This disclosure relates generally to fluid systems, and particularly to actuated systems for dispensing fluids from reservoirs. More specifically, the disclosure relates to selectively actuated systems with a plurality of fluid reservoirs in the form of cartridges. Particular applications include, but are not limited to, selectively actuated skin treatment dispensing systems for personalized skin care products.
Fluid dispensing systems are utilized to deliver a variety of different materials such as soaps, cleaners, perfumes, antibiotic agents, lotions, adhesives and other household and personal hygiene products. Fluid dispensing systems can also be used to provide skin care products, including lotions, moisturizes, and creams.
Generally, fluid dispensers are divided into manual or mechanically actuated designs, and automated (e.g. electrically actuated) systems. Depending on application, manually-operated dispenser systems typically generate a single fluid stream from an individual fluid reservoir, but mixed-component designs are also known. Automated dispenser systems may include additional features, for example automated timing and flow control, and both manual and automated dispensers may incorporate refillable or disposable (single-use) fluid reservoirs.
Nonetheless, advanced skin care systems and other precision fluid delivery applications may require new features that are not found in the prior art. In particular, the full range of new and personalized skin care products is not available in standard single-use dispensers, and existing refillable systems face a range of engineering challenges. Moreover, to the extent a skin care regimen uses multiple products, requires mixing of custom-selected products or is based on use of multiple products to be applied at different times in a day, the prior art lacks a solution that supports such a more complex regimen and enables a user to follow it. Other challenges include the need for improved product delivery, reduced waste, and ease of use, coupled with an ongoing demand for increased reliability and service life.
Product contamination is also an important consideration, in both disposable and refillable designs. As a result, there is a continuing need for advanced fluid dispensing systems, which can provide an improved user experience without suffering the known engineering deficiencies of the prior art. In particular, there is a need for more advanced, selectively actuated fluid dispensing systems, which can be utilized with a range of different fluid reservoirs and adapted to precision fluid dispensing applications in a hygienic environment, including advanced, personalized skin care applications.
This disclosure relates to fluid systems, and particularly to selectively actuated fluid systems with a plurality of fluid reservoirs, for example replaceable cartridge-type fluid reservoirs. Depending upon application, a first subset of the reservoirs can be selectively actuated to dispense an individual fluid from the selected reservoir in the first subset. A second subset of the reservoirs can be simultaneously actuated to dispense two or more fluids in mixed form. Actuation of the reservoirs in the first and second subsets can be independently controlled, according to user preference, or the subsets can be actuated in a programmed series.
Overview
In this particular embodiment, a dispensing opening or archway 20 is located between base section 14 and pump section 16, extending through housing 11 from the front to the back of dispenser system 10, and lid assembly 18 includes user controller interface 22. User controller interface 22 can be utilized or configured for selective actuation of system 10, in order to dispense one or more selected fluids 24 when the user's hand is inserted into opening 20.
A fluid dispenser (or system) 10 may include a touchless activation system in order to dispense fluid from one or more dispenser nozzles 35F and 35M in a sanitary fashion, without requiring the user to contact a button, switch, or other conventional mechanical component of dispensing system 10. For example, an optical or infrared (IR) emitter 36 and sensor 37 may be provided to detect the user's hand when inserted into dispenser opening 20, and configured to actuate a controller 500 (see
Additional internal components of dispenser system 10 include well assembly 46 with motor or pump drive assembly 48 configured to dispense fluids from selected reservoirs, and a battery pack, voltage regulator, or other power module 50. In this particular example, power module 50 includes one or more (e.g., single-use or rechargeable) batteries configured to provide electrical power to controller 500 and drive assembly 48, in order to selectively dispense fluid from one or more dispensing apertures in nozzle shroud 34, as described above.
Suitable materials for housing 11 and lid 18 include, but are not limited to, plastics and other durable polymers, composite materials, metals, and combinations thereof. The various components of housing 11 can be coupled together via screws, pins or other mechanical fasteners 45, as shown in
In battery-powered embodiments, battery box 51 typically includes one or more individual batteries, for example four AA type batteries, or another standard battery configuration. Circuit board components 54 may also include a combination of voltage and current supplies or regulators configured to provide power to dispenser system 10, for example from an internal (e.g., rechargeable) battery pack or other DC power source 51. A line outlet (e.g. AC) connector may also be provided, for example to provided regulated power to recharge the internal batteries, or to provide regulated power for operation of fluid dispensing system 10.
