The field of the invention is a tool inner string that can be run through an outer string and in specific predetermined locations the tool can be unlocked to find set down support and tool rotational orientation with an outer string port. The tool can be locked to not find support in passing through other zones. Once unlocked to operate using an indexing device setting down weight allows rotation for needed alignment and a support location of the inner string to the outer string at multiple locations.
With the advances of downhole completion and well monitoring methods, rotationally aligning service strings are beginning to see a growing number of applications for their use. Current generation rotationally aligned equipment, in the form of well monitoring wet connects, are commonly positioned at the top of a lower completion to allow a monitor from the lower completion to be linked to surface equipment. However, these rotational aligned connections are limited to single point in the tool string. Additionally, downhole completion frac pack methods are limited to linear alignment only of a service string to an outer string in current generation completion systems. This introduces difficulties in ways to control erosive flow paths and implement optimal alignment of tool strings to ensure durability for the applicable frac tools. Multizone completions are equally limited in the inability to rotationally align a frac tool with each frac sleeve over the course of several zones. Additionally, deep water completions require the use of indicating tools to identify tool, port, or seal position and prevent unwanted tool movement caused by tubing stretch, rig heave, etc. A common indicator for tool position is a hard boundary encountered by the indicating tool through interaction with a unique profile on the ID of the outer string, which can allow for either setting down weight or pulling on the rental string while the indicating tool is in “Locate Mode.” Manipulation of the indicating tool with an associated profile can be used to cycle the indicating tool to the “Snap Thru Mode,” enabling the rental string to pass beyond the indicating profile. For multi-zone systems, this produces the need to indicate on and cycle through each profile of each subsequent zone, resulting in excess string manipulation when passing through or between zones. This invention provides an apparatus to selectively lock rotationally aligning indicating tools in the “Snap Thru Mode” while tripping both in and out of the lower completion, to allow movement through multiple zones without having to index the mechanism and to provide a positive no-go indication in the axial and rotational direction when each indication boundary is encountered in order to service multiple zones with rotationally aligning equipment.
A tool that selectively unlocks after landing collets in a profile and using a pickup force and spring return to advance a j-slot to selectively align locking dogs with an axial groove has been described in US 2016/0084027, and is fully incorporated by reference herein as if fully set forth. In this tool the tool is functional for a downhole operation when the dogs rotate into alignment with an axial slot due to picking up against a spring return force while operating a j-slot. After the operation is completed the spring-loaded collets align with another profile and picking up against the spring force rotates a sleeve having the j-slot so that the locking dogs are again aligned axially with stops between the axial slots so that the inner string is locked against relative movement and can pass to the next zone of interest or out of the hole without needing to be cycled at other locations.
Selectively supported collet fingers made from axial slices into a tube and having an exterior profile on each finger to engage a similar profile in a surround tubular have been made by Baker Hughes, a GE company under the trademark Smart Collet® and the makeup and operation of such collets is described in U.S. Pat. Nos. 6,382,319 and 6,464,006 and is fully incorporated by reference herein as if fully set forth.
The present invention combines the selective locking of a tool with spaced profiles in a surrounding tubular as described in US 2016/0084027 with a Smart Collet® with finger profiles on adjacent fingers defining a V-shaped protruding shape to engage a similarly shaped profile on the outer tubular. The V-shapes create relative rotation, if needed for alignment of ports between the inner string and the outer string, for example. Freeing the tool to operate after passing the first profile using a lower j-slot to align dogs with an axial slot allows a j-slot at the upper end of the tool to position a support mandrel with a similar V-shaped profile in alignment with the V-shaped profile on the Smart Collet® fingers so that as the inner string is set down the V-shaped pattern of the collet fingers is supported as rotation, if needed, occurs on setting down weight to land on a V-shaped support profile in the surrounding tubular. After performing the downhole operation such as a gravel pack or a fracturing operation, for example, the tool is picked up through another profile and locked again for transport to another unlock profile where the steps can be repeated or out of the borehole. Certain locations where the unlocking collets do not fit in the outer string profile allow the tool to be pulled past without actuation. Rotational orientation is enabled in a variety of locations as opposed to single location functionality of known wet connect devices.
