94.00 94.42 93.56 93.44 94.06 93.39__________________________________________________________________________ Example No. 208 209 210 211 212 213 214__________________________________________________________________________Process ParametersCatalyst Type N N N N N N NCatalyst Weight, gm. 50 50 50 50 50 50 50Temperature, .degree.C. 280.7 289.9 294.8 299.3 269.9 274.5 269.8Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 141.5 145.5 165.5 169.5 189 193.5 213MEA SV, gmol/hr/kgcat 6.03 6.08 5.65 6.02 5.44 5.89 4.51EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00Crude ProductComposition, wt. %PIP 0.69 1.09 1.34 2.25 0.69 0.72 0.65DETA 64.63 51.13 46.52 38.52 64.67 64.24 64.77AEEA 12.85 8.02 6.24 2.76 14.45 13.48 15.38AEP 0.45 1.06 1.46 2.92 0.39 0.42 0.42TETA's 9.29 15.69 16.81 13.85 7.89 8.48 7.83TEPA's 0.88 5.68 7.60 7.63 1.13 1.39 1.09Others 11.22 17.33 20.02 32.07 10.77 11.26 9.87Calculated ResultsMEA Conversion, % 46.91 73.07 77.60 91.09 38.77 41.21 36.72EDA Conversion, % 26.64 38.61 39.37 42.78 12.91 21.52 21.78DETA/AEEA, weight ratio 5.03 6.38 7.45 13.93 4.47 4.76 4.21DETA/PIP, weight ratio 93.25 46.96 34.65 17.12 93.93 89.32 99.98Acyclic (N4), % 93.47 92.18 90.92 91.56 92.58 93.22 92.57__________________________________________________________________________
TABLE XV__________________________________________________________________________ Example No. 215 216 217 218 219 220 221 222__________________________________________________________________________Process ParametersCatalyst Type O O O O O O O OCatalyst Weight, gm. 50 50 50 50 50 50 50 50Temperature, .degree.C. 259.4 270 268.7 274.8 269.6 269.8 274.4 284.8Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 22 27 45 49.5 69 93 117.5 121.5MEA SV, gmol/hr/kgcat 2.46 3.8) 3.76 3.90 2.87 3.09 2.42 4.87EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00Crude ProductComposition, wt. %PIP 2.14 1.34 1.71 1.64 1.74 1.33 1.81 1.85DETA 60.83 65.88 65.92 66.49 67.45 68.18 65.70 64.68AEEA 14.58 17.83 17.68 17.88 17.02 18.40 17.28 15.46AEP 1.21 0.64 0.64 0.65 0.73 0.65 0.79 0.87TETA's 5.65 4.47 4.63 4.99 5.31 4.43 5.82 7.26TEPA's 0.41 0.00 0.00 0.00 0.00 0.00 0.37 0.77Others 15.20 9.85 9.40 8.35 7.76 7.00 8.23 9.10Calculated ResultsMEA Conversion, % 24.1 18.5 19.9 21.4 18.3 14.1 17.7 23.2EDA Conversion, % 8.3 6.4 6.1 6.7 12.2 10.7 14.4 16.2DETA/AEEA, weight ratio 4.2 3.7 3.7 3.7 4.0 3.7 3.8 4.2DETA/PIP, weight ratio 28.4 49.2 38.4 40.4 38.7 51.2 36.3 34.9Acyclic (N4), % 86.0 91.2 93.3 94.5 94.4 93.9 90.4 93.2__________________________________________________________________________ Example No. 223 224 225 226 227 228 229__________________________________________________________________________Process ParametersCatalyst Type O O O O O O OCatalyst Weight, gm. 50 50 50 50 50 50 50Temperature, .degree.C. 280.7 289.9 294.8 299.3 269.9 274.5 269.8Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 141.5 145.5 165.5 169.5 189 189 213MEA SV, gmol/hr/kgcat 5.02 5.27 5.16 5.26 4.76 4.97 3.95EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00Crude ProductComposition, wt. %PIP 1.78 1.85 1.97 2.69 1.02 1.28 1.18DETA 64.66 64.01 61.38 56.28 63.84 65.18 63.71AEEA 17.38 14.39 13.64 9.29 19.45 18.34 20.67AEP 0.66 0.98 1.05 1.89 0.60 0.67 0.61TETA's 5.28 8.78 9.41 12.94 4.28 4.63 4.35TEPA's 0.95 1.69 2.02 1.19 3.37 0.98 1.05Others 9.31 8.30 10.53 15.72 7.43 8.92 8.42Calculated ResultsMEA Conversion, % 21.3 29.5 29.6 48.6 15.8 16.1 17.8EDA Conversion, % 5.1 20.4 21.2 31.0 5.0 6.9 4.3DETA/AEEA, weight ratio 3.7 4.4 4.5 6.1 3.3 3.6 3.1DETA/PIP, weight ratio 36.2 34.6 31.2 20.9 62.8 51.0 53.8Acyclic (N4), % 94.2 93.6 93.0 91.5 91.9 93.5 93.1__________________________________________________________________________
TABLE XVI__________________________________________________________________________ Example No. 230 231 232 233 234 235 236 237 238 239__________________________________________________________________________Process ParametersCatalyst Type P P P P P P P P P PCatalyst Weight, gm. 50 50 50 50 50 50 50 50 50 50Temperature, .degree.C. 260.3 270 270.3 280.1 270.2 270.2 275.2 285.1 269.7 280Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 28 33.5 52 57.5 78 102 124 129 148.5 153.5MEA SV, gmol/hr/kgcat 6.82 7.36 6.69 7.15 7.28 6.11 6.55 6.89 6.83 7.35EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00Crude ProductComposition, wt. %PIP 0.82 1.17 1.11 1.60 1.27 1.01 1.06 1.41 0.83 1.14DETA 69.64 69.19 68.41 64.19 72.01 68.60 67.03 63.57 69.83 66.88AEEA 13.62 12.11 12.10 9.20 11.41 12.05 11.38 8.55 13.46 10.99AEP 0.37 0.65 0.61 1.21 0.55 0.52 0.66 1.18 0.40 0.70TETA's 7.96 10.13 10.87 13.72 8.54 11.04 12.19 14.64 8.62 11.84TEPA's 0.66 1.57 0.64 3.16 0.26 0.39 1.50 3.05 0.99 0.74Others 6.92 5.17 6.25 6.92 5.95 6.39 6.19 7.60 5.86 7.70Calculated ResultsMEA Conversion, % 39.96 50.66 50.75 62.71 48.22 50.81 55.96 67.14 43.52 58.63EDA Conversion, % 15.05 21.84 21.71 25.01 14.91 18.88 23.50 30.59 18.32 21.60DETA/AEEA, weight ratio 5.12 5.71 5.65 6.98 6.31 5.69 5.89 7.43 5.19 6.08DETA/PIP, weight ratio 84.42 59.25 61.70 40.13 56.63 68.08 63.34 44.98 83.83 58.85Acyclic (N4), % 95.47 95.92 95.88 94.77 95.49 96.25 95.61 95.44 95.03 95.99__________________________________________________________________________
TABLE XVII__________________________________________________________________________ Example No. 240 241 242 243 244 245 246 247 248 249__________________________________________________________________________Process ParametersCatalyst Type Q Q Q Q Q Q Q Q Q QCatalyst Weight, gm. 50 50 50 50 50 50 50 50 50 50Temperature, .degree.C. 260.3 270 270.3 280.1 270.2 270.2 275.2 285.1 269.7 280Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 28 33.5 52 57.5 78 102 124 129 148.5 153.5MEA SV, gmol/hr/kgcat 6.35 6.47 6.07 6.80 6.31 5.33 5.96 6.54 6.02 7.41EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00Crude ProductComposition, wt. %PIP 0.70 1.04 1.06 1.34 0.98 1.15 1.22 1.53 1.17 1.28DETA 63.92 63.36 63.52 62.78 64.51 63.63 64.08 62.26 65.05 62.57AEEA 26.89 23.46 23.38 17.82 23.65 22.56 19.82 15.76 23.46 19.65AEP 0.25 0.35 0.35 0.68 0.31 0.35 0.56 0.84 0.30 0.58TETA's 3.37 5.37 5.35 9.01 5.31 6.02 7.29 10.55 4.09 8.07TEPA's 0.27 0.60 0.60 0.59 0.00 0.33 0.56 0.52 0.13 0.47Others 4.59 5.83 5.74 7.77 5.24 5.96 6.47 8.54 5.79 7.39Calculated ResultsMEA Conversion, % 24.06 35.17 33.77 43.28 31.91 35.21 34.93 46.51 28.53 38.82EDA Conversion, % 6.41 10.00 10.85 14.00 7.33 8.67 12.26 14.20 7.85 11.14DETA/AEEA, weight ratio 2.38 2.70 2.72 3.52 2.73 2.82 3.23 3.95 2.77 3.18DETA/PIP, weight ratio 91.38 61.05 60.02 46.85 65.55 55.22 52.38 40.58 55.39 49.04Acyclic (N4), % 89.18 92.41 93.49 93.70 89.78 89.75 91.97 93.91 86.09 92.15__________________________________________________________________________
