Selective route exporting using source type

Information

  • Patent Grant
  • 11212210
  • Patent Number
    11,212,210
  • Date Filed
    Thursday, September 21, 2017
    7 years ago
  • Date Issued
    Tuesday, December 28, 2021
    2 years ago
Abstract
Systems and methods for selectively advertising routing information by a network appliance to a neighboring computing device are disclosed. In exemplary embodiments, customized export policies are created based on source type for each neighboring computing device to a network appliance. A source type for routing information is determined by the network appliance. The routing information is exported by the appliance to the neighboring computing device, such as a BGP router, based on the customized export policy associated with the source type.
Description
TECHNICAL FIELD

The present technology relates generally to network communications, and more specifically to route exporting between network devices.


BACKGROUND

The approaches described in this section could be pursued but are not necessarily approaches that have previously been conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.


Typically, data is sent between computing devices across a communications network in packets. The packets may be generated according to a variety of protocols such as Transmission Control Protocol (TCP), User Datagram Protocol (UDP), or the like. A network appliance in a network can be connected to many other computing devices via many different network paths. Further the network paths may traverse multiple communication networks.


A group of network appliances may be in communication with other appliances within a cloud, or with external computing devices, such as routers. Often times it may be preferable to only selectively share IP address subnets associated with a particular network appliance with specific connecting computing devices. Thus, information regarding the type of connected device to an appliance is relevant for controlling IP address subnet sharing.


SUMMARY

This summary is provided to introduce a selection of concepts in a simplified form that are further described in the Detailed Description below. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.


In an exemplary computer-implemented method for selectively advertising routing information by a network appliance to a neighboring computing device, the method comprises: receiving at a first appliance of a plurality of appliances, routing information from a first source of a plurality of sources, the routing information comprising at least one IP address; determining a source type of the first source, the source type being from a plurality of source types; identifying a community identifier corresponding to the determined source type; associating the received routing information with the identified community identifier; receiving a selection from a customizable export map regarding permitted communities to export from the first appliance to a second source of the plurality of sources; matching the permitted communities to the identified community identifier; and exporting by the first appliance, the routing information for the matched communities to the second source.


Other features, examples, and embodiments are described below.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are illustrated by way of example, and not by limitation, in the figures of the accompanying drawings, in which like references indicate similar elements and in which:



FIG. 1 illustrates an exemplary system, within which the present disclosure can be implemented.



FIG. 2 illustrates a block diagram of an appliance, in an exemplary implementation of the invention.



FIG. 3 illustrates an exemplary schematic of appliances in communication with an orchestrator device.



FIG. 4 illustrates an exemplary environment in which a plurality of appliances is in communication with various internal and external routers.



FIG. 5 illustrates exemplary community identifiers associated with each route source type.



FIG. 6A illustrates an exemplary environment of appliances in communication with routers.



FIGS. 6B and 6C illustrate exemplary route tables for an appliance.



FIGS. 6D and 6E illustrate exemplary route maps for an appliance.



FIG. 7 illustrates an exemplary screenshot of a user interface of a network administrator of an appliance.



FIG. 8 is an exemplary process flowchart performed by a network appliance.



FIG. 9 is another exemplary process flowchart performed by a network appliance.





DETAILED DESCRIPTION

While this technology is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the technology and is not intended to limit the technology to the embodiments illustrated. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the technology. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. It will be understood that like or analogous elements and/or components, referred to herein, may be identified throughout the drawings with like reference characters. It will be further understood that several of the figures are merely schematic representations of the present technology. As such, some of the components may have been distorted from their actual scale for pictorial clarity.


The embodiments described herein relate to mechanisms for selectively advertising routing information by a network appliance to one or more neighboring computing devices.



FIG. 1 illustrates an exemplary system 100, within which the present disclosure can be implemented. The exemplary system 100 includes a first location 110, a second location 120, and communication networks 130A-130D. While four communication networks are depicted in exemplary system 100, there can be any number of communication networks, including just one. Additionally, system 100 can include many locations, though only two are depicted in the exemplary figure for simplicity.


In the exemplary embodiment depicted in FIG. 1, the first location 110 includes computers 140 and a first appliance 150. In the first location 110, the computers 140 are communicatively coupled to the first appliance 150. While only one appliance is depicted in first location 110, there can be multiple appliances, physical and/or virtual, at first location 110. In some embodiments, the first location is a branch location of an enterprise. While not depicted here, first location 110 can also comprise additional elements such as routers, switches, or any other physical or virtual computing equipment.


Computers 140 may be any type of computing device capable of accessing a communication network, such as a desktop computer, laptop computer, server, mobile phone, tablet, or any other “smart” device.


The first appliance 150 comprises hardware and/or software elements configured to receive data and optionally perform any type of processing of the data before transmitting it across a communication network.


As illustrated, the first appliance 150 is configured in-line (or serially) between the computers 140 and the router 160. The first appliance 150 intercepts network traffic between the computers 140 and the servers 170, in either direction.


In other embodiments, the first appliance 150 can be configured as an additional router, gateway, bridge, or be transparent on some or all interfaces. As a router, for example, the first appliance 150 appears to the computers 140 as an extra hop before the router 160. In some embodiments, the first appliance 150 provides redundant routing or peer routing with the router 160. Additionally, the first appliance 150 may provide failure mechanisms, such as, fail-to-open (e.g., no data access) or fail-to-wire (e.g., a direct connection to the router 160). If an appliance has multiple interfaces, it can be transparent on some interfaces, or act like a router, or act like a bridge on others. Alternatively, the appliance can be transparent on all interfaces, or appear as a router or bridge on all interfaces.


In FIG. 1, the first appliance 150 is communicatively coupled to a router 160, which is coupled to communication networks 130A and 130B. While only one router 160 is depicted in exemplary system 100, there can be multiple routers, switches, or other equipment (physical or virtual) present in system 100, either within the first location 110 or outside of the first location 110. Typically, router 160 would be located within first location 110. In various embodiments, first appliance 150 may be in communication with communication networks 130C and 130D directly (on separate interfaces), instead of through router 160. While router 160 is depicted as being connected to two communication networks and first appliance 150 is also depicted as being connected to two communication networks, a person of ordinary skill in the art would understand that there can be any number of communication networks (including just one communication network) connected to the first location 110, either via router 160, via first appliance 150, or via another computing device. To illustrate that each of the access links is possible but not required in every embodiment, the access links 125 are shown as dashed lines in FIG. 1.


The second location 120 in exemplary system 100 includes servers 170. While the term “server” is used herein, any type of computing device may be used in second location 120, as understood by a person of ordinary skill in the art. The server may also be a virtual machine. While not depicted in FIG. 1, second location 120 can optionally include at least one second appliance in addition to, or instead of, servers 170. Second location 120 can also include other components not depicted in FIG. 1, such as routers, switches, load-balancers or any other physical or virtual computing equipment. In some embodiments, the second location 120 is a central location or data center for an enterprise. In other embodiments, the second location 120 is a data center hosting a public web service or application.


The servers 170 are depicted in FIG. 1 as being communicatively coupled to the communication networks 130A-130D via destination access links 145. In some embodiments, servers 170 may actually be in communication with the one or more of the communication networks through a router, switch, second appliance, or other physical or virtual equipment. Further, while four destination access links 145 are depicted in FIG. 1, corresponding to each of the four communication networks (130A-130D), there may actually be fewer (such as just one) or more communication networks connected to second location 120. To illustrate that each of the destination access links 145 is possible but not required in every embodiment, the destination access links 145 are shown as dashed lines in FIG. 1.


The communication networks 130A-130D comprise hardware and/or software elements that enable the exchange of information (e.g., voice, video and data) between the first location 110 and the second location 120. Some examples of the communication networks 130A-130D are a private wide-area network (WAN), the public Internet, Multiprotocol Label Switching (MPLS) network, and wireless LTE network. Typically connections from the first location 110 to the communication networks 130A-130D (e.g., from router 160 and first appliance 150) are T1 lines (1.544 Mbps), or broadband connections such as digital subscriber lines (DSL) and cable modems. Other examples are MPLS lines, T3 lines (43.232 Mbps), OC3 (155 Mbps), OC48 (2.5 Gbps), fiber optic cables, or LTE wireless access connection. In various embodiments, each of the communication networks 130A-130D may be connected to at least one other communication network via at least one Inter-ISP link 155. For example, communication network 130A may be connected to communication network 130B, 130C, and/or 130D via one or more inter-ISP links. Data may traverse more than one communications network along a path from first location 110 to second location 120. For example, traffic may flow from the first location 110 to communication network 130A, over inter-ISP link 155 to communication network 130B, and then to the second location 120.


The router 160 and first appliance 150 are optionally connected to the communication networks 130A-130D via access links 125, sometimes also referred to herein as network access links. The communication networks 130A-130D consist of routers, switches, and other internal components that make up provider links 135. The provider links 135 are managed by the network service providers such as an Internet Service Provider (ISP). The second location 120 can be connected to communication networks 130A-130D via destination access links 145. Access links 125, provider links 135, and destination access links 145 can be combined to make various network paths along which data travels between the first location 110 and the second location 120. The exemplary embodiment of FIG. 1 depicts two paths along various provider links 135 through each communication network. However, as understood by persons of ordinary skill in the art, there can be any number of network paths across one or more communication networks.


In addition, communication networks may be in communication with one another via inter-ISP link(s) 155. For example, data traveling through communication network 130A may also travel through communication network 130C before reaching second location 120. In various embodiments, data can travel through any one or more of the communication networks 130A-130D from first location 110 to second location 120, and vice versa. Generally, an inter-ISP link connects communication networks of different internet service providers, such as a link connecting Verizon LTE wireless network with Comcast broadband network. In some embodiments, an inter-ISP link can connect communication networks from the same internet service provider, such as a link connecting Verizon LTE wireless network with the Verizon Fire network.