A multi-function tool is connected to an inner string to selectively align a port or ports in the inner string with ports in the outer string at various locations. The tool is locked from functioning at some locations where a locating collet will not selectively engage with an unlocking profile. In this more the tool will pass through the location unhindered. If an unlock profile is engaged the tool is enabled to be unlocked so that manipulation allows a support mandrel to align with collets that have an external V-shaped profile. Setting down weight allows the supported V-shaped profile on the collets engage a similar profile on the outer tubular to rotate, if needed, and to find support on a V-shaped profile on the surrounding tubular for performance of the borehole operation. Thereafter the locating collet engages a locking profile to disable the tool again.
Referring to
The initial step is to unlock the tool 10 at a desired location. Tool 10 has a mandrel 22 that extends from upper end 12 to bottom sub 24. The outer assembly extends from spring 74 to spring 30 and includes all the intervening parts that surround the mandrel 22 which can be in multiple parts, as shown. Referring to
A support collet sleeve 54 is shown in
The fingers 56 are flexible and the profile members 62 will snap into recess 70 that in part defines the support profile 18. However, merely snapping into recess 70 by profile members 62 that make up the V-shape 64 will alone not be sufficient to support the tool 10 on profile 68. The V-shape 64 will need internal support from V-shape 72 on mandrel 22 before landing on V-shape 68 in support profile 18. In
What remains is the need to relock the tool after lifting the V-shape 64 out of recess 70 and leaving V-shape 64 without internal support so that fingers 56 can flex radially inwardly without engaging for support into any other support profiles, such as for example 18′. Picking up the mandrel 22 will land the collets 28 in a relock profile such as 20 where the j-slot sleeve 42 will again be rotated in a manner previously described to put the locking dogs 44 into recess 46 and out of alignment with slot 52 thereby locking the collets 26 against relative movement with respect to mandrel 22. Going uphole with tool 10 will leave the tool locked until the tool 10 comes out of the hole or until another unlock profile such as 16 is engaged and the process is repeated. The selective support function of the V-shape 64 functions similarly to a Smart Collet® as described in U.S. Pat. Nos. 6,382,319 and 6,464,006 and is fully incorporated by reference herein as if fully set forth.
In essence tool 10 combines the ability to be locked and selectively unlocked at unlock profile locations and in between the tool simple snaps through any surrounding surface recesses without actuation. When unlocked the tool combines the capability of axial support to align openings axially between an inner and outer string as well as a rotational alignment capability to rotationally align ports in and inner and an outer string. Such axial and rotational alignment can occur more than once in a single trip in the borehole depending on how many unlock and relock profiles are distributed in the outer string.
While port alignment is a principal function of the tool 10, other purposes of the tool that finds support in select locations and auto-rotates for rotational alignment are also envisioned for a variety of borehole treatment procedures and other tasks as outlined below.
The teachings of the present disclosure may be used in a variety of well operations. These operations may involve using one or more treatment agents to treat a formation, the fluids resident in a formation, a wellbore, and/or equipment in the wellbore, such as production tubing. The treatment agents may be in the form of liquids, gases, solids, semi-solids, and mixtures thereof. Illustrative treatment agents include, but are not limited to, fracturing fluids, acids, steam, water, brine, anti-corrosion agents, cement, permeability modifiers, drilling muds, emulsifiers, demulsifiers, tracers, flow improvers etc. Illustrative well operations include, but are not limited to, gravel packing, hydraulic fracturing, stimulation, tracer injection, cleaning, acidizing, steam injection, water flooding, cementing, etc.
The above description is illustrative of the preferred embodiment and many modifications may be made by those skilled in the art without departing from the invention whose scope is to be determined from the literal and equivalent scope of the claims below:
This application is a continuation-in-part of U.S. application Ser. No. 14/489,694 filed Sep. 18, 2014 and published as US 2016/0084027.
Number | Name | Date | Kind |
---|---|---|---|
6382319 | Hill, Jr. et al. | May 2002 | B1 |
6464006 | Womble | Oct 2002 | B2 |
20020117301 | Womble | Aug 2002 | A1 |
20070295514 | Rohde | Dec 2007 | A1 |
20110067862 | Clem | Mar 2011 | A1 |
20120048556 | O'Connell | Mar 2012 | A1 |
20140014360 | Wilson | Jan 2014 | A1 |
20160084027 | Silva et al. | Mar 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20180023370 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14489694 | Sep 2014 | US |
Child | 15680156 | US |