Selectively actuating expandable reamers and related methods

Information

  • Patent Grant
  • 8960333
  • Patent Number
    8,960,333
  • Date Filed
    Thursday, December 15, 2011
    13 years ago
  • Date Issued
    Tuesday, February 24, 2015
    9 years ago
Abstract
Expandable reamers are configured to operate in a first, retracted state in which a plurality of blades is in a retracted position when a sliding sleeve is in a first sleeve position and a seat is in a first seat position, to operate in a second, extended state in which the plurality of blades is movable to an extended position when the sliding sleeve is in at least a second sleeve position and the seat is in the first seat position, and to operate in a third, retracted state in which the plurality of blades is returned to the retracted position when the sliding sleeve is in the at least a second position and the seat is in a second seat position.
Description
FIELD

The disclosure relates generally to expandable reamers for forming boreholes in subterranean formations. More specifically, the disclosed embodiments relate to expandable reamers that may be selectively actuated to extend and retract blades of the expandable reamers.


BACKGROUND

Expandable reamers are typically employed for enlarging boreholes in subterranean formations. In drilling oil, gas, and geothermal wells, casing is usually installed and cemented to prevent the well bore walls from caving into the borehole while providing requisite shoring for subsequent drilling operation to achieve greater depths. Casing is also installed to isolate different formations, to prevent cross flow of formation fluids, and to enable control of formation fluids and pressure as the borehole is drilled. To increase the depth of a previously drilled borehole, new casing is laid within and extended below the original casing. The diameter of any subsequent sections of the well may be reduced because the drill bit and any further casing must pass through the original casing. Such reductions in the borehole diameter may limit the production flow rate of oil and gas through the borehole. Accordingly, a borehole may be enlarged in diameter when installing additional casing to enable better production flow rates of hydrocarbons through the borehole.


One approach used to enlarge a borehole involves employing an extended bottom-hole assembly with a pilot drill bit at the end and a reamer assembly some distance above the pilot drill bit. This arrangement permits the use of any standard rotary drill bit type (e.g., a rolling cone bit or a fixed cutter bit), as the pilot bit and the extended nature of the assembly permit greater flexibility when passing through tight spots in the borehole as well as the opportunity to effectively stabilize the pilot drill bit so that the pilot drill bit and the following reamer will traverse the path intended for the borehole. This aspect of an extended bottom hole assembly is particularly significant in directional drilling. Expandable reamers are disclosed in, for example, U.S. Pat. No. 7,900,717, issued Mar. 8, 2011, to Radford et al., U.S. Pat. No. 8,028,767, issued Oct. 4, 2011, to Radford et al., and U.S. Patent Application Pub. No. 2011/0073371, published Mar. 31, 2011, to Radford, the disclosure of each of which is incorporated herein in its entirety by this reference. The blades in such expandable reamers are initially retracted to permit the tool to be run through the borehole on a drill string, and, once the tool has passed beyond the end of the casing, the blades are extended so the bore diameter may be increased below the casing.


BRIEF SUMMARY

In some embodiments, expandable reamers for use in boreholes in subterranean formations comprise a housing defining a central bore. A plurality of blades is carried by the housing and is movable between a retracted position and an extended position responsive to flow of drilling fluid. A sliding sleeve is disposed within the central bore and is coupled to the housing. The sliding sleeve defines an axial fluid passageway and comprises at least one port in a sidewall of the sliding sleeve. The sliding sleeve is movable between a first sleeve position and at least a second sleeve position to alter flow of drilling fluid. A seat is disposed within and coupled to the sliding sleeve. The seat is movable between a first seat position and a second seat position to alter flow of drilling fluid. At least one sealing member is configured to form a seal between the housing and the sliding sleeve. The at least one port in the sidewall of the sliding sleeve is located on a first side of the at least one sealing member in the first sleeve position and is movable to a second, opposing side of the at least one sealing member when the sliding sleeve is in the second sleeve position. Such expandable reamers are configured to operate in a first, retracted state in which the plurality of blades is in the retracted position when the sliding sleeve is in the first sleeve position and the seat is in the first seat position, to operate in a second, extended state in which the plurality of blades is movable to the extended position when the sliding sleeve is in the at least a second sleeve position and the seat is in the first seat position, and to operate in a third, retracted state in which the plurality of blades is returned to the retracted position when the sliding sleeve is in the at least a second position and the seat is in the second seat position.