The first appliance 150, along with any other appliances in system 100 can be physical or virtual. In the exemplary embodiment of a virtual appliance, it can be in a virtual private cloud (VPC), managed by a cloud service provider, such as Amazon Web Services, or others. An appliance in a customer data center can be physical or virtual. Similarly, the second location 120 may be a cloud service such as Amazon Web Service, Salesforce, or others.


As discussed herein, the communication networks 130A-130D can comprise multiple provider links, made up of routers and switches, connecting networked devices in different locations. These provider links, which together form various paths, are part of one or more core networks, sometimes referred to as an underlay network. In addition to these paths, there can also be tunnels connecting two networked devices. A virtual network, sometimes called an overlay network, can be used to transmit data across an underlay network, regardless of which Service Provider manages the routes or provider links. Data from connected devices can travel over this overlay network, which can consist of any number of tunnels or paths between each location.


In an exemplary embodiment, data from computers 140 at first location 110 may include voice, video, and data. This information can be transmitted by first appliance 150 over one or more communication networks 130A-130D to second location 120. In some embodiments, voice, video, and data may be received and transmitted on separate LAN or vLAN interfaces, and first appliance 150 can distinguish the traffic based on the LAN/vLAN interface at which the data was received.


In some embodiments, the system 100 includes one or more secure tunnels between the first appliance 150 and servers 170, or optionally a second appliance at the second location. The secure tunnel may be utilized with encryption (e.g., IPsec), access control lists (ACLs), compression (such as header and payload compression), fragmentation/coalescing optimizations, and/or error detection and correction provided by an appliance.


In various embodiments, first location 110 and/or second location 120 can be a branch location, central location, private cloud network, data center, or any other type of location. In addition, multiple locations can be in communication with each other. As understood by persons of ordinary skill in the art, any type of network topology may be used.


The principles discussed herein are equally applicable to multiple first locations (not shown) and to multiple second locations (not shown). For example, the system 100 may include multiple branch locations and/or multiple central locations coupled to one or more communication networks. System 100 may also include many sites (first locations) in communication with many different public web services (second locations). Branch location/branch location communication, central location/central location communication, central location/cloud appliance communication, as well as multi-appliance and/or multi-node communication and bi-directional communication are further within the scope of the disclosure. However, for the sake of simplicity, FIG. 1 illustrates the system 100 having a single first location 110 and a single second location 120.



FIG. 2 illustrates a block diagram of an appliance 250 (also referred to herein as network appliance), in an exemplary implementation of the invention. The appliance 250 includes a processor 210, a memory 220, a WAN communication interface 230, a LAN communication interface 240, and database(s) 290. A system bus 280 links the processor 210, the memory 220, the WAN communication interface 230, the LAN communication interface 240, and the database(s) 290. When deployed in a branch location, line 260 links the WAN communication interface 230 to the router 160 (in FIG. 1), and line 270 links the LAN communication interface 240 to the computers 140 in FIG. 1.


The database(s) 290 comprises hardware and/or software elements configured to store data in an organized format to allow the processor 210 to create, modify, and retrieve the data. The hardware and/or software elements of the database(s) 290 may include storage devices, such as RAM, hard drives, optical drives, flash memory, and magnetic tape. While the term database is used herein, a person of ordinary skill in the art would understand that any similar type of mechanism for storing data in an organized format can be utilized.


In some embodiments, some appliances comprise identical hardware and/or software elements. Alternatively, in other embodiments, some appliances, such as a second appliance, may include hardware and/or software elements providing additional processing, communication, and/or storage capacity capabilities.


Embodiments of the present invention also allow for centrally assigned policies to be implemented throughout an enterprise network, to secure and control all WAN traffic for the enterprise. Software defined WAN (SD-WAN) overlay networks can be created independently from the physical network, and from each other, and in multiple layers. Topology, security, and forwarding rules can be specified independently for each overlay. This design allows for high-scale and secure application segmentation. Each overlay scales automatically as endpoints are added to the SD-WAN fabric, and configuration integrity is maintained as each site maps a local profile into a global overlay.


All of the overlay networks, policies, and corresponding ports, subnets and vLANs can be maintained in one or more databases in communication with an orchestrator device, as depicted in FIG. 3. The orchestrator 310 can be hardware and/or software, and be in communication with each of the networked devices, such as the network appliances, as well as in communication with the database(s) 320.


Further, while not depicted in FIG. 3, each of the appliances can be in communication with one another in any topology configuration, such as a mesh network. In one embodiment, each appliance 250 can be in communication via a full mesh network. The appliances together may form one or more cloud networks for an enterprise.


In exemplary embodiments, the orchestrator 310 may maintain information regarding the configuration of each appliance at each location (physical or virtual). In this way, the orchestrator 310 can create, manage and implement policies for network traffic throughout the network of connected devices. For example, if a higher priority is designated for voice traffic, the orchestrator 310 can automatically configure the corresponding network appliances at all relevant locations accordingly.


By having knowledge of the configuration of each appliance in the network, the orchestrator 310 can also create and manage tunnels in the enterprise network, including tunnels to carry a particular type of network traffic between each source-destination appliance pair. The orchestrator 310 can automatically configure the enterprise network by determining which tunnels need to be created, and automatically creating them based on the network nodes and overlays. The orchestrator 310 can also configure policies based on application classification techniques to preferentially steer certain types of applications over one path rather than over another path.



FIG. 4 illustrates an exemplary environment 400 in which a plurality of appliances are in communication with various internal and external routers. As shown in FIG. 4, appliances 250a, 250b, and 250c are communicatively coupled to one another, either directly or indirectly through other intermediate computing devices. While only three appliances are depicted in FIG. 4, there can be fewer or additional appliances present as well.


In exemplary environment 400, the appliances are depicted as also being communicatively coupled with a number of routers, either directly or indirectly. While not depicted in the figure, there can actually be any number of intermediary switches, routers, or other computing devices between the appliances. In environment 400, router 410 is in communication with appliance 250a within a LAN such as a branch office, router 420 is in communication with appliance 250a in the broader WAN, and router 430 is in communication with appliance 250b within a LAN such as a data center. In various embodiments, each appliance is in communication with one another via a fully meshed network topology, and the appliances together form a cloud network. Traditionally, appliances such as those depicted herein utilize proprietary subnet sharing to communicate with one another and exchange IP addresses and subnets.


Routers such as those depicted in environment 400 traditionally utilize the border gateway protocol (BGP) as a protocol to communicate routing information, including the exchange of IP addresses and subnets. Embodiments of the present disclosure utilize BGP to exchange IP addresses and subnets to communicate routing information between proprietary network appliances and routers typically used as a core part of the communication network. In this way, proprietary network appliances, such as those depicted in environment 400 can learn of IP addresses and subnets from other computing devices and use them.


In exemplary embodiments, each appliance contains a database with a routing table having customizable routing information associated with each neighboring router. That is, appliance 250a contains a database with customizable routing information for router 410, router 420, appliance 250b, and appliance 250c. The routing table may contain information regarding a neighbor type for the appliance. The neighbor type is determined, at least in part, on a location of the router communicating with the particular appliance. Therefore, a particular router may be a different neighbor type to each appliance.


In various embodiments, there may be three exemplary neighbor types designated to each router that communicates with an appliance. As would be understood by a person of ordinary skill in the art, although these three neighbor types are described herein, there can actually be any number of neighbor types for each appliance.


A first exemplary neighbor type to appliance 250a may be a branch router, such as router 410 of FIG. 4. In exemplary embodiments, a branch router is a router within an enterprise branch location (such as first location 110 of FIG. 1) that is in communication with the appliance. A second exemplary neighbor type to appliance 250a may be a provider edge (PE) router, such as router 420. A PE router can be any router within a communication network in a broader WAN (such as a router in communication networks 130A-130D in FIG. 1). While PE router is discussed herein, the present disclosure also includes other types of routers present in a WAN. Further, a router on the WAN side of an appliance may be assigned a different neighbor type than a router on the LAN side of an appliance. A third exemplary neighbor type to appliance 250c is a branch transit router, such as router 430. A branch transit router can be any router connected to a series of appliances, such as appliances 250b and 250c. That is, appliance 250a is not directly connected to router 430, but is rather connected to router 430 via another appliance (appliance 250b). A branch transit router, such as router 430 of FIG. 4 is characterized as a “transit” type neighbor because it may have “back-door” connectivity to another appliance. For example, router 430 is depicted as being in communication with appliance 250b directly, and also connected to another router that is in communication with appliance 250c. Thus, there are two avenues of communication with the network appliances. While these specific neighbor types are discussed here, there can be fewer, additional, or different neighbor types designated by a user.


Many routing vendors use Border Gateway Protocol (BGP) to communicate routing information, such as Internet Protocol (IP) addresses and IP subnets. That is, BGP can be used to exchange IP addresses and subnets between computing devices. For simplicity, IP addresses will be discussed herein; however, a person of ordinary skill in the art would understand that an IP subnet is equally applicable to the present disclosure instead of a singular IP address.


When an appliance is in communication with a router that uses BGP, there may be a need for an appliance to communicate with the neighboring router by sharing IP addresses and subnets back and forth. That is, the appliance may need to export IP addresses to the router, and may also need to import IP addresses from the router. In some circumstances, it may be desirable for an appliance to only export a subset of its known IP addresses to a router or a peer appliance. Also, it may be desirable for an appliance to export a different subnet of IP addresses to different computing devices (such as routers), depending on the type or location of the computing device. Thus, a mechanism is needed to customize and adjust IP address exporting by an appliance to different neighboring computing devices. While the computing devices discussed herein are predominantly appliances and routers, the present disclosure is equally applicable to any device that is present in a network and has an IP address.