TABLE XVIII__________________________________________________________________________ Example No. 250 251 252 253 254 255 256 257 258 259__________________________________________________________________________Process ParametersCatalyst Type R R R R R R R R R RCatalyst Weight, gm. 50 50 50 50 50 50 50 50 50 50Temperature, .degree.C. 260.3 270 270.3 280.1 270.2 270.2 275.5 285.1 269.7 280Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 28 33.5 52 57.5 78 102 124 129 148.5 153.5MEA SV, gmol/hr/kgcat 5.68 5.89 5.59 5.84 5.67 4.87 5.13 5.62 5.39 5.83EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00Crude ProductComposition, wt. %PIP 0.57 0.77 0.82 1.27 1.00 1.03 1.19 1.53 1.06 1.31DETA 59.88 58.29 54.42 52.86 52.35 50.34 49.53 48.29 47.18 47.42AEEA 31.26 29.22 31.14 26.59 32.48 32.77 32.64 27.46 33.95 30.00AEP 0.20 0.26 0.28 0.44 0.26 0.29 0.34 0.63 0.28 0.39TETA's 2.54 3.79 3.70 5.57 2.15 2.12 2.38 4.13 1.80 3.01TEPA's 0.13 0.65 1.13 0.99 0.43 0.53 0.35 0.69 0.78 1.21Others 5.43 7.02 8.52 12.28 11.32 12.91 13.57 17.28 14.93 16.66Calculated ResultsMEA Conversion, % 23.7 32.2 30.2 42.6 27.4 25.4 23.9 40.8 22.7 31.6EDA Conversion, % 5.4 8.5 7.0 9.0 3.4 7.4 12.6 10.9 4.1 6.5DETA/AEEA, weight ratio 1.9 2.0 1.7 2.0 1.6 1.5 1.5 1.8 1.4 1.6DETA/PIP, weight ratio 104.6 75.7 66.5 41.6 52.5 48.8 41.7 31.6 44.4 36.1Acyclic (N4), % 87.8 91.6 89.5 91.1 75.9 70.9 70.8 86.5 63.5 84.2__________________________________________________________________________
TABLE XIX__________________________________________________________________________ Example No. 260 261 262 263 264 265 266__________________________________________________________________________Process ParametersCatalyst Type S S S S S S SCatalyst Weight, gm. 80 80 80 80 80 80 80Temperature, .degree.C. 310 320 300 300 310 320 320Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 929 953 977.3 981.5 998.5 1005.5 1024MEA SV, gmol/hr/kgcat 9.18 8.91 11.35 14.50 13.95 15.24 10.13EDA/MEA mole ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00Crude ProductComposition, wt. %PIP 2.35 3.31 1.64 1.27 1.88 2.47 2.96DETA 34.19 29.48 41.63 42.77 41.46 35.28 32.13AEEA 20.76 11.40 29.53 32.13 27.86 22.72 15.72AEP 1.78 2.86 0.62 0.58 0.93 1.47 2.24TETA's 7.85 8.34 2.98 2.49 4.60 7.00 7.69TEPA's 2.14 2.28 3.14 2.66 2.04 1.69 2.17Others 30.92 42.33 20.44 18.10 21.23 29.35 37.09Calculated ResultsMEA Conversion, % 42.00 55.10 17.71 13.02 20.82 33.60 47.30EDA Conversion, % 26.42 28.56 15.39 15.27 16.72 19.30 23.18DETA/AEEA, weight ratio 1.65 2.59 1.41 1.33 1.49 1.55 2.04DETA/PIP, weight ratio 14.54 8.90 25.33 33.55 22.01 14.29 10.86Acyclic (N4), % 87.91 90.08 80.95 78.84 86.62 89.65 90.49__________________________________________________________________________ Example No. 267 268 269 270 271__________________________________________________________________________Process ParametersCatalyst Type S S S S SCatalyst Weight, gm. 80 80 80 80 80Temperature, .degree.C. 310 300 300 320 310Pressure, psig 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 1028.5 1047.5 1053.5 1071.75 1077.5MEA SV, gmol/hr/kgcat 10.84 11.31 14.10 12.49 13.08EDA/MEA mole ratio 1.00 1.00 1.00 1.00 1.00Crude ProductComposition, wt. %PIP 2.06 1.62 1.16 2.53 1.86DETA 40.87 42.97 42.63 34.38 40.77AEEA 25.61 29.62 31.99 20.29 26.59AEP 1.12 0.57 0.65 1.53 0.80TETA's 5.17 3.65 3.46 6.88 4.47TEPA's 1.83 2.77 2.85 1.71 2.28Others 23.34 18.80 17.26 32.68 23.24Calculated ResultsMEA Conversion, % 29.43 20.22 17.34 38.58 25.66EDA Conversion, % 16.18 10.06 9.89 18.96 13.11DETA/AEEA, weight ratio 1.60 1.45 1.33 1.69 1.53DETA/PIP, weight ratio 19.88 26.45 36.75 13.61 21.97Acyclic (N4), % 87.88 84.43 84.49 89.30 87.21__________________________________________________________________________
TABLE XX__________________________________________________________________________ Example No. 272 273 274 275 276 277 278__________________________________________________________________________Process ParametersCatalyst Type T T T T T T TCatalyst Weight, gm. 80 80 80 80 80 80 80Temperature, .degree.C. 310 320 300 300 310 320 320Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 929 953 977.3 981.5 998.5 1005.5 1024MEA SV, gmol/hr/kgcat 9.27 9.52 11.99 14.19 13.72 15.25 10.35EDA/MEA mole ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00Crude ProductComposition, wt. %PIP 3.90 4.79 1.87 1.82 2.53 3.98 4.75DETA 30.80 25.88 41.30 42.31 39.71 30.52 27.70AEEA 15.68 4.82 30.16 33.18 26.85 14.33 6.33AEP 2.68 5.12 0.92 0.68 1.33 3.34 4.71TETA's 7.70 7.27 4.59 3.59 5.50 7.45 6.88TEPA's 2.36 2.90 1.37 1.18 0.94 1.94 2.60Others 36.89 49.22 19.79 17.25 23.14 38.44 47.04Calculated ResultsMEA Conversion, % 51.12 68.80 24.08 19.11 28.82 47.39 63.27EDA Conversion, % 20.22 28.93 18.13 16.14 18.85 21.30 24.47DETA/AEEA, weight ratio 1.96 5.37 1.37 1.28 1.48 2.13 4.38DETA/PIP, weight ratio 7.90 5.40 22.04 23.27 15.70 7.67 5.84Acyclic (N4), % 89.62 89.80 86.24 84.63 87.31 90.35 89088__________________________________________________________________________ Example No. 279 280 281 282 283__________________________________________________________________________Process ParametersCatalyst Type T T T T TCatalyst Weight, gm. 80 80 80 80 80Temperature, .degree.C. 310 300 300 320 310Pressure, psig 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 1028.5 1047.5 1053.5 1071.75 1077.5MEA SV, gmol/hr/kgcat 11.02 12.30 14.59 12.66 12.56EDA/MEA mole ratio 1.00 1.00 1.00 1.00 1.00Crude ProductComposition, wt. %PIP 2.81 1.89 1.73 4.14 2.44DETA 37.63 43.31 43.29 29.33 38.64AEEA 21.88 29.70 31.52 11.03 25.04AEP 1.73 0.86 0.88 3.77 1.34TETA's 7.36 4.18 3.91 7.69 6.28TEPA's 1.32 1.01 1.17 2.01 1.25Others 27.27 19.07 17.50 42.02 25.01Calculated ResultsMEA Conversion, % 39.40 25.42 22.86 53.78 35.12EDA Conversion, % 19.53 13.24 11.54 21.18 17.38DETA/AEEA, weight ratio 1.72 1.46 1.37 2.66 1.54DETA/PIP, weight ratio 13.39 22.94 25.09 7.08 15.83Acyclic (N4), % 89.93 85.32 85.11 90.44 88.30__________________________________________________________________________
TABLE XXI__________________________________________________________________________ Example No. 284 285 286 287 288 289 290__________________________________________________________________________Process ParametersCatalyst Type U U U U U U UCatalyst Weight, gm. 80 80 80 80 80 80 80Temperature, .degree.C. 310 320 300 300 310 320 320Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 929 953 977.3 981.5 998.5 1005.5 1024MEA SV, gmol/hr/kgcat 4.03 6.63 3.33 3.51 13.73 14.02 9.16EDA/MEA mole ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00Crude ProductComposition, wt. %PIP 4.94 5.30 4.38 4.37 3.01 3.37 4.09DETA 25.32 23.15 30.35 33.63 37.31 32.45 28.65AEEA 2.97 2.10 7.62 9.04 19.84 17.04 10.83AEP 6.15 6.54 4.56 4.30 2.59 2.89 3.74TETA's 8.05 7.04 8.68 8.82 6.54 6.71 6.87TEPA's 3.24 3.33 2.53 2.29 1.48 2.14 2.63Others 49.33 52.53 41.87 37.56 29.22 35.40 43.18Calculated ResultsMEA Conversion, % 87.3 88.4 74.6 70.2 30.2 36.5 50.7EDA Conversion, % 48.7 44.5 46.3 43.7 19.0 19.9 24.6DETA/AEEA, weight ratio 8.5 11.0 4.0 3.7 1.9 1.9 2.6DETA/PIP, weight ratio 5.1 4.4 6.9 7.7 12.4 9.6 7.0Acyclic (N4), % 92.5 91.8 91.2 91.8 89.5 90.1 89.3__________________________________________________________________________ Example No. 291 292 293 294 295__________________________________________________________________________Process ParametersCatalyst Type U U U U UCatalyst Weight, gm. 80 80 80 80 80Temperature, .degree.C. 310 300 300 320 310Pressure, psig 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 1028.5 1047.5 1053.5 1071.75 1077.5MEA SV, gmol/hr/kgcat 9.61 9.75 12.31 11.18 10.80EDA/MEA mole ratio 1.00 1.00 1.00 1.00 1.00Crude ProductComposition, wt. %PIP 3.16 2.56 2.51 3.56 2.94DETA 36.96 41.39 42.15 30.16 35.71AEEA 18.71 22.72 23.10 13.16 19.32AEP 2.57 2.20 1.91 3.15 2.45TETA's 6.73 6.37 5.56 7.09 6.57TEPA's 2.01 1.66 1.34 2.44 1.41Others 29.85 23.10 23.43 40.44 31.59Calculated ResultsMEA Conversion, % 37.5 27.7 24.3 46.3 35.3EDA Conversion, % 19.8 15.2 12.8 23.5 18.9DETA/AEEA, weight ratio 2.0 1.8 1.8 2.3 1.8DETA/PIP, weight ratio 11.7 16.1 16.8 8.5 12.1Acyclic (N4), % 88.9 80.0 90.3 89.2 89.9__________________________________________________________________________