In other embodiments, methods of using expandable reamers in boreholes in subterranean formations comprise flowing a drilling fluid through a central bore defined by a housing carrying a plurality of blades. A first obstruction is disposed in the central bore to engage a sliding sleeve located within the central bore, the sliding sleeve defining an axial fluid passageway within the central bore. Flow of the drilling fluid is redirected from the axial fluid passageway to at least one port in the sliding sleeve to exert pressure causing at least one blade of the plurality of blades to move from a retracted state to an extended state by obstructing the axial fluid passageway with the first obstruction. The at least one blade is extended responsive to the redirected flow of the drilling fluid. A second obstruction is disposed in the central bore to engage a seat located within the sliding sleeve. The at least one port is disposed on a second side of a seal opposing a first side of the seal on which the at least one blade is disposed by displacing the sliding sleeve responsive to the second obstruction disposed in the central bore. Flow of the drilling fluid is redirected through the at least one port on the second, opposing side of the seal. Retraction of the at least one blade is allowed responsive to the redirected flow of the drilling fluid.





BRIEF DESCRIPTION OF THE DRAWINGS

While the specification concludes with claims particularly pointing out and distinctly claiming what are regarded as embodiments of the invention, various features and advantages of disclosed embodiments may be more readily ascertained from the following description when read in conjunction with the accompanying drawings, in which:



FIG. 1 is a perspective view of an expandable reamer for use in a borehole in a subterranean formation;



FIG. 2 is a cross-sectional view of the expandable reamer of FIG. 1 in a first state;



FIG. 3 is a cross-sectional view of the expandable reamer of FIG. 2 in a second state;



FIG. 4 is a cross-sectional view of the expandable reamer of FIG. 2 in the second state and transitioning to a third state;



FIG. 5 is a cross-sectional view of the expandable reamer of FIG. 2 in the third state;



FIG. 6 is a cross-sectional view of the expandable reamer of FIG. 2 in the third state;



FIG. 7 is a cross-sectional view of another embodiment of an expandable reamer in a first state;



FIG. 8 is a cross-sectional view of the expandable reamer of FIG. 7 in a second state; and



FIG. 9 is a cross-sectional view of the expandable reamer of FIG. 7 in a third state.





DETAILED DESCRIPTION

The illustrations presented herein are not meant to be actual views of any particular expandable reamer or component thereof, but are merely idealized representations employed to describe illustrative embodiments. Thus, the drawings are not necessarily to scale. Additionally, elements common between figures may retain the same or similar numerical designation.


Disclosed embodiments relate generally to expandable reamers that may be selectively actuated to extend and retract blades of the expandable reamers. More specifically, disclosed are expandable reamers that may be extended by placing a first obstruction into a flow path of drilling fluid and may be retracted by placing a second obstruction into the flow path of drilling fluid.


As used herein, the term “drilling fluid” means and includes any fluid that may be directed down a drill string during drilling of a subterranean formation. For example, drilling fluids include liquids, gases, combinations of liquids and gases, fluids with solids in suspension with the fluids, oil-based fluids, water-based fluids, air-based fluids, and muds.


Referring to FIG. 1, a perspective view of an expandable reamer 100 for use in a borehole in a subterranean formation is shown. Some of the components of the expandable reamer 100 may generally be similar or identical to those described in, for example, U.S. Pat. No. 7,900,717, issued Mar. 8, 2011, to Radford et al., U.S. Pat. No. 8,028,767, issued Oct. 4, 2011, to Radford et al., and U.S. Patent Application Pub. No. 2011/0073371, published Mar. 31, 2011, to Radford, the disclosure of each of which is incorporated herein in its entirety by this reference. Briefly, the expandable reamer 100 may comprise a housing 102 having a longitudinal axis L and defining a central bore 104 extending through the housing 102. The housing 102 may comprise a generally cylindrical tubular structure. In some embodiments, the housing 102 may comprise an upper sub housing 106 and a lower sub housing 108 connected to the upper sub housing 106. The terms “lower” and “upper,” as used herein, refer to the typical orientation of the expandable reamer 100 when positioned within a borehole. In alternative embodiments, the housing 102 may comprise more than two sub housings or may comprise a single, unitary sub housing. The housing 102 of the expandable reamer 100 may have an upper end 110 and a lower end 112. The lower end 112 of the housing 102 may include a connection portion (e.g., a threaded male pin member) for connecting the lower end 112 to another section of a drill string or another component of a bottom-hole assembly (BHA), such as, for example, a drill collar or collars carrying a pilot drill bit for drilling a borehole. Similarly, the upper end 110 of the housing 102 may include a connection portion (e.g., a threaded female box member) for connecting the upper end 110 to another section of a drill string or another component of a bottom-hole assembly (BHA).