Additional user interface and controller components may include an LED display or similar graphical user interface or display 65, capacitive buttons or other user input sensors 66, and a speaker, vibrator, piezoelectric element, or similar output component 68 configured to generate sound and/or haptic feedback. The various user interface, controller, and structural components of lid assembly 18 can be coupled together via variety of different techniques, for example using a combination of adhesive components 67 and mechanical fasteners 69.
In one particular example, left and right buttons 66L and 66R can be used to cycle through various screen or menu options defined by menu selection button 66M, for example in the left (backward) and right (forward) directions, respectively. Menu button 66M may provide additional menu options such as time and other dispenser settings, product or fluid delivery, and optional dispenser options, e.g., for vacations or other planned travel periods. Select/confirm button 66S is used to confirm the menu selections defined by buttons 66L, 66R, 66M and 66B.
In one embodiment, the user can “wake” (or power on) dispensing system (or device) 10 by placing a finger, hand or other object in the dispensing opening or archway, activating the IR, motion or proximity sensor. A confirmatory message such as “ready?” is then provided on display 65, and the user can touch a button on user interface/controller 22 (e.g., select button 66S) to enable fluid delivery, for example as accompanied by a second message such as “serum” or “fluid” in display 65. Alternatively, the user can enable fluid delivery by removing and replacing the hand, or otherwise changing position with respect to the motion or proximity sensor, so that no direct physical contact is required.
A third message can be provided on display 65 during fluid delivery, e.g. accompanied by a droplet or other appropriate graphical indicator. A fourth message such as “complete” can then be displayed to indicate that delivery is finished. Dispenser system 10 can also be configured to automatically power down at the end of the cycle, for example after a preselected period of time, or when one or more buttons 66 are pressed on user interface/controller 22, with or without a corresponding message on user display 65.
User controller interface 22 and display 65 can also be configured to indicate selected fluid delivery configurations, for example based on time of day or user selection. In one embodiment, for example, dispenser system 10 can be configured to selectively dispense a particular fluid from one of a first subset of individual, selectively actuated fluid reservoirs, for example from a day or night (or morning or evening) cartridge reservoir based on time of day. Alternatively, the individual cartridges may be alternately selected (that is, first one, then other, repeatedly). The individual fluids can also be dispensed from separate nozzles, either to discourage mixing, for improved sanitary conditions, or both.
User controller interface 22 can also be configured for dispenser system 10 to dispense a mixture of fluids prepared from a second subset of the reservoirs. For example, fluids from two, three or more cartridges can be mixed together within dispenser 10, and dispensed in a mixed stream from a single mixed fluid nozzle or aperture, as described above. Alternatively, different fluid streams can be simultaneously dispensed in separate nozzles, or sequentially dispensed from a single nozzle, and then mixed together by the user.
Selected dispensing sequences can also encompass both single-fluid dispensing from one or more selected fluid cartridges or reservoirs, and mixed fluid dispensing from two or more simultaneously actuated fluid cartridges or reservoirs. For example, a first single-mode (e.g., day or night treatment) step may be performed to dispense fluid from an individual selectively actuated fluid cartridge or reservoir, and a second mixed-mode (e.g., serum treatment) step may be performed to dispense a mixed fluid from a combination of two or more different simultaneously actuated fluid cartridges or reservoirs. The order and sequencing of the single-mode and mixed-mode dispensing steps is flexible and programmable in controller 500, and they may be performed in any order or combination without loss of generality—for example, based on user preference or selection, or based on pre-programmed dispensing instructions stored in software or firmware.
Well Assembly
Well housing 71 may include a variety of features configured to enable insertion, retention, removal and replacement of individual fluid reservoirs or cartridges, for example one or more individual retention clips 72 for individually activated (e.g., day and night treatment) fluid reservoirs, and one more assembly retention clips 73 for an assembly of two or more simultaneously actuated (e.g., serum treatment) fluid reservoirs. Retention clips 72 and 73 can be spring biased or similarly manually actuated, for example with a combination of ejection springs 75, plunger components 76, 77, 78 and dowel pins, screws or other mechanical fasteners 74 and 79 to couple the various components of well assembly 46 together, and to control retention and ejection of the cartridge assembly and individual fluid reservoirs from well housing 71.