When processing an IP subnet as part of control traffic, an appliance may determine an origination location for the IP subnet and assign a source type to that IP subnet based on a classification. By way of non-limiting example, the routes can be classified using their respective IP subnet source as a:

    • LOCAL_SUB: local subnet is an subnet owned by the appliance and/or defined by the appliance
    • SHARED_SUB: shared subnet that is learned from a peer appliance
    • BGP_PE: subnet is received from a BGP provider edge (PE) router using BGP
    • BGP_BRANCH: subnet is received from a BGP branch router using BGP, i.e., a branch router being at a physically/geographically remote location from the appliance
    • BGP_BRANCH_TRANSIT: BGP branch transit subnet is similar to a BGP branch subnet, with the exception that the source of the subnet is a BGP branch transit peer, and may thus have connectivity to other appliances that are also connected to the local appliance. This type of peer computing device can be in the same Autonomous System (iBGP) or in a different Autonomous System (eBGP).
    • REMOTE_BGP: a subnet received from a router to another peer appliance and then from the peer appliance to the present appliance; learned via subnet sharing from a peer appliance, but originally from a BGP branch peer
    • REMOTE_BGP_BRANCH_TRANSIT: learned via subnet sharing from a peer appliance, but originally from a BGP transit peer


While these specific route source types are discussed herein, there can be fewer or additional source types used for IP addresses imported or exported to other networked computing devices.


In various embodiments, a unique community identifier is attached to each route source type by an appliance (also sometimes referred to herein as “route type” or “source type”). Exemplary community identifiers associated with each route source type are depicted in FIG. 5. The community identifier for each route source type can be implemented as a tag, or string, attached to the route type to identify the community. That is, for a learned IP subnet of 1.1.1.0/24, a community identifier of 200 may be presented as simply 1.1.1.0/24 200. As would be understood by persons of ordinary skill in the art, any string value can be used to represent the community identifier, including 2-byte or 4-byte integer values.


When an appliance such as appliance 250a receives a subnet in a control communication, it first determines where the subnet originated from (i.e. the source of the subnet) and attaches a community identifier to it that corresponds with the route source type. The subnet and community identifier are stored in an internal database within the appliance, usually within a Route Table Manager. In some embodiments, a catchall “other” route source type may be used to categorize IP subnets received from another source not otherwise accounted for. A community identifier can be a 2-byte or 4-byte hard-coded unique identifier that is attached to the learned IP address or subnet.


In embodiments of the present disclosure, each appliance in the network creates a route map for each neighboring device. Permissions are created for each neighbor and maintained in an Address Exporting Route Map, also sometimes referred to herein as simply route map or export map. The Address Exporting Route Map for each neighboring computing device to the particular appliance contains information regarding permitted communities. That is, appliance 250a maintains a route map for router 410 and a route map for router 420. Appliance 250b maintains a route map for router 430 and a route map for router 440. Appliance 250c maintains a route map for router 450. Again, while only these few neighboring devices are described here for simplicity, there can actually be fewer or additional routers or other computing devices present.


In the Address Exporting Route Map or other data structure, each appliance may maintain information about the type of router, the neighbor type for the router (e.g., branch, branch transit, or PE), a source type for each IP subnet, and/or a community identifier for the source type. While these specific fields are discussed herein, there can be fewer or additional fields in any given Address Exporting Route Map.


Each neighboring computing device to each appliance may have its own customizable export policy. For example, appliance 250a may determine that all route source types can be advertised to router 410, but only two of the route source types can be advertised to router 420. In this way, customized routing policies and subnet exporting policies can be configured in a simple manner for each neighboring computing device to appliance 250a.


In an exemplary use case for the environment depicted in FIG. 6A, appliance 250b owns subnets 1.1.1.0/24, 2.2.2.0/24, and 3.3.3.0/24. These subnets are owned by appliance 250b and thus stored in a Route Table Manager within appliance 250b with community identifier 100 for local subnets, as defined in FIG. 5. An exemplary Route Table Manager is depicted in FIG. 6B.


Appliance 250b may also learn of IP subnet 4.4.4.0/24 from appliance 250a, the subnet being owned by appliance 250a. Since this is learned from a peer appliance, it is stored in the exemplary Route Table Manager of FIG. 6B as a shared subnet, and assigned BGP Community identifier 200.


At another time, appliance 250b may also learn of IP subnet 10.1.1.0/24 from appliance 250a but determine that the IP subnet actually originated from router 410. That is, the source of the IP subnet is actually router 410, and the subnet was learned from router 410 to appliance 250a to appliance 250b. For appliance 250b, this subnet was learned from a remote BGP device, and is stored in the table accordingly with a community identifier of 600.


At another time, appliance 250b may learn of IP subnet 5.5.5.0/24 from router 440. Based on the fact that the subnet originated from a BGP device in communication with appliance 250b, the appliance associates it with a BGP_BRANCH route source type and assigns it a BGP community identifier of 400. In this way, known IP addresses or IP subnets at appliance 250b, whether learned from external sources or originating at the device itself, are stored in a Route Table Manager at appliance 250b.


A network administrator can decide which specific IP subnets are enabled for export from appliance 250b to router 430, such that the IP subnets exported to each computing device in communication with appliance 250b can be customized and updated dynamically. That is, certain subnets may be exported to router 430 which is present in a data center, but fewer subnets may be exported to router 440 which is present in the broader WAN. Thus, a customized Address Export Route Map may be created by appliance 250b for each BGP neighbour computing device with route exporting permissions, based on the source of the subnet to be exported.


Exemplary Address Exporting Route Maps, also referred to herein as an export maps or route maps, are depicted in FIG. 6D. The export maps of FIG. 6D can be stored in appliance 250b and have information regarding which IP subnets are permitted to be exported to which neighboring computing device. FIG. 6D shows that appliance 250b has two BGP neighbors (as shown in FIG. 6A)—router 430 and router 440. For the route map associated with router 440, appliance 250b is depicted as being permitted to export subnets associated with community identifiers 100 and 200. For the route map associated with router 430, appliance 250b is depicted as being permitted to export subnets associated with community identifiers 100, 200 and 400. These permissions are determined by a network administrator of appliance 250b, and can be customized for each neighboring device, as well as can be dynamically updated.


In exemplary embodiments there are between 2-4 BGP neighbors for each appliance. However, as would be understood by a person of ordinary skill in the art, there can actually be any number of BGP neighboring devices. Rules can be defined for each BGP neighbor to an appliance regarding which communities are permitted to be exported to that neighboring device by appliance 250b. Further, the rules can be dynamically updated. In this way, custom route filtering can be achieved by a network appliance to a plurality of BGP computing devices based on the source of the route. In an exemplary embodiment, there are up to 20 BGP computing devices in communication with a network appliance, each with their own custom route filtering.



FIG. 6C depicts an example of a Route Table Manager that may be present at appliance 250a. Appliance 250a may know of the same IP subnets as appliance 250b, but the source type is different for each subnet, based on the origin of the subnet in relation to appliance 250a. That is, subnets 1.1.1.0/24, 2.2.2.0/24, and 3.3.3.0/24 are owned by, and learned from, peer appliance 250b, and thus are assigned a route source type of SHARED_SUB. Accordingly, these subnets are assigned BGP community identifiers of 200 for the SHARED_SUB route source type. Subnet 4.4.4.0/24 is now a LOCAL_SUB route source type for appliance 250a since it originated at the appliance itself, and assigned a community identifier of 100. Subnet 5.5.5.0/24 originated from a remote BGP device in relation to appliance 250a, and is assigned a community identifier of 600. Subnet 10.1.1.0/24 originated from a BGP branch device that neighbors appliance 250a, and is assigned a community identifier of 400.


An exemplary Address Exporting Route Map for appliance 250a is depicted in FIG. 6E. The export map of FIG. 6E can be stored in appliance 250a and has information regarding which IP subnets are permitted to be exported to which neighboring computing device. FIG. 6E shows that appliance 250a has one BGP neighbor (as shown in FIG. 6A)—router 410. For router 410, appliance 250a is permitted to export subnets associated with community identifiers 100, 200 and 400. These permissions are determined by a network administrator of appliance 250a, and can be customized for each neighboring device, as well as can be dynamically updated. In this way, each appliance in an enterprise or a network can have customized address exporting for each neighboring BGP device, without having to configure permissions for specific addresses. Rather, customized address exporting can be achieved based simply on a route source type of each address.


Further, while the tables of FIGS. 6B, 6C, 6D and 6E depict these specific columns or fields of information, a person of ordinary skill in the art would understand that there can actually be fewer or additional columns or fields of data stored in the Route Table Manager or the Export Map. In addition, while the information is presented in a table herein for simplicity, the information may actually be stored in a database, node, or any other type of data structure. In various embodiments, the route map is stored in internal memory at the appliance, or at an external location in communication with each appliance.


Initial configuration of a neighboring computing device to an appliance may commence with a customized export map. That is, an appliance can configure a customized export map for each neighboring computing device by designating an export policy regarding which IP addresses or subnets the appliance can share with the neighboring computing device. The export policy designates which route source types are permitted to be exported to the neighboring computing device by the appliance. For example, an exemplary export policy may have 3 rules: permit subnets that match community 100, permit subnets that match community 200, permit subnets that match community 400. Generally, route types not explicitly allowed are automatically excluded. The principles discussed herein are equally applicable to an import policy as well.


Furthermore, a network administrator can configure customized route exporting policies to BGP devices without having knowledge of specific IP address prefixes. This greatly simplifies the process of determining an IP subnet exporting policy from an appliance to a neighboring computing device, such as a BGP router. In particular, a network administrator does not need to create address exporting rules for every BGP computing device. Rather, customized address exporting is achieved by assigning a route source type based on the relationship of the BGP neighbor to the appliance, and the origin of the particular IP subnet. A community is created for each route source type and an identifier is assigned to each community. Address exporting from an appliance to the BGP neighbor occurs in accordance with specific permissions to that BGP neighbor for each community. In this way, customized routing is achieved without configuring specific IP address prefixes for each computing device.