A plurality of blades 114 (only one blade 114 is visible, and other blades 114 are obscured by the housing 102) is circumferentially spaced around the housing 102, as further described below, and is carried by the housing 102 between the upper end 110 and the lower end 112. The blades 114 are shown in an initial, retracted position within the housing 102 of the expandable reamer 100, but are configured selectively to extend responsive to application of hydraulic pressure into an extended position when actuated (see FIGS. 3, 4, and 8) and return to the retracted position when de-actuated, as will be described herein. The expandable reamer 100 may be configured to engage the walls of a subterranean formation defining a borehole with the blades 114 to remove formation material when the blades 114 are in the extended position, and to disengage from the walls of the subterranean formation when the blades 114 are in the retracted position. While the expandable reamer 100 shown includes three blades 114, the expandable reamer 100 may include any number of blades 114, such as, for example, one, two, four, or greater than four blades, in alternative embodiments. Moreover, though the blades 114 shown are symmetrically circumferentially positioned around the longitudinal axis L of the housing 102 at the same longitudinal position between the upper and lower ends 110 and 112, the blades 114 may also be positioned circumferentially asymmetrically around the longitudinal axis L, at different longitudinal positions between the upper and lower ends 110 and 112, or both in alternative embodiments.


The expandable reamer 100 may optionally include a plurality of stabilizers 116 extending radially outwardly from the housing 102. Such stabilizers 116 may center the expandable reamer 100 in the borehole while tripping into position through a casing or liner string and while drilling and reaming the borehole by contacting and sliding against the wall of the borehole. In other embodiments, the expandable reamer 100 may lack such stabilizers 116. In such embodiments, the housing 102 may comprise a larger outer diameter in the longitudinal portion where the stabilizers 116 are shown in FIG. 1 to provide a similar centering function as provided by the stabilizers 116. The stabilizers 116 may stop or limit the extending motion of the blades 114 (see FIGS. 3, 4, and 8), determining the extent to which the blades 114 extend to engage a borehole. The stabilizers 116 may optionally be configured for removal and replacement by a technician, particularly in the field, allowing the extent to which the blades 114 extend to engage the borehole to be selectively increased or decreased to a preselected and determined degree.


Referring to FIG. 2, a cross-sectional view of the expandable reamer 100 of FIG. 1 in a first operational state is shown. This first state may correspond to an initial, pre-actuation, retracted state. The expandable reamer 100 may include an actuation mechanism configured to selectively extend and retract the blades 114. The actuation mechanism may include a sliding sleeve 118 disposed within the central bore 104 and coupled to the housing 102. The sliding sleeve 118 may be in a first sleeve position when coupled to the housing 102 and may be movable to at least a second sleeve position when detached from the housing 102 (see FIG. 3). The sliding sleeve 118 may comprise a generally cylindrical tubular structure defining an axial fluid passageway 120. In some embodiments, the sliding sleeve 118 may comprise an upper sleeve member 122 and a lower sleeve member 124 connected to the upper sleeve member 122. In alternative embodiments, the sliding sleeve 118 may comprise more than two sleeve members or may comprise a single, unitary member.


The sliding sleeve 118 may be configured to move relative to the housing 102 to alter a flow path of drilling fluid through the expandable reamer 100. For example, the sliding sleeve 118 may be coupled to the housing 102 by detachable hardware 126A. The detachable hardware 126A may comprise, for example, locking dogs, exploding bolts, or shear screws. When detached, the detachable hardware 126A may enable the sliding sleeve 118 to move axially (e.g., by sliding axially downward) relative to the housing 102 from the first sleeve position to the second sleeve position (see FIG. 3).


The sliding sleeve 118 may comprise at least one port 128 in a sidewall of the sliding sleeve 118. For example, the sliding sleeve 118 may comprise at least one first port 128A extending through the sliding sleeve 118 at a first position along the longitudinal axis L and at least one second port 128B at a second, different (e.g., lower) position along the longitudinal axis L. As a specific, non-limiting example, the sliding sleeve 118 may comprise a plurality of first ports 128A through the sidewall of the upper sleeve member 122 and a plurality of second ports 128B through the sidewall of the lower sleeve member 124.