In some designs, one or more compliance units 80 may also be provided to limit or reduce stress on the drive components, for example in the case of a stuck cartridge or over-travel of the selectively actuated drive mechanisms. As shown in
Drivers
Drive assembly 48 may also include sensor components configured to detect the positions or actuator states of the various selectively actuated drive components. In one embodiment sensor 95 senses the rotational position of half gear 102 by detecting a partial flange on the circumference of half gear 102. Sensors on circuit component 94 sense plungers 78 for installation of day and night cartridge, and sensors on circuit component 93 sense additional plungers (see
The fluid cartridge or reservoir actuator or pump driver configurations may vary, along with the corresponding drive train components. In the particular configuration of
The individual fluid reservoir drive train includes drive shaft 81 rotationally coupled to motor 92A, for example via drive gear 101. Drive gear 101 and half gear 102 are positioned on opposite ends of drive shaft 81, for example with complementary half-gearing teeth clocked at ±180°. When motor 92A is selectively controlled to rotate drive shaft 81 in a first direction or sense (e.g., clockwise, for up to about +180°), the clocked half gearing on drive gear 101 engages the corresponding eccentrically mounted cam gear 103 to drive conrod actuator 82 up, pivoting right lever 89 up in a “see-saw” fashion about fulcrum 89F. Motor 92A then rotates drive shaft 81 back toward the zero or home position (e.g., detected by home sensor electronics 95), engaging the corresponding cam gear 103 to the corresponding conrod actuator 82, pivoting right lever 89 down about fulcrum 89F.
During this portion of the cycle, the half gearing on gear 102 may be disengaged from the corresponding eccentric cam gear 103 and conrod actuator 82, so that left lever 88 remains substantially stationary while right lever 89 is pivoted or actuated up and down. Motor 92A can also be selectively controlled to rotate drive shaft 81 in a second direction or sense (e.g., counterclockwise, for up to about −180°, so that the clocked half gearing on gear 102 engages the corresponding cam gear 103 and conrod actuator 82 to pivot left lever 88 up about fulcrum 88F. Motor 92A then rotates drive shaft 81 back toward the zero or home position, in order to pivot left lever 88 back down, with the half gearing on gear 101 being disengaged.
Similarly, the half gearing on gear 101 may be disengaged from the corresponding eccentric cam gear 103 and conrod actuator 82 during its portion of the cycle, so that right lever 89 remains substantially stationary while left lever 88 is pivoted or actuated up and down. Thus, left and right levers 88 and 89 may be individually actuated to selectively dispense fluid from different cartridge reservoirs. Alternatively, a complete or unclocked gearing may be provided on gears 101 and 102, and right and left levers 88 and 89 may be simultaneously actuated up and down, in the same or opposite sense.
The mixed fluid reservoir drive train includes motor 92B coupled to spur gear 91, bevel gears 98 and 99, and spiral cam 100. Spiral cam 100 engages a corresponding fixed cam with a complementary surface on the mixed fluid cartridge assembly, in order to simultaneously actuate two or more fluid reservoirs to dispense a mixed fluid.
Drive motor 92B can thus be selectively controlled to drive spiral cam 100 in rotational and/or reciprocating motion, in order to control the mixed fluid dispensing process independently of the individually selected fluid dispensing steps. For example, a current sensor or other sensing electronics 93 can be used to limit the rotational motion to an angular range of about 160° (or ±160°), depending on spiral cam configuration and desired stroke amplitude.
For example, when the sensor current reaches a known or predetermined threshold to indicate that the pumping action has completed a stroke, the controller can reverse the motor action responsive to the condition that the stroke is completed or the pump has bottomed out. Alternatively, the rotational or reciprocating motion range may vary, and other sensing technologies may be used, such as a rotary encoder. In additional embodiments, a single motor 92A or 92B may be used, for example with a selective coupling or engagement configured to drive one or both of the individual fluid reservoir drive train and the mixed fluid cartridge drive train.