TABLE XXII__________________________________________________________________________ Example No. 296 297 298 299 300 301 302 303 304 305__________________________________________________________________________Process ParametersCatalyst Type V V V V V V V V V VCatalyst Weight, gm. 23 23 23 23 23 23 23 23 23 23Temperature, .degree.C. 300 300 300 310 310 300 320 300 310 300Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 23 28 46 70 76.5 94.5 117.5 142 165.5 172.75MEA SV, gmol/hr/kgcat 15.10 12.38 11.15 12.06 10.82 10.70 10.64 15.55 15.75 13.75EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03Crude ProductComposition, wt. %PIP 4.65 4.52 4.69 2.43 2.12 2.12 4.10 1.92 2.25 1.93DETA 48.41 45.77 45.25 61.14 63.53 56.25 46.53 64.15 59.50 66.85AEEA 2.66 1.98 1.79 6.49 8.78 6.78 1.26 10.91 8.17 13.37AEP 6.61 6.54 7.09 2.28 1.71 1.97 4.76 1.28 1.84 0.82TETA's 13.39 12.54 14.17 2.41 1.90 16.42 16.66 11.32 14.33 7.82TEPA's 4.57 2.16 4.45 1.11 0.77 7.11 12.01 0.80 4.59 1.55Others 19.72 26.49 22.56 24.13 21.18 9.34 14.68 9.62 9.33 7.65Calculated ResultsMEA Conversion, % 50.64 53.38 54.48 63.33 55.33 64.03 80.65 45.01 58.94 35.47EDA Conversion, % 6.72 7.32 5.99 22.51 19.56 25.92 25.05 17.39 22.03 9.79DETA/AEEA, weight ratio 18.22 23.15 25.35 9.52 7.23 8.29 36.94 5.88 7.29 5.00DETA/PIP, weight ratio 10.41 10.12 9.65 25.15 29.98 26.59 11.36 33.50 26.48 34.63Acyclic (N4), % 60.28 58.88 56.24 42.39 49.55 91.58 78.64 95.06 92.41 94.55__________________________________________________________________________ Example No. 306 307 308 309 310 311 312 313 314 315__________________________________________________________________________Process ParametersCatalyst Type V V V V V V V V V VCatalyst Weight, gm. 23 23 23 23 23 23 23 23 23 23Temperature, .degree.C. 320 310 310 310 300 310 320 300 300 300Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 189.5 196.25 213.5 220.25 237.25 244.2 261.25 282.8 289.25 307MEA SV, gmol/hr/kgcat 12.31 15.07 13.57 16.12 13.91 14.86 13.87 6.34 7.06 5.98EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03Crude ProductComposition, wt. %PIP 2.69 1.76 1.74 1.65 1.94 1.71 3.69 5.42 5.45 5.43DETA 44.85 59.21 58.36 59.60 67.27 59.72 55.15 51.58 52.50 50.19AEEA 3.35 11.30 11.01 11.90 13.87 12.03 3.76 0.62 1.60 1.06AEP 3.01 1.13 1.16 1.04 0.79 1.12 3.30 6.80 6.46 7.17TETA's 17.90 12.71 13.32 12.49 7.28 12.35 11.75 14.55 14.41 13.54TEPA's 11.34 4.14 4.51 4.03 1.62 4.26 0.85 6.75 6.29 6.44Others 16.87 9.75 9.90 9.28 7.24 8.80 21.51 14.28 13.28 16.18Calculated ResultsMEA Conversion, % 71.73 46.15 48.97 45.93 34.56 46.45 67.99 60.79 59.03 64.85EDA Conversion, % 27.11 19.23 21.67 19.26 8.42 20.41 16.44 8.06 7.76 6.74DETA/AEEA, weight ratio 13.37 5.24 5.30 5.01 4.85 4.96 14.66 83.56 32.78 47.55DETA/PIP, weight ratio 16.69 33.69 33.58 36.16 34.70 34.97 14.95 9.52 9.64 9.24Acyclic (N4), % 85.89 92.66 92.31 92.63 93.88 92.62 97.31 63.06 66.75 57.84__________________________________________________________________________ Example No. 316 317 318 319 320 321 322__________________________________________________________________________ Process Parameters Catalyst Type V V V V V V V Catalyst Weight, gm. 23 23 23 23 23 23 23 Temperature, .degree.C. 300 300 300 300 300 300 300 Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 Time on Organics, hrs. 312.5 331 336.5 356 380 403 409.5 MEA SV, gmol/hr/kgcat 5.90 5.77 6.41 6.44 6.20 11.17 11.31 EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03 2.03 2.03 Crude Product Composition, wt. % PIP 5.33 5.61 5.66 5.55 5.88 1.53 1.45 DETA 52.61 51.60 52.96 50.80 53.24 71.12 71.33 AEEA 0.64 0.50 1.24 0.34 0.33 11.98 11.09 AEP 6.57 7.08 6.95 7.01 6.86 1.23 1.17 TETA's 14.00 13.81 13.93 14.96 13.57 10.47 10.91 TEPA's 5.23 5.36 5.48 5.94 5.22 0.47 0.14 Others 15.61 16.04 13.80 15.40 14.90 3.20 3.90 Calculated Results MEA Conversion, % 61.92 63.45 60.09 62.51 61.12 40.04 39.31 EDA Conversion, % 7.42 5.73 5.97 5.85 4.90 14.29 14.36 DETA/AEEA, weight ratio 81.82 102.47 42.83 150.26 159.64 5.94 6.43 DETA/PIP, weight ratio 9.87 9.20 9.36 9.15 9.06 46.59 49.12 Acyclic (N4), % 65.01 61.26 61.83 60.24 60.34 87.26 86.91__________________________________________________________________________
TABLE XXIII__________________________________________________________________________ Example No. 323 324 325 326 327__________________________________________________________________________Process ParametersCatalyst Type W W W W WCatalyst Weight, gm. 9.5 9.5 9.5 9.5 9.5Temperature, .degree.C. 300 300 300 310 310Pressure, psig 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 23 28 46 57.5 78MEA SV, gmol/hr/kgcat 48.80 40.98 36.01 34.67 41.66EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03Crude ProductComposition, wt. %PIP 4.66 4.69 4.52 3.57 4.31DETA 45.24 43.82 43.56 76.69 58.03AEEA 0.31 0.27 0.25 2.40 3.68AEP 9.79 10.45 10.85 0.02 3.30TETA's 16.82 16.95 17.26 7.30 16.85TEPA's 4.88 3.46 4.91 3.42 6.58Others 18.29 20.36 18.65 6.60 7.25Calculated ResultsMEA Conversion, % 71.23 74.07 73.44 59.47 55.08EDA Conversion, % 22.52 23.99 23.30 23.84 23.74DETA/AEEA, weight ratio 143.83 160.34 173.13 31.98 15.78DETA/PIP, weight ratio 9.70 9.35 9.63 21.45 13.46Acyclic (N4), % 54.32 51.26 49.41 59.36 86.35__________________________________________________________________________
TABLE XXIV__________________________________________________________________________ Example No. 328 329 330 331 332 333 334 335 336 337__________________________________________________________________________Process ParametersCatalyst Type X X X X X X X X X XCatalyst Weight, gm. 37 37 37 37 37 37 37 37 37 37Temperature, .degree.C. 300 300 300 310 310 310 320 300 310 300Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 23 28 46 70 76.5 94.5 117.5 142 165.5 172.75MEA SV, gmol/hr/kgcat 13.96 12.18 10.53 10.65 9.79 8.11 7.66 10.85 9.69 10.24EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03Crude ProductComposition, wt. %PIP 1.98 1.97 1.95 1.91 1.57 2.00 2.05 2.81 3.10 2.82DETA 62.69 61.54 61.02 60.67 61.57 57.24 53.58 53.89 51.54 51.68AEEA 1.93 1.76 1.89 10.65 13.14 12.22 10.86 14.58 12.66 14.38AEP 4.28 4.54 4.38 0.63 0.50 0.55 0.80 0.60 0.63 0.48TETA's 16.29 16.36 16.55 2.21 3.60 3.97 6.76 1.01 2.83 2.39TEPA's 5.66 5.97 5.66 1.35 0.84 0.84 2.01 0.36 2.46 0.66Others 7.18 7.86 8.56 22.57 18.77 23.18 23.93 26.74 26.78 27.60Calculated ResultsMEA Conversion, % 37.7 37.9 36.3 19.7 11.5 15.3 22.3 8.7 10.7 10.2EDA Conversion, % 13.5 14.2 13.3 10.4 7.1 7.9 11.3 4.9 8.2 1.2DETA/AEEA, weight ratio 32.5 34.9 32.3 5.7 4.7 4.7 4.9 3.7 4.1 3.6DETA/PIP, weight ratio 31.7 31.2 31.3 31.7 39.2 28.6 26.1 19.2 16.6 18.3Acyclic (N4), % 80.3 79.2 78.7 67.3 86.2 81.8 86.6 54.3 83.1 64.6__________________________________________________________________________ Example No. 338 339 340 341 342 343 344__________________________________________________________________________ Process Parameters Catalyst Type X X X X X X X Catalyst Weight, gm. 37 37 37 37 37 37 37 Temperature, .degree.C. 320 310 310 310 300 310 320 Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 Time on Organics, hrs. 189.5 196.25 213.5 220.25 237.25 244.2 261.25 MEA SV, gmol/hr/kgcat 6.26 12.69 11.93 14.00 11.78 9.13 12.55 EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03 2.03 2.03 Crude Product Composition, wt. % PIP 2.29 1.59 1.80 1.97 4.19 3.03 3.35 DETA 47.40 51.04 45.79 41.27 35.72 31.31 36.03 AEEA 12.09 14.10 13.00 11.86 12.50 10.06 12.68 AEP 0.59 0.47 0.51 0.55 0.84 0.55 0.93 TETA's 3.50 2.57 1.98 2.09 1.20 1.59 1.85 TEPA's 1.61 0.53 0.43 0.40 0.00 0.85 2.51 Others 32.51 29.70 36.48 41.85 45.56 52.61 42.66 Calculated Results MEA Conversion, % 13.1 1.7 1.2 -1.8 -5.7 5.5 5.4 EDA Conversion, % 11.4 6.4 6.3 6.4 6.5 1.4 6.5 DETA/AEEA, weight ratio 3.9 3.6 3.5 3.5 2.9 3.1 2.8 DETA/PIP, weight ratio 20.7 32.0 25.4 20.9 8.5 10.3 10.8 Acyclic (N4), % 76.9 57.7 41.7 76.9 100.0 100.0 46.4__________________________________________________________________________
TABLE XXV__________________________________________________________________________ Example No. 345 346 347 348 349 350 351 352 353 354__________________________________________________________________________Process ParametersCatalyst Type Y Y Y Y Y Y Y Y Y YCatalyst Weight, gm. 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5Temperature, .degree.C. 300 300 300 300 300 300 300 300 300 300Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 165 182.8 189.25 207 212.5 231 236.5 256 280 303MEA SV, gmol/hr/kgcat 18.77 15.01 16.78 14.33 14.67 13.84 15.03 14.52 15.07 6.93EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03Crude ProductComposition, wt. %PIP 5.51 5.84 5.90 5.98 6.51 5.90 5.70 5.75 5.81 6.44DETA 45.52 43.48 45.87 42.81 40.74 43.16 44.62 44.45 45.93 36.39AEEA 0.10 0.08 0.07 0.08 0.09 0.07 0.07 0.07 0.08 0.38AEP 11.03 11.56 10.94 12.05 14.03 11.43 11.05 11.46 11.05 6.70TETA's 15.99 15.83 14.65 14.79 15.57 14.73 15.82 15.43 15.70 14.84TEPA's 6.30 5.83 5.70 5.35 5.87 5.87 5.42 5.39 5.82 7.23Others 15.53 17.38 16.88 18.95 17.19 18.84 17.32 17.45 15.60 28.02Calculated ResultsMEA Conversion, % 83.15 85.85 84.36 86.83 96.16 86.17 85.26 85.66 84.73 94.65EDA Conversion, % 28.34 29.33 27.00 29.25 29.14 28.07 26.69 27.28 24.83 52.95DETA/AEEA, weight ratio 446.11 553.51 645.28 567.49 450.02 645.53 661.41 602.58 540.83 95.38DETA/PIP, weight ratio 8.26 7.45 7.78 7.16 6.26 7.32 7.82 7.74 7.90 5.65Acyclic (N4), % 51.07 47.00 52.50 44.81 39.03 46.71 51.97 47.13 53.43 74.25__________________________________________________________________________
TABLE XXVI__________________________________________________________________________ Example No. 355 356 357 358 359 360 361 362 363__________________________________________________________________________Process ParametersCatalyst Type W W W W W W W W WCatalyst Weight, gm. 25 25 25 25 25 25 25 25 25Temperature, .degree.C. 300 300 300 300 300 300 300 300 300Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 6 23.8 30.25 48 53 72 77.5 97 121MEA SV, gmol/hr/kgcat 18.16 17.00 19.03 15.61 16.78 15.28 16.46 14.87 13.70EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03Crude ProductComposition, wt. %PIP 6.13 6.34 6.24 7.03 7.03 6.91 8.73 6.92 7.15DETA 42.33 41.40 44.19 38.93 38.93 40.23 20.16 40.03 39.88AEEA 0.09 0.09 0.09 0.06 0.06 0.09 0.13 0.09 0.10AEP 13.86 14.14 13.30 15.41 15.41 14.95 19.54 14.98 14.97TETA's 17.89 16.15 15.58 15.06 15.06 15.03 21.36 15.06 14.93TEPA's 5.58 5.52 5.75 4.93 4.93 4.93 7.05 4.85 4.68Others 14.13 16.35 14.84 18.59 18.59 17.86 23.03 18.07 18.31Calculated ResultsMEA Conversion, % 95.6 96.0 94.9 97.1 97.1 96.8 95.6 97.1 97.7EDA Conversion, % 30.2 30.4 28.1 29.7 29.7 28.8 18.2 29.2 29.4DETA/AEEA, weight ratio 497.7 459.6 499.4 650.4 650.4 438.9 154.7 435.3 418.4DETA/PIP, weight ratio 6.9 6.5 7.1 5.5 5.5 5.8 2.3 5.8 5.6Acyclic (N4), % 45.3 39.3 44.5 33.2 33.2 35.3 39.4 34.7 36.1__________________________________________________________________________
TABLE XXVII__________________________________________________________________________ Example No. 364 365 366 367 368 369 370 371 372 373__________________________________________________________________________Process ParametersCatalyst Type V V V V V V V V V VCatalyst Weight, gm. 46 46 46 46 46 46 46 46 46 46Temperature, .degree.C. 300 300 300 300 300 300 300 300 300 300Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 6.75 23.8 30.2 48 54.1 72 96 126.25 145 150MEA SV, gmol/hr/kgcat 6.83 5.74 6.22 6.32 6.28 5.82 6.41 7.54 6.48 7.69EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03Crude ProductComposition, wt. %PIP 6.33 5.96 6.22 6.18 6.56 6.48 6.38 2.84 2.80 2.61DETA 50.12 47.61 48.92 48.06 50.16 48.24 50.44 67.50 68.27 69.72AEEA 0.17 0.90 0.16 0.15 0.16 0.00 0.00 5.03 4.50 5.69AEP 8.11 8.30 8.19 8.13 7.91 8.44 7.92 1.92 1.81 1.40TETA's 12.09 12.30 12.95 13.04 11.23 11.40 11.48 12.46 12.77 11.77TEPA's 4.97 4.58 6.28 5.27 5.49 6.73 7.08 3.02 3.86 3.70Others 18.21 20.35 17.27 19.18 18.51 18.72 16.69 7.24 5.98 5.11Calculated ResultsMEA Conversion, % 75.51 78.26 75.93 76.24 73.81 77.21 74.27 53.74 56.64 53.32EDA Conversion, % 5.13 6.30 5.13 5.57 4.44 3.06 2.97 18.51 19.35 18.94DETA/AEEA, weight ratio 297.03 53.02 302.52 312.85 319.61 -- -- 13.42 15.17 12.25DETA/PIP, weight ratio 7.92 7.99 7.87 7.78 7.65 7.45 7.90 23.80 24.35 26.69Acyclic (N4), % 47.48 49.13 47.98 48.20 51.68 44.98 51.47 90.25 91.46 93.59__________________________________________________________________________ Example No. 374 375 376 377 378 379 380 381__________________________________________________________________________ Process Parameters Catalyst Type V V V V V V V V Catalyst Weight, gm. 46 46 46 46 46 46 46 46 Temperature, .degree.C. 300 300 300 300 300 300 300 300 Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 Time on Organics, hrs. 168.5 174.25 192 198 215.5 221 239 263 MEA SV, gmol/hr/kgcat 6.71 6.78 8.22 7.66 6.39 7.39 9.63 9.79 EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 Crude Product Composition, wt. % PIP 2.71 2.57 2.26 2.41 2.57 2.57 2.41 2.28 DETA 69.72 69.11 70.16 72.26 70.67 69.66 75.04 74.12 AEEA 1.25 5.25 8.29 5.69 5.30 5.28 7.20 7.20 AEP 1.52 1.42 1.18 1.36 1.48 1.50 1.15 1.10 TETA's 12.74 11.59 10.80 10.70 11.54 12.03 9.01 8.51 TEPA's 2.25 4.42 3.35 1.53 2.17 3.56 0.00 1.40 Others 9.81 5.63 3.95 6.04 6.26 5.41 5.20 5.40 Calculated Results MEA Conversion, % 55.77 53.88 48.41 50.29 53.70 54.50 43.19 42.97 EDA Conversion, % 19.51 19.50 16.84 18.69 19.81 20.15 15.89 15.31 DETA/AEEA, weight ratio 55.62 13.16 8.46 12.70 13.33 13.19 10.43 10.30 DETA/PIP, weight ratio 25.72 26.90 31.08 29.99 27.50 27.13 31.17 32.49 Acyclic (N4), % 91.75 94.73 91.48 91.05 91.42 91.60 92.72 91.40__________________________________________________________________________