The initial configuration can be accomplished in a streamlined manner by a network administrator or other user of a network appliance, via a user interface. When an appliance begins a network session to connect to a neighboring computing device, such as a router, a network administrator that owns the appliance is presented with a user interface showing the neighboring computing device and the IP address, as depicted in the exemplary screenshot 700 of FIG. 7. The neighbor type of that computing device may be automatically determined by the appliance, or may be set by the network administrator. For example, screenshot 700 depicts a pull-down list of all of the different route source types that are configured for the network. The route source type is allocated for routes received by this neighbor based on where the IP address subnet originated, as discussed herein. The screenshot 700 depicts that the BGP neighbor type is “Branch”.


Via the user interface, a network administrator can configure the route export policies for the particular neighbor type, in this example the branch neighbor type, simply by selecting which types of routes are permitted to be exported to branch neighboring computing devices. While there are checkboxes depicted in screenshot 700, any method of selection may be used in the user interface, such as radio buttons, highlighting, or any other method. Also, as depicted in screenshot 700, the route export policies for the peer BGP computing device can be dynamically updated at any time with a few simple clicks on a user interface.


If a network administrator chooses not to configure customized export policies for the BGP neighboring computing device, then a default export routing policy may be implemented by way of a default export map for each neighboring computing device to an appliance. In an exemplary embodiment, for a BGP branch router, all route source types are exported by the appliance to the BGP branch router as a default. For a BGP branch transit router, all branch route source types are exported by the appliance to the router as a default, and transit and remote route source types are not exported. That is, only the LOCAL_SUB, SHARED_SUB, BGP_PE, BGP_BRANCH route source types are exported. This is because a branch transit router can be connected to a second branch location in another way that is not visible to the appliance, and it is desirable to avoid advertising subnets in both directions (outbound and inbound) of the appliance. For a BGP neighboring computing device that is a PE router, the local, branch, and local transit route source types may be exported by the appliance to the PE router as a default. That is, the LOCAL_SUB, SHARED_SUB, BGP_PE, BGP_BRANCH, BGP_TRANSIT route source types are exported to the PE router only.


By utilizing embodiments of the present disclosure, a network administrator of an appliance can easily deploy a proprietary network appliance within a communication network without needing to fully understand route maps or BGP routing access control lists. Further, specific address prefixes do not need to be configured for specific computing devices. Rather, the appliance simply needs to know which route source types that exist in their proprietary enterprise cloud encompassing the appliance are to be advertised to each BGP neighboring device. By developing route exporting policies for each BGP neighboring device, each appliance in a cloud network such as that depicted in FIGS. 1 and 3 can implement a uniform route exporting policy across an enterprise cloud network. Further, customized BGP route filtering can be achieved without creating an access control list. Additionally, a uniform export policy can be maintained throughout an enterprise network, regardless of where an individual network appliance is deployed or physically located.


In an example embodiment for FIG. 6A, appliances 250a and 250b communicate with one another via proprietary subnet sharing. Router 410 is a BGP neighbor type of branch to appliance 250a. When appliance 250a learns of subnet 10.1.1.0/24 from router 410, it attaches information to that subnet so that this route source type is carried on as the subnet is shared further within a network. For example, appliance 250a may store the subnet in its internal database (such as a route table manager) as 10.1.1.0/24, community 400.


When appliance 250a exports this subnet to appliance 250b via subnet sharing, appliance 250b recognizes that the subnet is from router 410, which is a remote BGP route source type to appliance 250b. Thus, appliance 250b stores the subnet in its internal database (such as a route table manager) as 10.1.1.0/24, community 600 for remote BGP. In this way, the same subnet is associated with different communities at different appliances within an enterprise network, permitting customized routing policies.


Appliance 250b can check the export map for router 430 to determine whether to export the subnet 10.1.1.0/24 to router 430, which is a BGP neighbor. If the export map for router 430 does not permit community 700, then the subnet is not exported to that router. If the export map for router 430 does permit community 700, then the subnet is exported to that router. In the exemplary FIG. 6D, appliance 250b is only permitted to export route source types of communities 100, 200, or 400 to BGP neighboring router 430. Since appliance 250b notes this subnet as belonging to BGP community 700, the subnet 10.1.1.0/24 is not shared by appliance 250b with router 430.


In another example embodiment of FIG. 6A, appliances 250a and 250b communicate with one another via proprietary subnet sharing. Appliance 250a advertises its subnet 4.4.4.0/24 to appliance 250b. Since appliance 250b is not a BGP neighboring computing device, no BGP community identifier is attached to it. Thus, appliance 250b stores the subnet 4.4.4.0/24 in its database, such as a route table manager, for advertising to its BGP neighboring computing devices. The subnet is assigned a community of 200 since it originated from a shared appliance.


Appliance 250b can check the export map for router 430 to determine whether to export the subnet 4.4.4.0/24 to router 430, which is a BGP neighbor. If the export map for router 430 does not permit community 200, then the subnet is not exported to that router. If the export map for router 430 does permit community 200, then the subnet is exported to that router. In the exemplary FIG. 6D, appliance 250b is permitted to export route source types of community 200 to BGP neighboring router 430. Since appliance 250b notes this subnet as belonging to BGP community 200, the subnet 4.4.4.0/24 is shared by appliance 250b with router 430.


All BGP computing devices are part of an Autonomous System (AS) that has an AS number that uniquely identifies that system. Traditionally, the AS number is a 2-byte integer identifier or 4-byte integer identifier. In various embodiments, the BGP neighboring device is a router for an Internet Service Provider (ISP). The appliance may receive its own ASN from the ISP of the BGP neighbor to communicate via the BGP protocol with the neighboring devices. Then, when an appliance advertises the selected route source types to a BGP neighbor, it may also attach its own AS number as part of the community identifier for the route source type. Thus, the BGP neighbor will receive the community identifier including AS number and interpret it as opaque data, minimizing the risk of conflicting data being presented to the BGP neighbor. That is, two bytes (or four bytes) of information in the community identifier are the AS number for the appliance, and two bytes of information represent the community.


While embodiments of the present disclosure refer to BGP neighboring computing devices, the present disclosure is equally applicable to neighboring computing devices that utilize other protocols, such as OSPF (Open Shortest Path Fast) routes. That is, a community identifier can be designated for an OSPF route source type, in addition to, or instead of, the BGP route source type(s) and communities discussed herein and depicted in FIG. 5.


Further, if an IP address or subnet is learned from outside of an enterprise (cloud) network, even though it is not a BGP computing device, it can still be assigned a route source type and community identifier as discussed herein, and incorporated into a route exporting policy at each appliance in an enterprise network.


Additionally, while IP addresses and subnets are discussed generally herein, a person of ordinary skill in the art would understand that the disclosed principles are equally applicable public IP addresses, private IP addresses, and also to other network addressing schemes, such as MAC address.



FIG. 8 is a flowchart of an exemplary process 800 performed by a network appliance for selectively exporting routes by the network appliance based on the source type of that route to a particular neighboring computing device. In optional step 810, BGP communities are created, with each community corresponding to a respective source type. As discussed herein, while BGP communities are used in this exemplary figure, other types of communities for network devices communicating via other protocols (other than BGP) may also be utilized.


In step 820 of the exemplary process, a route or routing information is received by a network appliance. The route may be received by a BGP neighboring device such as a router, or via a peer network appliance. In some embodiments, a module within the network appliance itself generates the routing information. In step 830, the network appliance determines the source type of the received route information. That is, the appliance determines where the route information was learned from. In step 840, the appliance assigns a source type to the route information received. The source type may be assigned by a network appliance to the route information via a community identifier attached to the route information. The community identifier can be a text string or tag. The route information with assigned source type is stored by the network appliance at step 850 within an internal memory at the appliance, or at an external location in communication with the network appliance.


In step 860, a network appliance determines which routes to export to a neighboring computing device based on the custom export map for that neighboring computing device. That is, the appliance determines a match between a community identifier for a potential route to export and a community identifier for routes that are permitted to be exported to that particular neighboring computing device. The match is determined in accordance with an Address Exporting Route Map for each particular computing device, the Address Exporting Route Map being located within the network appliance or at a location in communication with the network appliance.


If at least one community is matched, the network appliance may export at least one route of the matched BGP community to the neighboring computing device in step 870. In some embodiments, all routes associated with matched communities are exported to the neighboring computing device. In other embodiments, only a subset of the matched routes are exported. Further, there may be a threshold limit as to the number of routes that are to be exported within a certain time period or to a particular neighboring computing device. If no communities are matched in step 860, then no routes are exported to that particular neighboring computing device by the network appliance in step 870.



FIG. 9 is a flowchart of an exemplary process 900 performed by each peer network appliance in an enterprise network for selectively exporting based on the source type of that route to a particular neighboring computing device. In step 910, each peer network appliance in an enterprise network receives information denoting source types that can be advertised to certain Autonomous Systems and/or border routers. While not depicted here, each source type can be assigned a corresponding BGP community identifier as a tag or string.


For each received source type permitted to be advertised, each peer network appliance is assigned a “do advertise” rule to the corresponding BGP community to the source type, in step 920. In step 930, a network appliance can generate a list of routes and corresponding BGP community identifiers that have a “do advertise” rule for advertising to the AS and/or border router. The list of routes may comprise any number of routes, including just one. In step 940, the generated list is provided to the AS and/or border router.


In various embodiments, each peer appliance in an enterprise network may have a different list of routes with a “do advertise” rule to a particular AS and/or border router since the source type is different based on network topology. That is, a particular AS and/or border router may have a different type of neighbor relationship to different network appliances in an enterprise network. Thus, the routes with a “do advertise” rule may be different for each appliance in an enterprise network to the same AS and/or border router. In this way, customized route exporting can be accomplished by a group of network appliances in an enterprise.