Reservoirs, Cartridges and Selected Reservoir Sets or Subsets
In the “close packed” configuration of
Cartridges and reservoirs 122 and 124 can also be provided with internal pumping mechanisms, for example utilizing an internal bladder or bag with a rigid outer wall or shell and spring-loaded plunger. In one embodiment, a pump is implemented in each cartridge in the form of a linear-motion piston, paired with a dispensing conduit with an outlet. In some pumps the conduit is linked to or part of a piston that, as it is displaced inward in a cartridge, it causes a measured or metered (e.g., preselected) amount of liquid to be pumped form the outlet. The amount of the liquid pumped is proportional to the length of the pumping stroke and the length of the pumping stroke is determined by a pushing motion generated in pump driver assembly 48, comprising a motor operably connected via a drive train to the linear motion piston of the pump. As illustrated in
A second subset of fluid reservoirs or cartridges 124 (each may be implemented with a pump in the form of a linear-motion piston, paired with a dispensing conduit with an outlet) can be simultaneously actuated for pumping action that mixes fluid from two or more cartridges in a separate subassembly (or cartridge assembly) 130, coupled together via a vertical cartridge coupling member or spline 131 and a bottom connector or plate 132. A serum connector or mix manifold 134 is also provided, with a fixed cam 135 coupled to spiral cam 100 of drive assembly 48, so that rotation of spiral cam simultaneously actuates the pumping mechanism in each fluid reservoir or cartridge 124 of the second subset, mixing the fluids together in manifold 134 as described below.
The lower portion of mix manifold 134 includes fixed cam structure 135. Fixed cam 135 and spiral cam 100 are provided with complementary sliding surfaces, which engage to convert the rotational motion of spiral cam 100 inter linear (vertical) motion of mix manifold 134. Mix manifold 134 thus undergoes a linear (or vertical) oscillating stroke when spiral cam 100 is rotated in reciprocal motion by drive assembly 124, simultaneously actuating the pumping mechanism on each fluid reservoir or cartridge 124 connected to the manifold 134. The individual fluids from the two or more different cartridges 124 are mixed together within manifold 134, for dispensing to the user from the single outlet of the manifold.
Left-side lever 88 is shown in a decoupled configuration, without compliance unit 80, in order to illustrate the structure of prongs 88P. Cartridges 122 can thus be selectively actuated to dispense individual fluids, for example by controlling drive assembly 48 to selectively rotate cam gears 103 and position conrod actuators 82 to tilt one or the other of individual left and right-side levers 88 and 89, as described above.
Fluid Cartridge Assemblies
As shown in
In one embodiment, pushing or manipulating the tabs on mechanisms 72 radially outward releases selected cartridges 122. For example, manipulating the tab on one mechanism 72 may release a first (e.g., day) cartridge 122, and manipulating the tab on a second mechanism 72 may release a second (e.g., night) cartridge 122. The other tabs on mechanisms 73 may be manipulated or pulled out radially (e.g., simultaneously), in order to release serum cartridge assembly 130 as a unit. The spring loaded plungers will lift the selected cartridges out when these tabs are flexed (see
Controller and Control Method
The exemplary embodiment shown in
One exemplary embodiment supports a user regimen that calls for three different dispensing actions that are used at two separate times of the user's day: a day session and a night session. In particular, the embodiment supports a regimen in which the user requests and receives during a defined “day” period fluids from one dispensing action for a mixed fluid from the manifold and a second dispensing action from that one of the selectively, individually actuated fluid cartridges 122 associated with the day. During a defined “night” period, the user requests and receives again fluid from a repeated dispensing action for the mixed fluid from the manifold and from a third dispensing action from that one of the selectively, individually actuated fluid cartridges 122 associated with the night.
Focusing on the dispensing action for the mixed fluid, the action of the device is as follows. An apparatus for dispensing a flowable liquid, mixed from contents of two or more cartridges, comprises a first cartridge with a first flowable liquid and a first dispenser pump with an outlet, and a second cartridge with a first flowable liquid and a second dispenser pump with an outlet. A manifold with a fluid connection connects to the outlet of each of the first and second dispenser pumps and has a mechanical connection for actuating each of the first and second dispenser pumps and a mixing flow path that receives fluid from the outlet of each of the first and second dispenser pumps and by converging channels causes mixing, as dispensed fluids travel to a manifold outlet.
A mix manifold cam is operably engageable with the manifold to cause a pushing motion, and a mix manifold cam driver is operably connected to the mix manifold cam for moving the mix manifold cam from a home state through the pushing motion and a return to the home state. The pushing motion causes metered dispensing from each of the first and second dispenser pumps into the manifold, mixing within the converging channels and dispensing of mixed fluids from the first and second dispenser pumps at the dispenser outlet.
Focusing on the dispensing action for the individually actuated fluid cartridges 122 in coordination with the dispensing action for the mixed fluid, the action of the device is as follows. To accommodate the individually actuated fluid cartridges, a cartridge cavity is located above the dispenser opening. The cartridge cavity comprises a first volume occupied by the first cartridge and second cartridge mounted on the manifold, and a second volume occupied by a third cartridge with a third flowable liquid and a third dispenser pump with an outlet and a fourth cartridge with a fourth flowable liquid and a fourth dispenser pump with an outlet.