TABLE XXVIII__________________________________________________________________________ Example No. 382 383 384 385 386 387 388 389 390 391__________________________________________________________________________Process ParametersCatalyst Type Y Y Y Y Y Y Y Y Y YCatalyst Weight, gm. 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5Temperature, .degree.C. 300 300 300 300 300 300 300 300 300 300Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 6.75 23.8 30.2 48 54.1 72 96 126.25 145 150MEA SV, gmol/hr/kgcat 16.13 13.37 15.19 15.19 15.01 13.78 14.74 17.33 12.92 17.02EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03Crude ProductComposition, wt. %PIP 7.56 8.00 8.44 8.07 7.13 8.48 7.34 4.01 6.56 3.94DETA 39.30 38.30 19.69 30.64 39.86 38.13 39.11 51.22 32.15 52.91AEEA 0.08 0.09 0.35 0.76 0.88 0.89 0.68 0.28 0.37 0.19AEP 14.93 15.55 16.04 15.82 14.41 15.73 13.77 4.42 9.11 3.82TETA's 15.54 13.94 13.82 13.82 15.69 13.28 13.48 18.58 12.89 18.32TEPA's 5.30 5.15 5.16 5.23 5.39 5.07 5.88 9.73 9.33 8.42Others 17.29 18.96 36.50 25.66 16.65 18.41 19.75 11.77 29.58 12.40Calculated ResultsMEA Conversion, % 90.31 93.69 87.07 86.93 90.36 94.25 91.26 82.48 54.96 78.65EDA Conversion, % 27.30 26.79 30.42 32.35 26.44 20.97 26.09 38.51 31.10 37.81DETA/AEEA, weight ratio 522.42 445.24 56.85 40.58 45.41 42.75 57.70 183.00 87.44 274.66DETA/PIP, weight ratio 5.20 4.79 2.33 3.80 5.59 4.50 5.33 12.78 4.90 13.41Acyclic (N4), % 40.26 33.55 26.37 27.78 42.64 31.58 37.13 86.55 62.97 88.80__________________________________________________________________________
TABLE XXIX__________________________________________________________________________ Example No. 392 393 394 395 396 397 398 399__________________________________________________________________________Process ParametersCatalyst Type Z Z Z Z Z Z Z ZCatalyst Weight, gm. 28 28 28 28 28 28 28 28Temperature, .degree.C. 300 300 300 300 300 300 300 300Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 6.75 23.8 30.2 48 54.1 72 96 126.25MEA SV, gmol/hr/kgcat 15.12 12.81 14.17 14.30 14.56 13.19 13.59 15.22EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03Crude ProductComposition, wt. %PIP 8.57 9.02 7.29 7.21 8.51 9.13 8.42 4.67DETA 33.57 19.24 37.95 38.15 32.87 18.78 21.38 42.29AEEA 0.16 0.42 0.98 0.88 0.90 2.06 2.06 0.11AEP 15.78 16.17 14.91 15.05 15.90 16.19 15.70 7.17TETA's 12.83 12.14 16.32 17.01 12.42 11.67 11.88 17.94TEPA's 4.66 4.99 5.43 5.68 4.71 4.47 4.85 10.69Others 24.44 38.02 17.12 16.01 24.68 37.70 35.71 17.12Calculated ResultsMEA Conversion, % 86.5 88.0 91.1 93.2 85.8 87.5 86.8 83.2EDA Conversion, % 29.8 31.5 28.0 27.9 28.1 30.0 29.9 39.8DETA/AEEA, weight ratio 215.4 45.4 38.8 43.2 36.3 9.1 10.4 383.4DETA/PIP, weight ratio 3.9 2.1 5.2 5.3 3.9 2.1 2.5 9.1Acyclic (N4), % 28.9 25.2 40.0 40.7 28.5 25.6 29.0 74.5__________________________________________________________________________ Example No. 400 401 402 403 404 405 406__________________________________________________________________________Process ParametersCatalyst Type Z Z Z Z Z Z ZCatalyst Weight, gm. 28 28 28 28 28 28 28Temperature, .degree.C. 300 300 300 300 300 300 300Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 145 150 169.5 174.25 182 215.5 221MEA SV, gmol/hr/kgcat 11.97 14.11 11.42 7.52 16.06 12.28 5.72EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03 2.03 2.03Crude ProductComposition, wt. %PIP 6.26 5.49 6.48 6.83 6.49 6.16 6.75DETA 32.99 39.64 35.54 32.99 57.60 55.83 55.83AEEA 0.27 0.37 35.54 32.99 57.60 55.83 55.83AEP 8.74 6.68 8.06 8.22 6.75 6.45 6.84TETA's 14.42 17.80 14.90 15.96 19.49 21.62 20.16TEPA's 9.80 10.39 9.68 9.61 9.47 9.80 10.24Others 27.51 19.63 25.24 26.08 0.00 0.00 0.00Calculated ResultsMEA Conversion, % 70.3 81.4 62.2 85.6 75.3 75.2 76.5EDA Conversion, % 36.5 42.9 31.6 50.2 31.3 32.8 30.2DETA/AEEA, weight ratio 120.6 106.6 339.0 105.6 275.0 379.4 305.7DETA/PIP, weight ratio 5.3 7.2 5.5 4.8 8.9 9.1 8.3Acyclic (N4), % 66.2 74.3 63.8 64.7 81.2 82.7 81.5__________________________________________________________________________
TABLE XXX__________________________________________________________________________ Example No. 407 408 409 410 411 412 413 414__________________________________________________________________________Process ParametersCatalyst Type AA AA AA AA AA AA AA AACatalyst Weight, gm. 46.5 46.5 46.5 46.5 46.5 46.5 46.5 46.5Temperature, .degree.C. 300 300 300 300 300 300 300 300Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 7.5 25.25 30.5 49.2 55 73 98 122.5MEA SV, gmol/hr/kgcat 6.63 7.00 6.51 6.30 6.38 5.94 6.23 6.08EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03Crude ProductComposition, wt. %PIP 3.42 4.52 5.23 5.92 6.37 6.28 6.42 6.43DETA 58.06 62.33 68.96 69.91 66.80 66.86 67.20 66.51AEEA 0.90 0.41 1.17 0.65 2.16 0.83 0.79 0.49AEP 5.64 4.65 5.53 5.96 6.14 7.13 7.20 7.16TETA's 15.94 11.97 14.41 12.91 13.22 14.11 13.69 14.48TEPA's 6.36 2.94 4.70 4.65 5.30 4.78 4.71 4.93Others 9.69 13.17 0.00 0.00 0.00 0.00 0.00 0.00Calculated ResultsMEA Conversion, % 54.95 39.25 37.77 39.56 39.80 43.07 42.10 42.18EDA Conversion, % 16.88 9.91 7.62 6.17 7.16 5.94 6.56 6.57DETA/AEEA, weight ratio 64.83 151.97 59.12 107.83 30.98 80.66 85.40 135.46DETA/PIP, weight ratio 16.99 13.80 13.19 11.81 10.48 10.64 10.47 10.35Acyclic (N4), % 74.20 71.41 70.12 65.82 66.42 60.21 58.92 60.71__________________________________________________________________________ Example No. 415 416 417 418 419 420 421__________________________________________________________________________Process ParametersCatalyst Type AA AA AA AA AA AA AACatalyst Weight, gm. 46.5 46.5 46.5 46.5 46.5 46.5 46.5Temperature, .degree.C. 300 300 300 300 300 300 300Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 127.5 146 146 170 175.5 193.5 199.5MEA SV, gmol/hr/kgcat 7.37 2.97 3.08 2.54 2.78 4.12 5.82EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03 2.03 2.03Crude ProductComposition, wt. %PIP 3.08 2.91 1.94 3.89 3.46 4.92 2.43DETA 79.50 80.53 53.61 68.98 67.63 68.28 80.51AEEA 1.15 1.16 3.38 0.62 0.58 0.90 1.63AEP 1.54 1.55 31.25 3.83 3.49 4.67 3.12TETA's 12.29 12.01 8.35 16.69 18.11 14.76 10.79TEPA's 2.43 1.83 1.47 5.99 6.73 6.48 1.52Others 0.00 0.00 0.00 0.00 0.00 0.00 0.00Calculated ResultsMEA Conversion, % 53.53 52.82 59.62 79.90 78.73 48.07 44.55EDA Conversion, % 18.59 18.21 29.94 32.67 34.75 15.62 16.48DETA/AEEA, weight ratio 69.17 69.46 15.85 111.40 116.21 76.29 49.35DETA/PIP, weight ratio 25.80 27.64 27.58 17.71 19.54 13.88 33.09Acyclic (N4), % 91.42 92.59 90.87 89.38 93.62 80.99 90.31__________________________________________________________________________