Thus, methods and systems for selective route exporting based on source type are disclosed. Although embodiments have been described with reference to specific examples, it will be evident that various modifications and changes can be made to these example embodiments without departing from the broader spirit and scope of the present application. Therefore, these and other variations upon the exemplary embodiments are intended to be covered by the present disclosure. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A computer-implemented method for selectively advertising routing information by a first network appliance to a neighboring computing device, the method comprising: receiving, at the first network appliance, one or more pieces of routing information from one or more sources, wherein a respective piece of routing information is from a source and indicates an IP subnet associated with the source;determining a source type for the respective piece of routing information from the source without requiring additional information;allocating a community identifier to the respective piece of routing information from the source based on the corresponding source type, wherein the community identifier uniquely identifies the corresponding source type at the first network appliance;mapping, in a first data structure, a respective neighboring computing device of the first network appliance to one or more community identifiers, wherein the mapping indicates that the neighboring computing device is permitted to receive a subset of the one or more pieces of routing information associated with the one or more community identifiers; andexporting by the first network appliance, the subset of the one or more pieces of routing information to the neighboring computing device based on the mapping.
  • 2. The computer-implemented method of claim 1, wherein the one or more sources of the one or more pieces of routing information include at least one of: a border router, an edge router, and another network appliance.
  • 3. The computer-implemented method of claim 1, wherein at least one of the one or more sources of the one or more pieces of routing information is internal to the first network appliance.
  • 4. The computer-implemented method of claim 1, wherein a first source of the one or more sources is in a different autonomous system than the first network appliance, and wherein the one or more pieces of routing information is received using Border Gateway Protocol (BGP).
  • 5. The computer-implemented method of claim 1, wherein the community identifier includes a BGP community string.
  • 6. The computer-implemented method of claim 1, wherein the community identifier further comprises an autonomous system number.
  • 7. The computer-implemented method of claim 1, wherein the first network appliance is a physical appliance or a virtual appliance.
  • 8. A system for selectively advertising routing information by a first network appliance of a plurality of network appliances, to a neighboring computing device, the system comprising: a communication interface to receive one or more pieces of routing information from one or more sources, wherein a respective piece of routing information is received from a source and indicates an IP subnet associated with the source;an identifier generator to determine a source type for the respective piece of routing information from the source without requiring additional information;a routing table manager to: allocate a community identifier to the respective piece of routing information from the source based on the corresponding source type, wherein the community identifier uniquely identifies the corresponding source type at the first network appliance;map, in a first data structure, a respective neighboring computing device of the first network appliance to one or more community identifiers, wherein the mapping indicates that the neighboring computing device is permitted to receive a subset of the one or more pieces of routing information associated with the one or more community identifiers; andexport the subset of the one or more pieces of routing information to the neighboring computing device based on the mapping.
  • 9. The system of claim 8, wherein the one or more sources include at least one of: a border router, an edge router, and another network appliance.
  • 10. The system of claim 8, wherein the community identifier includes a Border Gateway Protocol (BGP) community string.
  • 11. The system of claim 8, wherein a first source of the one or more sources is in a different autonomous system than the first network appliance, and wherein the one or more pieces of routing information is received using Border Gateway Protocol (BGP).
  • 12. A non-transitory computer readable medium having embodied thereon a program, the program being executable by a processor for selectively advertising routing information by a first network appliance to a neighboring computing device, the method comprising: receiving, at the first network appliance, one or more pieces of routing information from one or more sources, wherein tea respective piece of routing information is received from a source and indicates an IP subnet associated with the source;determining a source type for the respective piece of routing information from the source without requiring additional information;allocating a community identifier to the respective piece of routing information from the source based on the corresponding source type, wherein the community identifier uniquely identifies the corresponding source type at the first network appliance;mapping, in a first data structure, a respective neighboring computing device of the first network appliance to one or more community identifiers, wherein the mapping indicates that the neighboring computing device is permitted to receive a subset of the one or more pieces of routing information associated with the one or more community identifiers; andexporting, by the first network appliance, the subset of the one or more pieces of routing information to the neighboring computing device based on the mapping.
  • 13. The non-transitory computer-readable medium of claim 12, wherein a first source of the one or more sources include at least one of: a border router, an edge router, and another network appliance.
  • 14. The non-transitory computer-readable medium of claim 12, wherein exporting the subset of the one or more pieces of routing information further comprises exporting an autonomous system number and the community identifier with the subset of the one or more pieces of routing information.
  • 15. A computer-implemented method for selectively advertising routing information by a first network appliance to a neighboring computing device, the method comprising: receiving, at the first network appliance, one or more pieces of routing information from one or more sources, wherein a respective piece of routing information is received from a source and indicates an IP subnet associated with the source;determining a source type for the respective piece of routing information from the source;allocating a community identifier to the respective piece of routing information from the source based on the corresponding source type, wherein the community identifier uniquely identifies the corresponding source type at the first network appliance;mapping, in a first data structure, a respective neighboring computing device of the first network appliance to one or more community identifiers, wherein the mapping indicates that the neighboring computing device is permitted to receive a subset of the one or more pieces of routing information associated with the one or more community; andexporting, by the first network appliance, the subset of the one or more pieces of routing information to the neighboring computing device based on the mapping.
  • 16. The computer-implemented method of claim 1, wherein exporting the subset of the one or more pieces of routing information further comprises exporting an autonomous system number and the community identifier with the subset of the one or more pieces of routing information.
  • 17. The system of claim 8, wherein at least one of the one or more sources of the one or more pieces of routing information is internal to the first network appliance.