A time-of-day driver is selectively operably connected to either a third dispenser pump cam or a fourth dispenser pump cam for moving a selected one of the third dispenser pump or the fourth dispenser pump from a home state through a pushing motion and a return to its home state. The pushing motion causes metered dispensing from the selected one of the third dispenser pump or fourth dispenser pump at its outlet.
Where a further cartridge is added to the first and second cartridges that are part of the mixed actuation (or simultaneously actuated) fluid cartridges 124, the action of the device is as follows. A fifth cartridge with a fifth flowable liquid and a fifth dispenser pump with an outlet is combined with the first and second cartridges by using it with the mix manifold.
The manifold has a fluid connection to the outlet of the fifth dispenser pump, the mechanical connection for actuating each of the first and second dispenser pumps also actuates the fifth dispenser pump and the mixing flow path that receives fluid from the outlet of each of the first and second dispenser pumps also receives fluid from the outlet of the fifth dispenser pump, and by converging channels causes mixing of fluids from the outlets of the first, second and fifth dispenser pumps, as dispensed fluids travel to a dispenser outlet.
The manifold cam driver is operably connected to the manifold pusher cam that moves the manifold pusher cam from a rest state through the pushing motion and a return to the rest state and resulting pushing motion causes metered dispensing from each of the first, second and fifth dispenser pumps into the manifold, mixing within the converging channels and dispensing of mixed fluids from the first, second and fifth dispenser pumps at the dispenser outlet.
Depending on the state of the control logic, that station sensor input will wake the system 10, cause one or more dispensing sequences to occur or take another action programmed into the control logic as a response to station sensor input. The controller circuitry 510 also will have a time-of-day clock 514, a display driver 516 to drive audio/visual display components 532 (see reference 65 in
In one particular example, there are also (e.g., flash) memory components in each of the lid assembly and the base assembly, configured to store, access and retain the programming code and related data in non-transitory form. The memory is computer readable, and provided in data communication with the respective microprocessors. The memory can also be configured to store data related to generating the menu screens accessible by the menu buttons, and a log file of operations data including, but not limited to, remaining product in each of the cartridges, language selected by the user, and additional operational information, even when the batteries are removed.
Controller circuitry 510 will also receive via input interface 512 input signals from driver state sensors 530. These sensors may be optical sensors, current sensors, microswitches or other elements used to sense the position of or operating condition of various components that are part of the pump driver assemblies driven by electric ‘motor 1’ or electric ‘motor 2.’ In particular, in the driver assembly for the mix manifold cam, a motor current sensor may be used to determine when the cam has been driven to the state in which the manifold has completed its full travel for dispensing one measured or metered dose of the liquids from the simultaneously activated (mixed) fluid cartridges 124. In the driver assembly for the individually activated fluid cartridges 122 optical sensors or proximity sensors may be used to determine the when the left and right actuator levers 88 and 89 for each of the individually activated fluid cartridges 122 is in its rest or home position or has completed its full travel for dispensing one metered dose of a liquid from one of the individually activated fluid cartridges 122.
The control logic in controller circuitry 510 (or in software for processor execution) is used to control operational modes of the system 10. One of the operational modes, product dispensing, is shown in
In general, the product dispensing mode involves a dispenser actuator for initiating dispensing, and dispenser controller logic, including a time of day clock. The control logic responds to a user input at user controls 506 requesting fluid dispensing and a time of day from clock 514 to selectively actuate first a delivery of a metered amount of fluid from simultaneously activated (mixed) fluid cartridges 124 and then, based on predefined time of day criteria, a delivery of a metered amount of fluid from motion of one of the individually activated fluid cartridges 122.
The predefined time of day criteria partition a 24 hour day into a “day” period and a “night” period. During the day period, the control logic will cause a delivery of a metered amount of fluid by pumping motion at that one of the individually activated fluid cartridges 122 that has a “day serum” or fluid deemed appropriate for use earlier in the day. By contrast, during the night period, the control logic will cause a delivery of a metered amount of liquid by pumping motion at that one of the individually activated fluid cartridges 122 that has a “night serum” or liquid deemed appropriate for use later in the day.