TABLE XXXI__________________________________________________________________________ Example No. 422 423 424 425 426 427 428__________________________________________________________________________Process ParametersCatalyst Type BB BB BB BB BB BB BBCatalyst Weight, gm. 40 40 40 40 40 40 40Temperature, .degree.C. 300 300 300 300 300 300 300Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 6.25 24 48 73.25 78 96 102.2MEA SV, gmol/hr/kgcat 7.22 6.90 6.70 6.79 9.64 13.73 8.42EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03 2.03 2.03Crude ProductComposition, wt. %PIP 4.64 5.07 5.47 6.11 4.61 2.89 2.66DETA 54.40 51.32 53.54 54.40 38.72 70.87 70.93AEEA 0.45 0.32 0.28 0.18 0.23 0.83 3.54AEP 6.06 5.86 6.29 6.23 7.39 1.63 1.60TETA's 15.72 13.56 13.93 13.57 17.10 11.96 12.47TEPA's 7.11 8.60 6.80 5.44 9.71 1.19 0.93Others 11.62 15.27 13.69 14.08 22.24 10.64 7.87Calculated ResultsMEA Conversion, % 73.28 70.10 67.53 66.59 93.14 54.11 57.79EDA Conversion, % 17.20 11.87 9.83 4.80 47.87 17.54 20.15DETA/AEEA, weight ratio 120.19 160.45 193.73 301.09 168.15 85.70 20.03DETA/PIP, weight ratio 11.73 10.12 9.80 8.90 8.39 24.51 26.70Acyclic (N4), % 68.45 65.60 65.53 65.81 78.15 93.92__________________________________________________________________________ Example No. 429 430 431 432 433__________________________________________________________________________ Process Parameters Catalyst Type BB BB BB BB BB Catalyst Weight, gm. 40 40 40 40 40 Temperature, .degree.C. 300 300 300 300 300 Pressure, psig 614.7 614.7 614.7 614.7 614.7 Time on Organics, hrs. 126.5 149.6 174.25 192 216 MEA SV, gmol/hr/kgcat 10.15 9.49 10.17 9.72 8.93 EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03 Crude Product Composition, wt. % PIP 2.63 2.25 2.33 2.48 2.40 DETA 70.93 69.92 71.08 69.14 69.53 AEEA 3.82 4.09 4.76 4.26 4.44 AEP 1.55 1.49 1.42 1.50 1.44 TETA's 11.88 13.53 12.97 13.18 12.50 TEPA's 4.00 4.51 2.54 5.15 4.78 Others 5.20 4.21 4.90 4.29 4.92 Calculated Results MEA Conversion, % 56.18 60.33 56.40 60.02 58.96 EDA Conversion, % 19.49 21.58 18.91 20.01 20.25 DETA/AEEA, weight ratio 18.58 17.11 14.94 16.24 15.65 DETA/PIP, weight ratio 26.97 31.08 30.46 27.86 28.99 Acyclic (N4), % 98.08 96.81 93.63 94.91 94.73__________________________________________________________________________
TABLE XXXII__________________________________________________________________________ Example No. 434 435 436 437 438 439 440 441__________________________________________________________________________Process ParametersCatalyst Type CC CC CC CC CC CC CC CCCatalyst Weight, gm. 48.5 48.5 48.5 48.5 48.5 48.5 48.5 48.5Temperature, .degree.C. 300 300 300 300 300 300 300 300Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 6.25 24 48 73.25 78 96 102.2 120MEA SV, gmol/hr/kgcat 8.81 7.54 7.24 7.24 7.23 7.53 9.01 8.48EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03Crude ProductComposition, wt. %PIP 3.08 5.16 5.19 5.72 2.83 3.09 2.83 2.15DETA 57.93 54.96 54.34 52.73 69.69 64.98 66.85 54.34AEEA 3.09 1.90 2.06 1.64 0.77 0.88 0.93 0.52AEP 5.13 5.54 5.51 5.56 1.69 3.26 2.82 1.66TETA's 14.19 11.13 8.80 9.33 11.81 13.29 14.01 10.48TEPA's 4.97 3.49 2.82 2.75 2.79 3.90 2.78 0.74Others 11.60 17.81 21.28 22.27 10.41 10.59 9.79 30.10Calculated ResultsMEA Conversion, % 29.35 17.08 16.90 22.28 51.51 56.51 56.64 61.20EDA Conversion, % 17.69 8.54 7.70 6.62 17.13 22.86 23.48 28.04DETA/AEEA, weight ratio 18.73 28.98 26.37 32.21 90.32 73.42 71.53 104.57DETA/PIP, weight ratio 18.81 10.65 10.47 9.22 24.64 21.00 23.64 25.25Acyclic (N4), % 74.19 59.62 55.18 57.88 92.50 90.52 92.03 97.15__________________________________________________________________________ Example No. 442 443 444 445 446__________________________________________________________________________ Process Parameters Catalyst Type CC CC CC CC CC Catalyst Weight, gm. 48.5 48.5 48.5 48.5 48.5 Temperature, .degree.C. 300 300 300 300 300 Pressure, psig 614.7 614.7 614.7 614.7 614.7 Time on Organics, hrs. 126.5 149.6 174.25 192 216 MEA SV, gmol/hr/kgcat 8.14 7.80 9.20 9.44 3.07 EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03 Crude Product Composition, wt. % PIP 2.57 2.24 2.38 2.36 2.84 DETA 70.20 70.98 72.85 71.79 65.39 AEEA 2.27 2.85 3.78 3.73 0.13 AEP 1.77 1.48 1.27 1.31 2.28 TETA's 12.41 12.67 11.12 11.37 14.51 TEPA's 4.12 3.83 2.31 3.66 4.69 Others 6.65 5.95 6.28 5.78 10.15 Calculated Results MEA Conversion, % 54.61 51.47 47.98 49.55 66.38 EDA Conversion, % 20.86 19.16 16.96 17.94 26.17 DETA/AEEA, weight ratio 30.93 24.89 19.27 19.25 489.92 DETA/PIP, weight ratio 27.27 31.73 30.57 30.44 23.01 Acyclic (N4), % 97.67 96.40 94.59 93.99 91.80__________________________________________________________________________
TABLE XXXIII__________________________________________________________________________ Example No. 447 448 449 450 451 452 453 454 455__________________________________________________________________________Process ParametersCatalyst Type DD DD DD DD DD DD DD DD DDCatalyst Weight, gm. 38.5 38.5 38.5 38.5 38.5 38.5 38.5 38.5 38.5Temperature, .degree.C. 300 300 300 300 300 300 300 300 300Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 6.25 24 48 73.25 78 96 102.2 120 126.5MEA SV, gmol/hr/kgcat 9.85 9.30 9.04 8.87 8.73 10.46 10.44 11.08 12.32EDA/MEA mole ratio 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03Crude ProductComposition, wt. %PIP 5.89 5.80 5.86 6.38 3.43 5.09 4.69 4.70 4.64DETA 16.85 4.34 15.10 11.59 64.66 39.53 44.80 43.36 48.12AEEA 0.84 1.40 1.79 0.40 0.67 0.10 0.07 0.22 0.16AEP 8.46 8.12 8.39 8.69 3.57 6.72 5.29 5.42 4.69TETA's 8.49 6.97 9.45 6.48 12.15 16.99 18.17 17.96 16.74TEPA's 3.38 3.31 4.68 3.20 3.69 10.20 9.86 10.16 8.84Others 56.09 70.06 54.73 63.26 11.82 21.38 17.12 18.18 16.81Calculated ResultsMEA Conversion, % 89.1 89.5 90.3 93.2 42.2 96.8 95.1 92.0 88.5EDA Conversion, % 47.0 44.8 44.6 43.9 17.3 49.3 46.8 52.3 46.6DETA/AEEA, weight ratio 20.0 3.1 8.5 29.1 96.4 409.0 635.6 199.1 310.3DETA/PIP, weight ratio 2.9 0.7 2.6 1.8 18.8 7.8 9.6 9.2 10.4Acyclic (N4), % 46.3 40.3 37.5 35.2 90.0 88.5 88.4 87.2 96.6__________________________________________________________________________
TABLE XXXIV__________________________________________________________________________ Example No. 456 457 458 459 460 461 462 463 464 465 466__________________________________________________________________________Process ParametersCatalyst Type T T T T T T T T T T TCatalyst Weight, gm. 80 80 80 80 80 80 80 80 80 80 80Temperature, .degree.C. 270 270 280 260 270 270 260 270 280 260 270Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 3 19.75 26.5 44.5 50 68 93 117.5 122.5 139.5 146.5MEA SV, gmol/hr/kgcat 6.17 5.43 5.84 5.52 6.45 5.30 7.25 6.35 7.97 6.73 6.96EDA/MEA mole ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00Crude ProductComposition, wt. %PIP 1.16 1.34 1.69 0.86 1.20 1.84 0.82 1.08 1.47 0.84 1.02DETA 52.32 49.82 49.10 50.87 50.84 49.19 50.90 49.22 48.79 49.62 49.52AEEA 29.91 28.90 23.77 34.25 31.67 22.37 36.80 33.38 28.45 36.73 33.49AEP 0.60 0.76 1.16 0.40 0.53 1.28 0.34 0.51 0.81 0.35 0.44TETA's 5.36 5.94 8.36 4.07 4.48 8.28 1.80 4.38 5.75 2.22 3.80TEPA's 0.60 1.29 2.21 0.82 0.72 2.34 0.45 0.69 1.12 0.92 1.06Others 10.05 11.96 13.71 8.72 10.56 14.68 8.90 10.74 13.61 9.31 10.67Calculated ResultsMEA Conversion, % 32.29 36.97 49.04 23.77 30.59 50.48 17.49 28.23 35.74 17.54 24.55EDA Conversion, % 15.91 16.86 21.95 11.36 14.02 22.37 8.44 12.87 16.42 8.63 12.12DETA/AEEA, weight ratio 1.75 1.72 2.07 1.49 1.61 2.20 1.38 1.47 1.72 1.35 1.48DETA/PIP, weight ratio 45.02 37.31 29.02 59.27 42.42 26.68 62.43 45.45 33.29 59.35 48.69Acyclic (N4), % 93.48 93.57 92.74 93.64 94.22 93.29 93.55 93.81 92.30 81.81 92.41__________________________________________________________________________ Example No. 467 468 469 470 471 472 473 474 475 476 477__________________________________________________________________________Process ParametersCatalyst Type T T T T T T T T T T TCatalyst Weight, gm. 80 80 80 80 80 80 80 80 80 80 80Temperature, .degree.C. 280 260 270 280 260 270 280 268.3 160 270 280Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 164.75 170.5 188 194.5 213 218.5 237 261 284.5 290.5 309MEA SV, gmol/hr/kgcat 6.31 6.98 4.78 7.11 7.19 7.88 7.54 7.18 8.65 8.15 6.71EDA/MEA mole ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00Crude ProductComposition, wt. %PIP 1.57 0.79 1.40 