  • 18. The system of claim 8, wherein the routing table manager is further to export an autonomous system number and the community identifier with the subset of the one or more pieces of routing information.
  • 19. The non-transitory computer-readable medium of claim 12, wherein at least one of the one or more sources of the one or more pieces of routing information is internal to the first network appliance.
  • 20. The non-transitory computer-readable medium of claim 12, wherein the community identifier includes a Border Gateway Protocol (BGP) community string.
  • 21. The non-transitory computer-readable medium of claim 12, wherein a first source of the one or more sources is in a different autonomous system than the first network appliance, and wherein the one or more pieces of routing information is received using BGP.
US Referenced Citations (569)
Number Name Date Kind
4494108 Langdon, Jr. et al. Jan 1985 A
4558302 Welch Dec 1985 A
4612532 Bacon et al. Sep 1986 A
5023611 Chamzas et al. Jun 1991 A
5159452 Kinoshita et al. Oct 1992 A
5243341 Seroussi et al. Sep 1993 A
5307413 Denzer Apr 1994 A
5357250 Healey et al. Oct 1994 A
5359720 Tamura et al. Oct 1994 A
5373290 Lempel et al. Dec 1994 A
5483556 Pillan et al. Jan 1996 A
5532693 Winters et al. Jul 1996 A
5592613 Miyazawa et al. Jan 1997 A
5602831 Gaskill Feb 1997 A
5608540 Ogawa Mar 1997 A
5611049 Pitts Mar 1997 A
5627533 Clark May 1997 A
5635932 Shinagawa et al. Jun 1997 A
5652581 Furlan et al. Jul 1997 A
5659737 Matsuda Aug 1997 A
5675587 Okuyama et al. Oct 1997 A
5710562 Gormish et al. Jan 1998 A
5748122 Shinagawa et al. May 1998 A
5754774 Bittinger et al. May 1998 A
5802106 Packer Sep 1998 A
5805822 Longetai. Sep 1998 A
5883891 Williams et al. Mar 1999 A
5903230 Masenas May 1999 A
5955976 Heath Sep 1999 A
6000053 Levine et al. Dec 1999 A
6003087 Housel, III et al. Dec 1999 A
6054943 Lawrence Apr 2000 A
6081883 Popelka et al. Jun 2000 A
6084855 Soirinsuo et al. Jul 2000 A
6175944 Urbanke et al. Jan 2001 B1
6191710 Waletzki Feb 2001 B1
6240463 Benmohamed et al. May 2001 B1
6295541 Bodnar et al. Sep 2001 B1
6308148 Bruins et al. Oct 2001 B1
6311260 Stone et al. Oct 2001 B1
6339616 Kovalev Jan 2002 B1
6374266 Shnelvar Apr 2002 B1
6434191 Agrawal et al. Aug 2002 B1
6434641 Haupt et al. Aug 2002 B1
6434662 Greene et al. Aug 2002 B1
6438664 McGrath et al. Aug 2002 B1
6452915 Jorgensen Sep 2002 B1
6463001 Williams Oct 2002 B1
6489902 Heath Dec 2002 B2
6493698 Beylin Dec 2002 B1
6570511 Cooper May 2003 B1
6587985 Fukushima et al. Jul 2003 B1
6614368 Cooper Sep 2003 B1
6618397 Huang Sep 2003 B1
6633953 Stark Oct 2003 B2
6643259 Borella et al. Nov 2003 B1
6650644 Colley et al. Nov 2003 B1
6653954 Rijavec Nov 2003 B2
6667700 McCanne et al. Dec 2003 B1
6674769 Viswanath Jan 2004 B1
6718361 Basani et al. Apr 2004 B1
6728840 Shatil et al. Apr 2004 B1
6738379 Balazinski et al. May 2004 B1
6754181 Elliott et al. Jun 2004 B1
6769048 Goldberg et al. Jul 2004 B2
6791945 Levenson et al. Sep 2004 B1
6823470 Smith et al. Nov 2004 B2
6839346 Kametani Jan 2005 B1
6842424 Key et al. Jan 2005 B1
6856651 Singh Feb 2005 B2
6859842 Nakamichi et al. Feb 2005 B1
6862602 Guha Mar 2005 B2
6910106 Sechrest et al. Jun 2005 B2
6963980 Mattsson Nov 2005 B1
6968374 Lemieux et al. Nov 2005 B2
6978384 Milliken Dec 2005 B1
7007044 Rafert et al. Feb 2006 B1
7020750 Thiyagaranjan et al. Mar 2006 B2
7035214 Seddigh et al. Apr 2006 B1
7047281 Kausik May 2006 B1
7069268 Burns et al. Jun 2006 B1
7069342 Biederman Jun 2006 B1
7110407 Khanna Sep 2006 B1
7111005 Wessman Sep 2006 B1
7113962 Kee et al. Sep 2006 B1
7120666 McCanne et al. Oct 2006 B2
7145889 Zhang et al. Dec 2006 B1
7149953 Cameron et al. Dec 2006 B2
7177295 Sholander et al. Feb 2007 B1
7197597 Scheid et al. Mar 2007 B1
7200847 Straube et al. Apr 2007 B2
7215667 Davis May 2007 B1
7216283 Shen et al. May 2007 B2
7242681 Van Bokkelen et al. Jul 2007 B1
7243094 Tabellion et al. Jul 2007 B2
7249309 Glaise et al. Jul 2007 B2
7266645 Garg et al. Sep 2007 B2
7278016 Detrick et al. Oct 2007 B1
7318100 Demmer et al. Jan 2008 B2
7359393 Nalawade Apr 2008 B1
7366829 Luttrell et al. Apr 2008 B1
7380006 Srinivas et al. May 2008 B2
7383329 Erickson Jun 2008 B2
7383348 Seki et al. Jun 2008 B2
7388844 Brown et al. Jun 2008 B1
7389357 Duffie, III et al. Jun 2008 B2
7389393 Karr et al. Jun 2008 B1
7417570 Srinivasan et al. Aug 2008 B2
7417991 Crawford et al. Aug 2008 B1
7420992 Fang et al. Sep 2008 B1
7428573 McCanne et al. Sep 2008 B2
7441039 Bhardwaj Oct 2008 B2
7451237 Takekawa et al. Nov 2008 B2
7453379 Plamondon Nov 2008 B2
7454443 Ram et al. Nov 2008 B2
7457315 Smith Nov 2008 B1
7460473 Kodama et al. Dec 2008 B1
7471629 Melpignano Dec 2008 B2
7496659 Coverdill et al. Feb 2009 B1
7532134 Samuels et al. May 2009 B2
7555484 Kulkarni et al. Jun 2009 B2
7571343 Xiang et al. Aug 2009 B1
7571344 Hughes et al. Aug 2009 B2
7587401 Yeo et al. Sep 2009 B2
7596802 Border et al. Sep 2009 B2
7617436 Wenger et al. Nov 2009 B2
7619545 Samuels et al. Nov 2009 B2
7620870 Srinivasan et al. Nov 2009 B2
7624333 Langner Nov 2009 B2
7624446 Wilhelm Nov 2009 B1
7630295 Hughes et al. Dec 2009 B2
7633942 Bearden et al. Dec 2009 B2
7639700 Nabhan et al. Dec 2009 B1
7643426 Lee et al. Jan 2010 B1
7644230 Hughes et al. Jan 2010 B1
7676554 Malmskog et al. Mar 2010 B1
7698431 Hughes Apr 2010 B1
7702843 Chen et al. Apr 2010 B1
7714747 Fallon May 2010 B2
7746781 Xiang Jun 2010 B1
7764606 Ferguson et al. Jul 2010 B1
7793193 Koch et al. Sep 2010 B2
7810155 Ravi Oct 2010 B1
7826798 Stephens et al. Nov 2010 B2
7827237 Plamondon Nov 2010 B2
7849134 McCanne et al. Dec 2010 B2
7853699 Wu et al. Dec 2010 B2
7873786 Singh et al. Jan 2011 B1
7917599 Gopalan et al. Mar 2011 B1
7924795 Wan et al. Apr 2011 B2
7925711 Gopalan et al. Apr 2011 B1
7941606 Pullela et al. May 2011 B1
7945736 Hughes et al. May 2011 B2
7948921 Hughes et al. May 2011 B1
7953869 Demmer et al. May 2011 B2
7957307 Qiu et al. Jun 2011 B2
7970898 Clubb et al. Jun 2011 B2
7975018 Unrau et al. Jul 2011 B2
7996747 Dell et al. Aug 2011 B2
8046667 Boyce Oct 2011 B2
8069225 McCanne et al. Nov 2011 B2
8072985 Golan et al. Dec 2011 B2
8090027 Schneider Jan 2012 B2
8090805 Chawla et al. Jan 2012 B1
8095774 Hughes et al. Jan 2012 B1
8140757 Singh et al. Mar 2012 B1
8171238 Hughes et al. May 2012 B1
8209334 Doerner Jun 2012 B1
8225072 Hughes et al. Jul 2012 B2
8271325 Silverman et al. Sep 2012 B2
8271847 Langner Sep 2012 B2
8307115 Hughes Nov 2012 B1
8312226 Hughes Nov 2012 B2
8352608 Keagy et al. Jan 2013 B1
8370583 Hughes Feb 2013 B2
8386797 Danilak Feb 2013 B1
8392684 Hughes Mar 2013 B2
8442052 Hughes May 2013 B1
8447740 Huang et al. May 2013 B1
8473714 Hughes et al. Jun 2013 B2
8489562 Hughes et al. Jul 2013 B1
8516158 Wu et al. Aug 2013 B1
8553757 Florencio et al. Oct 2013 B2
8565118 Shukla et al. Oct 2013 B2
8570869 Ojala et al. Oct 2013 B2
8576816 Lamy-Bergot et al. Nov 2013 B2
8595314 Hughes Nov 2013 B1
8613071 Day et al. Dec 2013 B2
8681614 McCanne et al. Mar 2014 B1
8699490 Zheng et al. Apr 2014 B2
8700771 Ramankutty et al. Apr 2014 B1
8706947 Vincent Apr 2014 B1
8725988 Hughes et al. May 2014 B2
8732423 Hughes May 2014 B1
8738865 Hughes et al. May 2014 B1
8743683 Hughes Jun 2014 B1
8755381 Hughes et al. Jun 2014 B2
8775413 Brown et al. Jul 2014 B2
8811431 Hughes Aug 2014 B2
8843627 Baldi et al. Sep 2014 B1
8850324 Clemm et al. Sep 2014 B2
8885632 Hughes et al. Nov 2014 B2
8891554 Biehler Nov 2014 B2
8929380 Hughes et al. Jan 2015 B1
8929402 Hughes Jan 2015 B1
8930650 Hughes et al. Jan 2015 B1
8954491 Medved Feb 2015 B1
9003541 Patidar Apr 2015 B1
9036662 Hughes May 2015 B1
9054876 Yagnik Jun 2015 B1
9092342 Hughes et al. Jul 2015 B2
9106530 Wang Aug 2015 B1
9130991 Hughes Sep 2015 B2
9131510 Wang Sep 2015 B2
9143455 Hughes Sep 2015 B1
9152574 Hughes et al. Oct 2015 B2
9171251 Camp et al. Oct 2015 B2
9191342 Hughes et al. Nov 2015 B2
9202304 Baenziger et al. Dec 2015 B1
9253277 Hughes et al. Feb 2016 B2
9306818 Aumann et al. Apr 2016 B2
9307442 Bachmann et al. Apr 2016 B2
9363248 Hughes Jun 2016 B1
9363309 Hughes Jun 2016 B2
9380094 Florencio et al. Jun 2016 B2
9397951 Hughes Jul 2016 B1
9438538 Hughes et al. Sep 2016 B2
9549048 Hughes Jan 2017 B1
9584403 Hughes et al. Feb 2017 B2
9584414 Sung et al. Feb 2017 B2