In each case the control logic causes one motor and associated driver components to execute selectively the desired pumping motions using the dispenser pump cam or lever as the case may be to cause dispensing pumping from the appropriate cartridges. Further details of the features of this mode, expressed as user instructions, appear in
In particular, where the user instructions call for a user action, or user input, the station sensor or user controls of the system will receive an input and the input interface will provide a signal to the controller circuitry 510. Once mode logic has been selected, it will be executed in sequence of display actions, dispensing actions and user actions that complete the dispensing steps specified in the control logic. For this mode, the control logic uses the time of day and the time of day criteria as part of the logic for determining how to start the dispensing sequence and what parts of the driver assembly to deploy to perform dispensing from the appropriate cartridge or cartridges, in the manner specified in the steps: first dispensing a mixed serum and then a day or night moisturizer.
A second of the operational modes, travel dispensing, is shown in
The control logic responds to user input at user controls 506 requesting dispensing and a selected number of days and nights of travel to selectively actuate the product delivery cycle discussed above for each of the day and night delivery times that will occur during the time of travel. That is, for each of the selected number of “days travel,” the controller logic will execute first a delivery of a metered amount of liquid from simultaneously activated (mixed) fluid cartridges 124 for receipt by a travel container and then a delivery of a metered amount of fluid from motion of one of the individually activated fluid cartridge 122 associated with a “day” fluid for receipt by a travel container.
Similarly, for each of the selected number of “nights travel,” the controller logic will execute first a delivery of a metered amount of fluid from simultaneously activated (mixed) fluid cartridges 124 for receipt in a travel container and then a delivery of a metered amount of liquid from one of the individually activated fluid cartridge 122 associated with a “night” fluid for receipt in a travel container. In this way the user may sequentially dispense into a set of travel containers, in advance of the trip, the appropriate fluids for each of the day application and night application times specified by the selected number of days and nights of travel.
Further details of the features of this mode, expressed as user instructions, appear in
Examples of other embodiments of the cartridge or a set of cartridges include the following. Each of these examples may be used alone, or in any combination.
A cartridge for dispensing a first flowable liquid and for use with at least one other cartridge for dispensing a second flowable liquid to provide an output liquid mixed from the first and second flowable liquids, comprising: an enclosed volume containing a first flowable liquid and having a first dispenser pump for reciprocating inward and outward travel, said first dispenser pump being actuated by inward travel of the conduit to dispense a metered amount of the first flowable liquid; an outlet of the first dispenser pump, comprising a bottom fitting adapted for insertion in one of at least two holder openings in a cartridge holder plate, a top fitting for engagement with a top connector that lies generally parallel to and spaced from the holder plate and a pump outlet conduit extending from the bottom fitting and adapted for fluid communication connection to an inlet of a manifold connectable also to the at least one other cartridge with a second flowable liquid, said pump outlet conduit being connected to the first dispenser pump for to dispense the metered amount of the first flowable liquid from an outlet of the conduit into a mixing flow path of the manifold that receives fluid from the outlet of each of the first and second dispenser pumps.
The cartridge above wherein the first flowable liquid is a cosmetic lotion selected by a user for coordination and mixing with the second flowable liquid.
The cartridge above wherein the first dispenser pump dispenses a metered amount of the first flowable liquid from an outlet of the conduit that is determined by the distance of inward travel of the conduit.
A set of at least two cartridge for dispensing flowable liquids into a manifold to provide an output liquid mix A set of at least two cartridge for dispensing flowable liquids into a manifold to provide an output liquid mixed from the first and second flowable liquids, comprising: a first cartridge with an enclosed volume containing a first flowable liquid and having a first dispenser pump; a second cartridge with an enclosed volume containing a second flowable liquid and having a second dispenser pump; a cartridge holder plate; and a mix manifold each of the first and second cartridges comprising: an outlet of its dispenser pump, comprising a bottom fitting adapted for insertion in one of at least two holder openings in the cartridge holder plate, a top fitting for engagement with a top connector that lies generally parallel to, spaced from and connected to the holder platform and a pump outlet conduit extending from the bottom fitting and adapted for fluid communication connection to an inlet of the manifold, said pump outlet conduit being connected to it respective dispenser pump for reciprocating inward and outward travel and said respective dispenser pump being actuated by inward travel of the conduit to dispense a metered amount of the respective flowable liquid from the conduit into a mixing flow path of the manifold that receives fluid from the outlet of each of the first and second dispenser pumps.