1.52 0.95 1.08 1.49 1.11 0.88 1.00 1.61DETA 48.60 50.25 48.73 48.04 49.36 49.37 47.60 48.50 47.12 46.96 46.66AEEA 26.89 37.07 29.60 28.91 36.47 34.27 28.14 33.88 38.59 34.46 27.77AEP 0.96 0.33 0.79 0.81 0.39 0.45 0.89 0.47 0.35 0.43 0.91TETA's 5.90 1.73 4.70 4.92 1.63 2.88 5.28 3.16 1.00 2.34 4.95TEPA's 1.36 1.27 1.06 1.03 1.50 0.83 1.01 0.67 1.20 0.68 1.10Others 14.71 8.56 13.72 14.78 9.69 11.13 15.59 12.20 10.87 14.05 17.00Calculated ResultsMEA Conversion, % 39.35 15.03 32.82 33.94 16.11 20.91 34.90 22.45 11.90 20.69 35.98EDA Conversion, % 18.29 7.69 15.80 15.70 8.04 10.33 17.43 9.93 5.79 8.81 15.19DETA/AEEA, weight ratio 1.81 1.36 1.65 1.66 1.35 1.44 1.69 1.43 1.22 1.36 1.68DETA/PIP, weight ratio 30.94 63.59 34.74 31.64 51.73 45.73 32.00 43.62 53.84 43.14 29.01Acyclic (N4), % 91.96 80.65 93.70 91.98 80.63 93.67 91.57 92.02 68.40 91.09 90.74__________________________________________________________________________ Example No. 478 479 480 481 482 483 484 485 486 487 488__________________________________________________________________________Process ParametersCatalyst Type T T T T T T T T T T TCatalyst Weight, gm. 80 80 80 80 80 80 80 80 80 80 80Temperature, .degree.C. 260 270 270 270 280 290 290 280 270 270 280Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 314.5 332.5 340 358 363.5 382 387.5 406 411.5 429.5 454MEA SV, gmol/hr/kgcat 6.42 5.51 4.90 4.87 5.55 6.92 8.46 6.08 9.82 3.06 4.42EDA/MEA mole ratio 1.00 1.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00Crude ProductComposition, wt. %PIP 1.00 1.22 1.02 1.00 1.54 2.58 1.33 0.99 0.82 1.11 1.51DETA 48.72 48.09 59.10 58.23 57.27 52.30 57.67 58.76 62.07 59.03 59.18AEEA 38.26 33.46 26.14 23.40 19.64 9.64 20.96 22.74 25.58 23.07 17.88AEP 0.36 0.51 0.32 0.33 0.69 1.92 0.45 0.36 0.26 0.32 0.75TETA's 1.16 3.01 0.97 1.72 4.34 9.47 4.39 1.99 0.94 1.49 4.44TEPA's 0.76 0.44 1.33 1.56 0.71 3.50 0.86 1.45 0.46 1.93 0.70Others 9.73 13.27 11.13 13.76 15.81 20.59 14.35 13.71 9.86 13.05 15.54Calculated ResultsMEA Conversion, % 13.38 23.39 17.28 25.82 37.24 61.82 32.38 25.31 11.24 24.90 40.70EDA Conversion, % 4.16 10.56 7.95 8.75 12.90 17.18 10.91 8.30 3.25 9.09 14.57DETA/AEEA, weight ratio 1.27 1.44 2.26 2.49 2.92 5.42 2.75 2.58 2.43 2.56 3.31DETA/PIP, weight ratio 48.60 39.28 57.91 58.24 37.10 20.29 43.25 59.46 75.30 53.20 39.09Acyclic (N4), % 84.53 91.29 74.14 93.91 93.42 90.40 94.58 90.64 81.05 83.66 93.20__________________________________________________________________________ Example No. 489 490 491 492 493 494 495 496 497 498 499__________________________________________________________________________Process ParametersCatalyst Type T T T T T T T T T T TCatalyst Weight, gm. 80 80 80 80 80 80 80 80 80 80 80Temperature, .degree.C. 290 290 280 270 280 280 280 290 270 270 280Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 477.5 483.5 501.5 507.5 525 531.5 549 555.5 571 577.5 596MEA SV, gmol/hr/kgcat 4.12 6.00 5.86 6.38 6.28 6.71 5.77 6.04 6.11 4.23 3.51EDA/MEA mole ratio 2.00 2.00 2.00 2.00 2.00 3.99 3.99 3.99 3.99 3.99 3.99Crude ProductComposition, wt. %PIP 1.90 1.51 0.98 0.86 0.98 0.86 0.84 0.84 1.11 0.76 0.94DETA 54.93 58.81 58.92 59.29 58.82 66.57 67.35 66.05 65.30 66.91 68.74AEEA 12.50 18.81 23.06 26.30 23.61 15.62 16.63 16.39 15.32 15.34 16.42AEP 1.22 0.69 0.33 0.28 0.33 0.42 0.40 0.24 0.73 0.41 0.26TETA's 8.24 4.16 1.91 1.15 1.49 1.48 1.67 1.48 2.63 2.29 1.35TEPA's 2.11 0.58 1.20 1.89 1.13 1.62 0.85 1.71 0.67 1.20 0.00Others 19.11 15.43 13.60 10.23 13.63 13.43 12.26 13.29 14.27 13.09 12.28Calculated ResultsMEA Conversion, % 60.84 37.54 25.03 13.64 20.81 16.86 20.96 28.60 12.61 15.50 27.38EDA Conversion, % 22.24 12.46 8.96 6.18 9.68 5.38 5.07 8.08 3.20 4.48 7.03DETA/AEEA, weight ratio 4.40 3.13 2.56 2.25 2.49 4.26 4.05 4.03 4.26 4.36 4.19DETA/PIP, weight ratio 28.94 38.96 60.22 69.18 59.96 77.30 80.40 78.43 59.01 87.51 73.31Acyclic (N4), % 91.47 94.14 88.06 89.86 87.11 91.63 87.50 71.00 85.27 92.86 74.66__________________________________________________________________________ Example No. 500 510 511 512 513 514 515 516 517 518 519__________________________________________________________________________Process ParametersCatalyst Type T T T T T T T T T T TCatalyst Weight, gm. 80 80 80 80 80 80 80 80 80 80 80Temperature, .degree.C. 290 290 270 270 280 270 280 280 270 290 290Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7Time on Organics, hrs. 620 643.75 667 672.5 690 696.5 721.5 739 745 765 789MEA SV, gmol/hr/kgcat 3.88 7.58 7.36 6.38 5.00 6.09 6.59 4.62 6.02 4.44 2.66EDA/MEA mole ratio 3.99 3.99 3.99 3.99 3.99 3.99 1.00 1.00 1.00 1.00 1.00Crude ProductComposition, wt. %PIP 1.37 0.81 0.73 0.72 0.84 0.76 0.91 1.89 1.23 2.43 3.34DETA 65.51 66.36 68.45 67.36 66.78 67.61 67.18 47.90 48.28 43.04 35.12AEEA 13.57 18.45 14.15 14.84 16.90 14.17 16.45 27.89 34.08 20.23 11.23AEP 0.50 0.30 0.36 0.42 0.22 0.44 0.24 0.92 0.42 1.72 3.00TETA's 2.87 1.33 1.73 1.09 1.78 1.35 1.03 3.64 1.14 7.87 10.15TEPA's 1.25 0.95 1.09 1.90 1.05 1.87 1.33 0.93 1.33 1.44 1.95Others 14.93 11.81 13.49 13.67 12.44 13.80 12.85 16.84 13.52 23.25 35.21Calculated ResultsMEA Conversion, % 40.01 24.12 16.58 13.12 22.66 11.58 67.15 31.05 17.86 48.57 69.43EDA Conversion, % 10.82 6.60 0.53 2.36 4.91 2.48 46.42 10.13 5.88 22.50 30.13DETA/AEEA, weight ratio 4.83 3.60 4.84 4.54 3.95 4.77 4.08 1.72 1.42 2.13 3.13DETA/PIP, weight ratio 47.91 82.06 93.55 93.89 79.88 88.99 73.55 25.37 39.29 17.71 10.51Acyclic (N4), % 82.36 70.11 100.00 100.00 84.32 92.31 63.52 86.67 73.40 90.38 92.08__________________________________________________________________________ Example No.__________________________________________________________________________ Process Parameters Catalyst Type T T T T T T T T T Catalyst Weight, gm. 80 80 80 80 80 80 80 80 80 Temperature, .degree.C. 280 270 270 290 280 280 270 290 280 Pressure, psig 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 614.7 Time on Organics, hrs. 812.5 828.5 836.5 842.5 860.5 866.5 884.5 890.5 908.5 MEA SV, gmol/hr/kgcat 3.37 7.40 8.16 8.20 7.78 5.55 5.96 5.58 4.66 EDA/MEA mole ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Crude Product Composition, wt. % PIP 1.89 1.29 1.17 1.78 1.25 1.70 1.20 2.03 1.66 DETA 46.34 48.59 49.17 45.50 46.22 45.68 44.17 43.18 44.18 AEEA 25.96 32.65 35.12 29.96 32.79 32.29 33.79 26.41 30.36 AEP 1.11 0.53 0.35 0.63 0.50 0.55 0.47 1.14 0.70 TETA's 5.41 2.76 0.64 4.26 2.54 3.37 1.17 5.13 3.86 TEPA's 1.22 1.23 1.85 1.38 2.53 1.48 1.80 1.20 1.46 Others 18.08 12.94 11.70 16.49 14.16 14.93 17.41 20.90 17.78 Calculated Results MEA Conversion, % 35.90 21.56 12.87 28.07 19.17 23.17 15.56 34.80 26.27 EDA Conversion, % 16.33 8.80 3.83 11.63 9.11 9.49 8.47 17.39 15.10 DETA/AEEA, weight ratio 1.79 1.49 1.40 1.52 1.41 1.41 1.31 1.63 1.46 DETA/PIP, weight ratio 24.57 37.60 41.92 25.62 36.91 26.93 36.74 21.25 26.63 Acyclic (N4), % 87.93 83.92 67.37 87.32 80.07 86.23 68.41 86.09 83.15__________________________________________________________________________
Although the invention has been illustrated by certain of the preceding examples, it is not to be construed as being limited thereby; but rather, the invention encompasses the generic area as hereinbefore disclosed. Various modifications and embodiments can be made without departing from the spirit and scope thereof.