9613071 Hughes Apr 2017 B1
9626224 Hughes et al. Apr 2017 B2
9647949 Varki et al. May 2017 B2
9712463 Hughes et al. Jul 2017 B1
9716644 Wei et al. Jul 2017 B2
9717021 Hughes et al. Jul 2017 B2
9875344 Hughes et al. Jan 2018 B1
9906630 Hughes Feb 2018 B2
9948496 Hughes et al. Apr 2018 B1
9961010 Hughes et al. May 2018 B2
9967056 Hughes May 2018 B1
10091172 Hughes Oct 2018 B1
10164861 Hughes et al. Dec 2018 B2
10257082 Hughes Apr 2019 B2
10313930 Hughes et al. Jun 2019 B2
10326551 Hughes Jun 2019 B2
10432484 Hughes et al. Oct 2019 B2
10637721 Hughes et al. Apr 2020 B2
10719588 Hughes et al. Jul 2020 B2
20010026231 Satoh Oct 2001 A1
20010054084 Kosmynin Dec 2001 A1
20020007413 Garcia-Luna-Aceves et al. Jan 2002 A1
20020009079 Jungck et al. Jan 2002 A1
20020010702 Ajtai et al. Jan 2002 A1
20020010765 Border Jan 2002 A1
20020040475 Yap et al. Apr 2002 A1
20020061027 Abiru et al. May 2002 A1
20020065998 Buckland May 2002 A1
20020071436 Border et al. Jun 2002 A1
20020078242 Viswanath Jun 2002 A1
20020101822 Ayyagari et al. Aug 2002 A1
20020107988 Jordan Aug 2002 A1
20020116424 Radermacher et al. Aug 2002 A1
20020129158 Zhang et al. Sep 2002 A1
20020129260 Benfield et al. Sep 2002 A1
20020131434 Vukovic et al. Sep 2002 A1
20020150041 Reinshmidt et al. Oct 2002 A1
20020159454 Delmas Oct 2002 A1
20020163911 Wee et al. Nov 2002 A1
20020169818 Stewart et al. Nov 2002 A1
20020181494 Rhee Dec 2002 A1
20020188871 Noehring et al. Dec 2002 A1
20020194324 Guha Dec 2002 A1
20030002664 Anand Jan 2003 A1
20030009558 Ben-Yehezkel Jan 2003 A1
20030012400 McAuliffe et al. Jan 2003 A1
20030033307 Davis et al. Feb 2003 A1
20030046572 Newman et al. Mar 2003 A1
20030048750 Kobayashi Mar 2003 A1
20030048785 Calvignac et al. Mar 2003 A1
20030067940 Edholm Apr 2003 A1
20030123481 Neale et al. Jul 2003 A1
20030123671 He et al. Jul 2003 A1
20030131079 Neale et al. Jul 2003 A1
20030133568 Stein et al. Jul 2003 A1
20030142658 Ofuji et al. Jul 2003 A1
20030149661 Mitchell et al. Aug 2003 A1
20030149869 Gleichauf Aug 2003 A1
20030204619 Bays Oct 2003 A1
20030214502 Park et al. Nov 2003 A1
20030214954 Oldak et al. Nov 2003 A1
20030233431 Reddy et al. Dec 2003 A1
20040008711 Lahti et al. Jan 2004 A1
20040047308 Kavanagh et al. Mar 2004 A1
20040083299 Dietz et al. Apr 2004 A1
20040085894 Wang et al. May 2004 A1
20040086114 Rarick May 2004 A1
20040088376 McCanne et al. May 2004 A1
20040114569 Naden et al. Jun 2004 A1
20040117571 Chang et al. Jun 2004 A1
20040123139 Mello et al. Jun 2004 A1
20040158644 Albuquerque et al. Aug 2004 A1
20040179542 Murakami et al. Sep 2004 A1
20040181679 Dettinger et al. Sep 2004 A1
20040199771 Morten et al. Oct 2004 A1
20040202110 Kim Oct 2004 A1
20040203820 Billhartz Oct 2004 A1
20040205332 Bouchard et al. Oct 2004 A1
20040243571 Judd Dec 2004 A1
20040250027 Heflinger Dec 2004 A1
20040255048 Ran et al. Dec 2004 A1
20050010653 McCanne Jan 2005 A1
20050044270 Grove et al. Feb 2005 A1
20050053094 Cain et al. Mar 2005 A1
20050055372 Springer, Jr. et al. Mar 2005 A1
20050055399 Savchuk Mar 2005 A1
20050071453 Ellis et al. Mar 2005 A1
20050091234 Hsu et al. Apr 2005 A1
20050111460 Sahita May 2005 A1
20050131939 Douglis et al. Jun 2005 A1
20050132252 Fifer et al. Jun 2005 A1
20050141425 Foulds Jun 2005 A1
20050171937 Hughes et al. Aug 2005 A1
20050177603 Shavit Aug 2005 A1
20050182849 Chandrayana et al. Aug 2005 A1
20050188106 Pirbhai Aug 2005 A1
20050190694 Ben-Nun et al. Sep 2005 A1
20050207443 Kawamura et al. Sep 2005 A1
20050210151 Abdo et al. Sep 2005 A1
20050220019 Melpignano Oct 2005 A1
20050220097 Swami et al. Oct 2005 A1
20050235119 Sechrest et al. Oct 2005 A1
20050240380 Jones Oct 2005 A1
20050243743 Kimura Nov 2005 A1
20050243835 Sharma et al. Nov 2005 A1
20050256972 Cochran et al. Nov 2005 A1
20050278459 Boucher et al. Dec 2005 A1
20050283355 Itani et al. Dec 2005 A1
20050286526 Sood et al. Dec 2005 A1
20060010243 DuRee Jan 2006 A1
20060013210 Bordogna et al. Jan 2006 A1
20060026425 Douceur et al. Feb 2006 A1
20060031936 Nelson et al. Feb 2006 A1
20060036901 Yang et al. Feb 2006 A1
20060039354 Rao et al. Feb 2006 A1
20060045096 Farmer et al. Mar 2006 A1
20060059171 Borthakur et al. Mar 2006 A1
20060059173 Hirsch et al. Mar 2006 A1
20060109805 Vadakital et al. May 2006 A1
20060117385 Mester et al. Jun 2006 A1
20060136913 Sameske Jun 2006 A1
20060143497 Zohar et al. Jun 2006 A1
20060193247 Naseh Aug 2006 A1
20060195547 Sundarrajan et al. Aug 2006 A1
20060195840 Sundarrajan et al. Aug 2006 A1
20060212426 Shakara et al. Sep 2006 A1
20060218390 Loughran et al. Sep 2006 A1
20060227717 van den Berg et al. Oct 2006 A1
20060250965 Irwin Nov 2006 A1
20060268932 Singh et al. Nov 2006 A1
20060280205 Cho Dec 2006 A1
20070002804 Xiong et al. Jan 2007 A1
20070008884 Tang Jan 2007 A1
20070011424 Sharma et al. Jan 2007 A1
20070038815 Hughes Feb 2007 A1
20070038816 Hughes et al. Feb 2007 A1
20070038858 Hughes Feb 2007 A1
20070050475 Hughes Mar 2007 A1
20070076693 Krishnaswamy Apr 2007 A1
20070076708 Kolakowski et al. Apr 2007 A1
20070081513 Torsner Apr 2007 A1
20070097874 Hughes et al. May 2007 A1
20070110046 Farrell et al. May 2007 A1
20070115812 Hughes May 2007 A1
20070127372 Khan et al. Jun 2007 A1
20070130114 Li et al. Jun 2007 A1
20070140129 Bauer et al. Jun 2007 A1
20070150497 De La Cruz et al. Jun 2007 A1
20070160200 Ishikawa et al. Jul 2007 A1
20070174428 Lev Ran et al. Jul 2007 A1
20070179900 Daase et al. Aug 2007 A1
20070192863 Kapoor et al. Aug 2007 A1
20070195702 Yuen et al. Aug 2007 A1
20070195789 Yao Aug 2007 A1
20070198523 Hayim Aug 2007 A1
20070226320 Hager et al. Sep 2007 A1
20070237104 Alon et al. Oct 2007 A1
20070244987 Pedersen et al. Oct 2007 A1
20070245079 Bhattacharjee et al. Oct 2007 A1
20070248084 Whitehead Oct 2007 A1
20070258468 Bennett Nov 2007 A1
20070260746 Mirtorabi Nov 2007 A1
20070263548 Oguchi Nov 2007 A1
20070263554 Finn Nov 2007 A1
20070276983 Zohar et al. Nov 2007 A1
20070280245 Rosberg Dec 2007 A1
20080005156 Edwards et al. Jan 2008 A1
20080013532 Garner et al. Jan 2008 A1
20080016301 Chen Jan 2008 A1
20080028467 Kommareddy et al. Jan 2008 A1
20080031149 Hughes et al. Feb 2008 A1
20080031240 Hughes et al. Feb 2008 A1
20080037432 Cohen et al. Feb 2008 A1
20080071818 Apanowicz et al. Mar 2008 A1
20080095060 Yao Apr 2008 A1
20080133536 Bjorner et al. Jun 2008 A1
20080133561 Dubnicki et al. Jun 2008 A1
20080184081 Hama et al. Jul 2008 A1
20080205445 Kumar et al. Aug 2008 A1
20080222044 Gottlieb et al. Sep 2008 A1
20080229137 Samuels et al. Sep 2008 A1
20080243992 Jardetzky et al. Oct 2008 A1
20080267217 Colville et al. Oct 2008 A1
20080285463 Oran Nov 2008 A1
20080300887 Chen et al. Dec 2008 A1
20080313318 Vermeulen et al. Dec 2008 A1
20080320151 McCanne et al. Dec 2008 A1
20090006801 Shultz et al. Jan 2009 A1
20090024763 Stepin et al. Jan 2009 A1
20090037448 Thomas Feb 2009 A1
20090060198 Little Mar 2009 A1
20090063696 Wang et al. Mar 2009 A1
20090080460 Kronewitter et al. Mar 2009 A1
20090089048 Pouzin Apr 2009 A1
20090092137 Haigh et al. Apr 2009 A1
20090100483 McDowell Apr 2009 A1
20090158417 Khanna et al. Jun 2009 A1
20090168786 Sarkar Jul 2009 A1
20090175172 Prytz et al. Jul 2009 A1
20090182864 Khan et al. Jul 2009 A1
20090204961 DeHaan et al. Aug 2009 A1
20090234966 Samuels et al. Sep 2009 A1
20090245114 Vijayaraghavan Oct 2009 A1
20090265707 Goodman et al. Oct 2009 A1
20090274294 Itani Nov 2009 A1
20090279550 Romrell et al. Nov 2009 A1
20090281984 Black Nov 2009 A1
20100005222 Brant et al. Jan 2010 A1
20100011125 Yang et al. Jan 2010 A1
20100020693 Thakur Jan 2010 A1
20100054142 Moiso et al. Mar 2010 A1
20100070605 Hughes et al. Mar 2010 A1
20100077251 Liu et al. Mar 2010 A1
20100082545 Bhattacharjee et al. Apr 2010 A1
20100085964 Weir et al. Apr 2010 A1
20100115137 Kim et al. May 2010 A1
20100121957 Roy et al. May 2010 A1
20100124239 Hughes May 2010 A1
20100131957 Kami May 2010 A1
20100150158 Cathey et al. Jun 2010 A1
20100169467 Shukla et al. Jul 2010 A1
20100177663 Johansson et al. Jul 2010 A1
20100225658 Coleman Sep 2010 A1
20100232443 Pandey Sep 2010 A1
20100242106 Harris et al. Sep 2010 A1
20100246584 Ferguson et al. Sep 2010 A1
20100290364 Black Nov 2010 A1
20100318892 Teevan et al. Dec 2010 A1
20100333212 Carpenter et al. Dec 2010 A1
20110002346 Wu Jan 2011 A1
20110022812 van der Linden et al. Jan 2011 A1