The set of at least two cartridges above, further comprising a third cartridge for dispensing a third flowable liquid dispensed in a daytime portion of a day under the control of control logic of a dispenser in which the set of at least two cartridges is mounted and a fourth source cartridge for dispensing a fourth flowable liquid dispensed in a nighttime portion of a day under the control of control logic of a dispenser in which the set of at least two cartridges is mounted.
Examples of other embodiments of the methods include the following. Each of these examples may be used alone, or in any combination.
A method for dispensing a flowable liquid, mixed from contents of two or more cartridges, comprising: providing a first cartridge with a first flowable liquid and a first dispenser pump with an outlet; providing a second cartridge with a first flowable liquid and a second dispenser pump with an outlet; providing a mix manifold with a fluid connection to the outlet of each of the first and second dispenser pumps, a mechanical connection for actuating each of the first and second dispenser pumps and a mixing flow path that receives fluid from the outlet of each of the first and second dispenser pumps and by converging channels causes mixing, as dispensed fluids travel to a manifold outlet; providing a mix manifold cam operably engageable with the manifold to cause a pushing motion; and actuating a mix manifold cam driver operably connected to the mix manifold cam for moving the manifold pusher cam from a home state through the pushing motion and a return to the home state, said pushing motion causing metered dispensing from each of the first and second dispenser pumps into the manifold, mixing within the converging channels and dispensing of mixed fluids from the first and second dispenser pumps at the manifold outlet.
The method above, further comprising dispensing a selectable further flowable liquid, comprising: providing a third cartridge with a third flowable liquid and a third dispenser pump with an outlet and a fourth cartridge with a fourth flowable liquid and a fourth dispenser pump with an outlet, and controlling a time-of-day driver selectively operably connected to either a third dispenser pump cam or a fourth dispenser pump cam for moving a selected one of the third dispenser pump or the fourth dispenser pump from a home state through a pushing motion and a return to its home state, said pushing motion causing metered dispensing from the selected one of the third dispenser pump or fourth dispenser pump at its outlet.
The method above, further comprising: providing a dispenser actuator for initiating dispensing; and executing dispenser controller logic, including a time of day clock, said controller logic responding to a user input requesting dispensing and a time of day to selectively actuate based on a predefined time of day criteria motion of one of the third dispenser pump cam or the fourth dispenser pump cam.
The method above, wherein the predefined time of day criteria specify for a time of day in the morning selection of motion of one of the third dispenser pump cam or the fourth dispenser pump and for a time of the day in the night selection of motion of the other of the third dispenser pump cam or the fourth dispenser pump.
While this invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes can be made and equivalents may be substituted, without departing from the spirit and scope of the invention. In addition, modifications may be made to adapt the teachings of the invention to particular situations and to use other materials, without departing from the essential scope thereof. The invention is thus not limited to the particular examples that are disclosed here, but encompasses all of the embodiments falling within the scope of the claims.
This application claims priority to U.S. Provisional Application No. 62/040,715, SELECTIVELY ACTUATED FLUID DISPENSER, filed Aug. 22, 2014, which is incorporated by reference herein, in the entirety and for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3236418 | Dalle et al. | Feb 1966 | A |