Claims
  • 1. A process of making amines having a yield weight percent of aminoethylethanolamine greater than about 20.0, based on 100 percent of the weight of the product and exclusive of any water and/or ammonia and/or feed present, comprising condensing, in the absence of hydrogen as a reactant, monoethanolamine and ethylenediamine, under condensation conditions including the presence of a condensation catalyst selected from the group consisting of a metatungstate or mixture thereof with Group IVB metal oxides.
  • 2. The process of claim 1 wherein the Group IVB metal oxide comprises a high surface area titanium oxide or zirconium oxide.
  • 3. The process of claim 1 wherein the condensation catalyst has a surface area greater than about 70 m.sup.2 /gm.
  • 4. The process of claim 2 wherein the titanium oxide comprises titanium dioxide and the zirconium oxide comprises zirconium dioxide.
  • 5. The process of claim 1 wherein the Group IVB metal oxide comprises a mixture of titanium oxide and zirconium oxide.
  • 6. The process of claim 5 wherein the mixture of titanium oxide and zirconium oxide comprises titanium dioxide and zirconium dioxide.
  • 7. The process of claim 2 wherein the condensation catalyst has a surface area greater than about 140 m.sup.2 /gm.
  • 8. The process of claim 2 wherein the condensation catalyst has a surface area greater than about 70 m.sup.2 /gm.
  • 9. The process of claim 1 wherein the condensation catalyst is associated with a performance moderator different from said condensation catalyst.
  • 10. The process of claim 9 wherein the performance moderator comprises one or more metal oxides.
  • 11. The process of claim 10 wherein the performance moderator comprises one or more Group IA metal oxides, Group IIA metal oxides, Group IIIB metal oxides, Group VB metal oxides, Group VIIB metal oxides, Group VIII metal oxides, Group IB metal oxides, Group IIB metal oxides, Group IIIA metal oxides, Group IVA metal oxides or mixtures thereof.
  • 12. The process of claim 11 wherein the performance moderator comprises one or more oxides of scandium, yttrium, lanthanum, cerium, gadolinium, lutetium, ytterbium, niobium, tantalum, iron, cobalt, nickel, zinc, cadmium, boron, aluminum, gallium, indium, silicon, germanium, tin, lead, arsenic, antimony and bismuth.
  • 13. The process of claim 9 wherein the performance moderator comprises one or more metallic phosphates which may or may not have a cyclic structure, metallic polyphosphates having a condensed structure, metallic metaphosphimates, metallic phosphoramidates, metallic amidophosphates, metallic imidophosphates or mixtures thereof.
  • 14. The process of claim 13 wherein the performance moderator comprises a metallic orthophosphate, a metallic metaphosphate, a metallic pyrophosphate, a metallic polyphosphate, a metallic ultraphosphate, a metallic metaphosphimate, a metallic phosphoramidate, a metallic amidophosphate, a metallic imidophosphate or mixtures thereof.
  • 15. The process of claim 9 wherein the performance moderator comprises a phosphorus-containing substance.
  • 16. The process of claim 15 wherein the phosphorous-containing substance comprises acidic metal phosphates, phosphoric acid compounds and their anhydrides, phosphorous acid compounds and their anhydrides, alkyl or aryl phosphate esters, alkyl or aryl phosphite esters, alkyl or aryl substituted phosphorous acids and phosphoric acids, alkali metal monosalts of phosphoric acid, the thioanalogs of the foregoing, and mixtures thereof.
  • 17. The process of claim 9 wherein the performance moderator comprises a mineral acid or a compound derived from a mineral acid.
  • 18. The process of claim 17 wherein the performance moderator comprises phosphoric acid or a salt of phosphoric acid.
  • 19. The process of claim 17 wherein the performance moderator comprises hydrogen fluoride, hydrofluoric acid or a fluoride salt.
  • 20. The process of claim 17 wherein the performance moderator comprises sulfuric acid or a salt of sulfuric acid.
  • 21. The process of claim 1 wherein the Group IVB metal oxide comprises from about 25 weight Percent to about 90 weight percent of the weight of the catalyst.
  • 22. The process of claim 1 wherein the Group IVB metal oxide comprises from about 50 weight percent to about 90 weight percent of the weight of the catalyst.
  • 23. The process of claim 1 wherein the Group IVB metal oxide comprises from about 75 weight Percent to about 90 weight percent of the weight of the catalyst.
  • 24. The process of claim 1 wherein the condensation catalyst is associated with a support material.
  • 25. The process of claim 24 wherein the support comprises an alumina material or an alumina-silica material.
  • 26. The process of claim 24 wherein the support comprises a silica material or a silica-alumina material.
  • 27. The process of claim 24 wherein the support comprises from about 2 to about 50 percent by weight of the condensation catalyst.
  • 28. The process of claim 1 wherein monoethanolamine and ethylenediamine are condensed in the presence of ammonia.
  • 29. The process of claim 1 wherein the amines product has a DETA to AEEA weight ratio of less than about 5.0 and an AEEA to PIP weight ratio of greater than about 5.0.
  • 30. The process of claim 1 wherein the amines product has an AEEA yield weight percent of greater than about 25.0, based on 100 percent of the weight of the product and exclusive of any water and/or ammonia and/or feed present.
  • 31. The process of claim 1 in which the amines product comprises, based on 100 percent of the weight of the product and exclusive of any water and/or ammonia and/or feed present,
  • a) greater than about 20.0 weight percent of AEEA,
  • b) less than about 75.0 weight percent of DETA,
  • c) less than about 10.0 weight percent of the combination of PIP and AEP,
  • d) less than about 20.0 weight percent of the combination of TETA's and TEPA's,
  • e) less than about 50 weight percent of others,
  • f) a DETA to AEEA weight ratio of less than about 5.0, and
  • g) an AEEA to PIP weight ratio of greater than about 5.0.
  • 32. The process of claim 1 which is conducted at a temperature of from about 125.degree. C. to about 400.degree. C.
  • 33. The process of claim 1 which is conducted at a pressure of from about 50 psig to about 3000 psig.
  • 34. The process of claim 1 which is effected in the liquid or vapor or supercritical liquid states.
US Referenced Citations (46)
Number Name Date Kind
1799722 Arnold Apr 1931
2073671 Andrews Apr 1931
2389500 Goshorn Nov 1945
2467205 Gresham et al. Apr 1949
3092457 Sprague Jun 1963
3207808 Bajax Sep 1965
4036881 Brennan et al. Jul 1977
4044053 Brennan et al. Aug 1977
4314083 Ford et al. Feb 1982
4316840 Ford et al. Feb 1982
4316841 Ford et al. Feb 1982
4324917 McConnell Apr 1982
4362886 Ford et al. Dec 1982
4394524 Ford et al. Jul 1983
4399308 Ford et al. Aug 1983
4448997 Brennan May 1984
4463193 Johnson et al. Jul 1984
4503253 Ford et al. Mar 1985
4521600 Wells et al. Jun 1985
4524143 Vanderpool Jun 1985
4540822 Vanderpool Sep 1985
4547591 Brennan et al. Oct 1985
4550209 Unvert et al. Oct 1985
4552961 Herdle Nov 1985
4555582 Vanderpool Nov 1985
4560798 Ford et al. Dec 1985
4578517 Johnson et al. Mar 1986
4578518 Vanderpool et al. Mar 1986
4578519 Larken et al. Mar 1986
4584405 Vanderpool Apr 1986
4584406 Vanderpool et al. Apr 1986
4588842 Vanderpool May 1986
4605770 Ford et al. Aug 1986
4609761 Watts, Jr. et al. Sep 1986
4612397 Renken Sep 1986
4617418 Ford et al. Oct 1986
4633335 Knifton et al. Jul 1987
4683335 Knottor et al. Jul 1987
4698427 Vanderpool Oct 1987
4720588 Turcotte et al. Jan 1988
4806517 Vanderpool et al. Feb 1989
4922024 Bowman et al. May 1990
4973682 Burgess et al. Nov 1990
4983736 Doumaux, Jr. et al. Jan 1991
4996363 Bowman et al. Feb 1991
5030740 Bowman et al. Jul 1991
Foreign Referenced Citations (23)
Number Date Country
0290960 Nov 1988 EPX
0315189 May 1989 EPX
0328101 Aug 1989 EPX
0331396 Sep 1989 EPX
4896475 Dec 1973 JPX
0171411 Oct 1982 JPX
78945 May 1985 JPX
236752 Oct 1986 JPX
236753 Oct 1986 JPX
236753 Oct 1986 JPX
307846 Dec 1988 JPX
132550 May 1989 JPX
153659 Jun 1989 JPX
157936 Jun 1989 JPX
163159 Jun 1989 JPX
168647 Jul 1989 JPX
000232 Jan 1990 JPX
000233 Jan 1990 JPX
000234 Jan 1990 JPX
000735 Jan 1990 JPX
000736 Jan 1990 JPX
002876 Jan 1990 JPX
006854 Jan 1990 JPX
Non-Patent Literature Citations (1)
Entry
Patent Abstracts of Japan, vol. 11, No. 80 (C-409)(2527) Mar. 11, 1987.