20110113472 Fung et al. May 2011 A1
20110131411 Lin et al. Jun 2011 A1
20110154169 Gopal et al. Jun 2011 A1
20110154329 Arcese et al. Jun 2011 A1
20110181448 Koratagere Jul 2011 A1
20110219181 Hughes et al. Sep 2011 A1
20110225322 Demidov et al. Sep 2011 A1
20110258049 Ramer et al. Oct 2011 A1
20110261828 Smith Oct 2011 A1
20110276963 Wu et al. Nov 2011 A1
20110299537 Saraiya et al. Dec 2011 A1
20120036325 Mashtizadeh et al. Feb 2012 A1
20120069131 Abelow Mar 2012 A1
20120147894 Mulligan et al. Jun 2012 A1
20120173759 Agarwal et al. Jul 2012 A1
20120185775 Clemm et al. Jul 2012 A1
20120198346 Clemm et al. Aug 2012 A1
20120218130 Boettcher et al. Aug 2012 A1
20120221611 Watanabe et al. Aug 2012 A1
20120230345 Ovsiannikov Sep 2012 A1
20120239872 Hughes et al. Sep 2012 A1
20120290636 Kadous et al. Nov 2012 A1
20130018722 Libby Jan 2013 A1
20130018765 Fork et al. Jan 2013 A1
20130031642 Dwivedi et al. Jan 2013 A1
20130044751 Casado et al. Feb 2013 A1
20130058354 Casado et al. Mar 2013 A1
20130080619 Assuncao et al. Mar 2013 A1
20130083806 Suarez Fuentes et al. Apr 2013 A1
20130086236 Baucke et al. Apr 2013 A1
20130086594 Cottrell Apr 2013 A1
20130094501 Hughes Apr 2013 A1
20130103655 Fanghaenel et al. Apr 2013 A1
20130117494 Hughes et al. May 2013 A1
20130121209 Padmanabhan et al. May 2013 A1
20130141259 Hazarika et al. Jun 2013 A1
20130142050 Luna Jun 2013 A1
20130163594 Sharma et al. Jun 2013 A1
20130166440 Aguilar Jun 2013 A1
20130250951 Koganti Sep 2013 A1
20130263125 Shamsee et al. Oct 2013 A1
20130266007 Kumbhare Oct 2013 A1
20130282970 Hughes et al. Oct 2013 A1
20130325986 Brady et al. Dec 2013 A1
20130343191 Kim et al. Dec 2013 A1
20140052864 Van Der Linden et al. Feb 2014 A1
20140075554 Cooley Mar 2014 A1
20140086069 Frey et al. Mar 2014 A1
20140101426 Senthurpandi Apr 2014 A1
20140108360 Kunath et al. Apr 2014 A1
20140114742 Lamontagne et al. Apr 2014 A1
20140123213 Vank et al. May 2014 A1
20140181381 Hughes et al. Jun 2014 A1
20140241352 Kollipara Aug 2014 A1
20140269705 DeCusatis et al. Sep 2014 A1
20140279078 Nukala et al. Sep 2014 A1
20140321290 Jin et al. Oct 2014 A1
20140379937 Hughes et al. Dec 2014 A1
20150058488 Backholm Feb 2015 A1
20150074291 Hughes Mar 2015 A1
20150074361 Hughes et al. Mar 2015 A1
20150078397 Hughes et al. Mar 2015 A1
20150110113 Levy et al. Apr 2015 A1
20150120663 Le Scouarnec et al. Apr 2015 A1
20150127701 Chu et al. May 2015 A1
20150143505 Border et al. May 2015 A1
20150170221 Shah Jun 2015 A1
20150281099 Banavalikar Oct 2015 A1
20150281391 Hughes et al. Oct 2015 A1
20150312054 Barabash et al. Oct 2015 A1
20150312134 Kapadia Oct 2015 A1
20150334210 Hughes Nov 2015 A1
20150365293 Madrigal et al. Dec 2015 A1
20160014051 Hughes et al. Jan 2016 A1
20160034305 Shear et al. Feb 2016 A1
20160093193 Silvers et al. Mar 2016 A1
20160112255 Li Apr 2016 A1
20160142310 Means May 2016 A1
20160218947 Hughes et al. Jul 2016 A1
20160218964 Liljenstolpe Jul 2016 A1
20160255000 Gattani Sep 2016 A1
20160255542 Hughes et al. Sep 2016 A1
20160359740 Parandehgheibi et al. Dec 2016 A1
20160380886 Blair et al. Dec 2016 A1
20170026467 Barsness et al. Jan 2017 A1
20170111692 An et al. Apr 2017 A1
20170149679 Hughes et al. May 2017 A1
20170187581 Hughes et al. Jun 2017 A1
20170279705 Lin Sep 2017 A1
20170359238 Hughes et al. Dec 2017 A1
20180089994 Dhondse et al. Mar 2018 A1
20180121634 Hughes et al. May 2018 A1
20180123861 Hughes et al. May 2018 A1
20180131711 Chen et al. May 2018 A1
20180205494 Hughes Jul 2018 A1
20180227216 Hughes Aug 2018 A1
20180227223 Hughes Aug 2018 A1
20190104207 Goel et al. Apr 2019 A1
20190149447 Hughes et al. May 2019 A1
20190230038 Hughes Jul 2019 A1
20190245771 Wu Aug 2019 A1
20190253187 Hughes Aug 2019 A1
20190260683 Hughes Aug 2019 A1
20190274070 Hughes et al. Sep 2019 A1
20190280917 Hughes et al. Sep 2019 A1
20200021506 Hughes et al. Jan 2020 A1
20200213185 Hughes et al. Jul 2020 A1
20210243225 Smith Aug 2021 A1
Foreign Referenced Citations (3)
Number Date Country
1507353 Feb 2005 EP
H05061964 Mar 1993 JP
WO0135226 May 2001 WO
Non-Patent Literature Citations (25)
Entry
RFC 1997, “BGP Communities Attribute”, Internet Engineering Task Force (IETF), 5 Pages. (Year: 1996).
RFC 4360, “BGP Extended Communities Attribute”, Internet Engineering Task Force (IETF), 12 Pages. (Year: 2006).
“IPsec Anti-Replay Window: Expanding and Disabling,” Cisco IOS Security Configuration Guide. 2005-2006 Cisco Systems, Inc. Last updated: Sep. 12, 2006, 14 pages.
Singh et al.; “Future of Internet Security—IPSEC”; 2005; pp. 1-8.
Muthitacharoen, Athicha et al., “A Low-bandwidth Network File System,” 2001, in Proc, of the 18th ACM Symposium on Operating Systems Principles, Banff, Canada, pp. 174-187.
“Shared LAN Cache Datasheet”, 1996, <http://www.lancache.com/slcdata.htm>, 8 pages.
Spring et al., “A protocol-independent technique for eliminating redundant network traffic”, ACM SIGCOMM Computer Communication Review, vol. 30, Issue 4 (Oct. 2000) pp. 87-95, Year of Publication: 2000.
Hong, B et al. “Duplicate data elimination in a SAN file system”, In Proceedings of the 21st Symposium on Mass Storage Systems (MSS '04), Goddard, MD, Apr. 2004. IEEE, pp. 101-114.
You, L. L. and Karamanolis, C. 2004. “Evaluation of efficient archival storage techniques”, In Proceedings of the 21st IEEE Symposium on Mass Storage Systems and Technologies (MSST), pp. 1-6.
Douglis, F. et al., “Application specific Delta-encoding via Resemblance Detection”, Published in the 2003 USENIX Annual Technical Conference, pp. 1-14.
You, L. L. et al., “Deep Store An Archival Storage System Architecture” Data Engineering, 2005. ICDE 2005. Proceedings of the 21st Intl. Conf. on Data Eng.,Tokyo, Japan, Apr. 5-8, 2005, pp. 12.
Manber, Udi, “Finding Similar Files in a Large File System”, TR 93-33 Oct. 1994, Department of Computer Science, University of Arizona. <http://webglimpse.net/pubs/TR93-33.pdf>. Also appears in the 1994 winter USENIX Technical Conference, pp. 1-10.
Knutsson, Bjorn et al., “Transparent Proxy Signalling”, Journal of Communications and Networks, vol. 3, No. 2, Jun. 2001, pp. 164-174.
Mewton, “Newton's Telecom Dictionary”, 17th Ed., 2001, pp. 38, 201, and 714.
Silver Peak Systems, “The Benefits of Byte-level WAN Deduplication” (2008), pp. 1-4.
“Business Wire, ““Silver Peak Systems Delivers Family of Appliances for Enterprise-Wide Centralization of Branch Office Infrastructure; Innovative Local Instance Networking Approach Overcomes Traditional Application Acceleration Pitfalls”” (available at http://www.businesswire.com/news/home/20050919005450/en/Silver-Peak-Systems-Delivers-Family-Appliances-Enterprise-Wide#.UVzkPk7u-1 (last visited Aug. 8, 2014)), 4 pages.”
Riverbed, “Riverbed Introduces Market-Leading WDS Solutions for Disaster Recovery and Business Application Acceleration” (available at http://www.riverbed.com/about/news-articles/pressreleases/riverbed-introduces-market-leading-wds-solutions-fordisaster-recovery-and-business-application-acceleration.html (last visited Aug. 8, 2014)), 4 pages.
Tseng, Josh, “When accelerating secure traffic is not secure” (available at http://www.riverbed.com/blogs/whenaccelerati.html?&isSearch=true&pageSize=3&page=2 (last visited Aug. 8, 2014)), 3 pages.
Riverbed, “The Riverbed Optimization System (RiOS) v4.0: A Technical Overview” (explaining “Data Security” through segmentation) (available at http://mediacms.riverbed.com/documents/TechOverview-Riverbed-RiOS_4_0.pdf (last visited Aug. 8, 2014)), pp. 1-18.
Riverbed, “Riverbed Awarded Patent on Core WDS Technology” (available at: http://www.riverbed.com/about/news-articles/pressreleases/riverbed-awarded-patent-on-core-wds-technology.html (last visited Aug. 8, 2014)), 2 pages.
Final Written Decision, dated Dec. 30, 2014, Inter Partes Review Case No. IPR2013-00403, pp. 1-38.
Final Written Decision, dated Dec. 30, 2014, Inter Partes Review Case No. IPR2013-00402, pp. 1-37.
Final Written Decision, dated Jun. 9, 2015, Inter Partes Review Case No. IPR2014-00245, pp. 1-40.
“Notice of Entry of Judgement Accompanied by Opinion”, United States Court of Appeals for the Federal Circuit, Case 15-2072, Oct. 24, 2017, 6 pages.
“Decision Granting Motion to Terminate”, Inter Partes Review Case No. IPR2014-00245, Feb. 7, 2018, 4 pages.
Related Publications (1)
Number Date Country
20190089620 A1 Mar 2019 US