3760986 | Castner | Sep 1973 | A |
3876112 | Kramer | Apr 1975 | A |
4139114 | Long et al. | Feb 1979 | A |
4335837 | Bono | Jun 1982 | A |
4549674 | Alticosalian | Oct 1985 | A |
4826048 | Skorka et al. | May 1989 | A |
5169029 | Behar | Dec 1992 | A |
5174476 | Steiner et al. | Dec 1992 | A |
5186360 | Mease et al. | Feb 1993 | A |
5351862 | Weag | Oct 1994 | A |
5358147 | Adams | Oct 1994 | A |
5568883 | Cataneo et al. | Oct 1996 | A |
5645193 | Gentile et al. | Jul 1997 | A |
5848732 | Brugger | Dec 1998 | A |
5865345 | Cistone et al. | Feb 1999 | A |
5947335 | Milio et al. | Sep 1999 | A |
6006948 | Auer | Dec 1999 | A |
6082580 | Mueller et al. | Jul 2000 | A |
6082588 | Markey | Jul 2000 | A |
6230935 | Mack et al. | May 2001 | B1 |
6299023 | Arnone | Oct 2001 | B1 |
6454135 | Brozell | Sep 2002 | B1 |
6499900 | Brozell | Dec 2002 | B1 |
6557729 | Gauthier | May 2003 | B2 |
6640999 | Peterson | Nov 2003 | B2 |
6648641 | Viltro et al. | Nov 2003 | B1 |
6715641 | Torimitsu et al. | Apr 2004 | B2 |
6715642 | Engel et al. | Apr 2004 | B2 |
6722532 | Lasserre et al. | Apr 2004 | B2 |
7063235 | Auer | Jun 2006 | B2 |
7124914 | Foster et al. | Oct 2006 | B2 |
7222752 | Ponton | May 2007 | B2 |
7247140 | Ophardt | Jul 2007 | B2 |
7461987 | Liechty et al. | Dec 2008 | B2 |
7510101 | Foster et al. | Mar 2009 | B2 |
7651035 | van der Heijden | Jan 2010 | B2 |
7654415 | van der Heijden | Feb 2010 | B2 |
7793799 | Reggiani | Sep 2010 | B2 |
7795584 | Mok et al. | Sep 2010 | B2 |
7854350 | Lasserre et al. | Dec 2010 | B2 |
8021064 | Gueret | Sep 2011 | B2 |
8245877 | Ophardt | Aug 2012 | B2 |
8292126 | Pittaway et al. | Oct 2012 | B2 |
8294585 | Barnhill | Oct 2012 | B2 |
8344393 | Drammeh | Jan 2013 | B2 |
8385270 | Pedlar et al. | Feb 2013 | B2 |
8395396 | Hagleitner | Mar 2013 | B2 |
8418887 | Milian et al. | Apr 2013 | B2 |
20010025859 | Dumont | Oct 2001 | A1 |
20030006247 | Olivier et al. | Jan 2003 | A1 |
20030194678 | Viltro | Oct 2003 | A1 |
20040016773 | Wagner | Jan 2004 | A1 |
20040226962 | Mazursky et al. | Nov 2004 | A1 |
20060163282 | Suzuki | Jul 2006 | A1 |
20070289997 | Lewis et al. | Dec 2007 | A1 |
20070289999 | Rossignol | Dec 2007 | A1 |
20080135578 | Ophardt | Jun 2008 | A1 |
20080149126 | Abergel | Jun 2008 | A1 |
20090140004 | Scorgie | Jun 2009 | A1 |
20090179047 | Foster et al. | Jul 2009 | A1 |
20090184137 | O'Brien | Jul 2009 | A1 |
20090216183 | Minotti | Aug 2009 | A1 |
20090272759 | Bambrick | Nov 2009 | A1 |
20100044394 | Milian et al. | Feb 2010 | A1 |
20100091478 | Miller | Apr 2010 | A1 |
20100108779 | Filsouf | May 2010 | A1 |
20110075510 | Sacchet | Mar 2011 | A1 |
20110101021 | Greer et al. | May 2011 | A1 |
20110139821 | Greter | Jun 2011 | A1 |
20110303695 | Fern | Dec 2011 | A1 |
20120031925 | Greenberg | Feb 2012 | A1 |
20120279990 | Werner et al. | Nov 2012 | A1 |
20120298694 | Holzmann | Nov 2012 | A1 |
20130299514 | Holzmann | Nov 2013 | A1 |
20140144927 | Hourmand | May 2014 | A1 |
20140197196 | Tederous | Jul 2014 | A1 |
20140319238 | Su | Oct 2014 | A1 |
20150375245 | Burrowes | Dec 2015 | A1 |
20160058156 | Chiasson | Mar 2016 | A1 |
20160199864 | Quennessen | Jul 2016 | A1 |
20160286932 | Lee | Oct 2016 | A1 |
20160318055 | Scott | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
1217278 | May 1999 | CN |
1234779 | Nov 1999 | CN |
1349919 | Oct 2001 | CN |
1474672 | Nov 2001 | CN |
1532400 | Sep 2004 | CN |
1754788 | Apr 2006 | CN |
1803062 | Jul 2006 | CN |
200988015 | Dec 2007 | CN |
2307674 | Jun 1997 | GB |
2009132438 | Jun 2009 | JP |
WO2006006058 | Jan 2006 | WO |
WO2010003091 | Jan 2010 | WO |
Entry |
---|
“Point” Merriam-Webster.com. Merriam-Webster, Nov. 2017. |
VariBlend Dual Dispensing Systems, “How it Works,” from <http://www.variblend.com/how-it-works/>. |
The International Search Report and Written Opinion dated Nov. 2, 2015 in connection with International Application No. PCT/US2015/046275. |
Number | Date | Country | |
---|---|---|---|
20160052007 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
62040715 | Aug 2014 | US |