An inner diameter DSS of the sliding sleeve 118 may not be constant. For example, the inner diameter DSS1 of the sliding sleeve 118 may be smaller (i.e., constricted) at an axial location between the first ports 128A and the second ports 128B than the inner diameter DSS2 of the sliding sleeve 118 at the axial positions of the first ports 128A and the second ports 128B. Furthermore, the inner diameter DSS3 of the sliding sleeve 118 may be greater (i.e., expanded) at an axial location above the first ports 128A. In addition, the inner diameter DSS4 of the sliding sleeve 118 may be smaller at a lower end 130 of the sliding sleeve 118. The reduction in inner diameter DSS4 at the lower end 130 of the sliding sleeve 118 may enable the sliding sleeve 118 to engage with an obstruction. In some embodiments, the lower end 130 of the sliding sleeve 118 may comprise a seat, such as, for example, a ball seat, a ball trap, a solid seat, an expandable seat, or other seats known in the art for engaging with obstructions to alter flow paths in expandable reamers 100, coupled to the lower sleeve member 124. Thus, the sliding sleeve 118 may be configured to engage with an obstruction to alter a flow path of drilling fluid through the expandable reamer 100.


The expandable reamer 100 may include at least one sealing member 132 configured to form a seal between the housing 102 and the sliding sleeve 118. For example, a plurality of sealing members 132 may be interposed between the housing 102 and the sliding sleeve 118 proximate the lower end 130 of the sliding sleeve 118, forming a seal 134 between the housing 102 and the sliding sleeve 118. The sealing members 132 may form the seal 134 between the housing 102 and the sliding sleeve 118 regardless of the sleeve position of the sliding sleeve 118. In other words, the seal 134 may be maintained before, during, and after extension and retraction of the blades 114. The sealing members 132 may comprise, for example, O-rings, omni-directional sealing rings (i.e., sealing rings that prevent flow from one side of the sealing rings to the other side of the sealing rings regardless of flow direction), unidirectional sealing rings (i.e., sealing rings that prevent flow from one side of the sealing ring to the other side of the sealing ring in only one flow direction), V-packing, and other members for forming seals between components of expandable reamers 100 known in the art. As a specific, non-limiting example, the sealing members 132 may comprise D-seal O-rings, which may comprise flexible and compressible tubular members having “D” shaped cross-sections extending circumferentially to form circular members. Thus, the sealing member 132 may form the seal 134 between the housing 102 and the sliding sleeve 118 when the expandable reamer 100 is in the first state (i.e., the initial, pre-actuation, retracted state) and when the sliding sleeve 118 is in the first and second positions (see FIG. 3). The lower end 130 of the sliding sleeve 118 may be located below the seal 134, but above and distanced from the lower end 112 of the housing 102.


An inner diameter DH of the housing 102 may not be constant. For example, the inner diameter DH1 of the housing 102 may be smaller at an axial location of the seal 134 than the inner diameter DH2 at axial locations immediately above and below the seal 134. When the sliding sleeve 118 is in the first sleeve position, the second ports 128B may be exposed by the greater inner diameter DH2 of the housing 102, enabling drilling fluid to flow through the second ports 128B and out of the axial fluid passageway 120 into the central bore 104. The first ports 128A may optionally be located at an axial location where the inner diameter DH of the housing 102 is smaller than the inner diameter DH2 of the housing 102 adjacent to the seal 134 when the sliding sleeve 118 is in the first sleeve position. Thus, the housing 102 may obstruct or at least impede flow of drilling fluid through the first ports 128A to the central bore 104. In other words, drilling fluid may more easily flow through the second ports 128B and through the axial fluid passageway 120 than through the first ports 128A when the sliding sleeve 118 is in the first sleeve position in some embodiments. In other embodiments, the first ports 128A may be exposed at a portion of the housing 102 having an inner diameter DH2 greater than the inner diameter DH1 of the housing 102 at the seal 134 when the sliding sleeve 118 is in the first sleeve position.


A seat 136 may be disposed within and coupled to the sliding sleeve 118. The seat 136 may be in a first seat position and may be movable to a second seat position (see FIG. 4) when detached from the sliding sleeve 118 to alter flow of drilling fluid through the expandable reamer 100. For example, the seat 136 may be configured to engage with another obstruction to alter a flow path of drilling fluid through the expandable reamer 100. The seat 136 may comprise, for example, a collet sleeve 138 configured to engage with the other obstruction and to detach from the sliding sleeve 118 when the second obstruction engages with the collet sleeve 138. The collet sleeve 138 may also be configured to expand to enable the other obstruction to disengage from the seat 136 and pass through the collet sleeve 138. For example, the collet sleeve 138 may comprise a plurality of collet fingers that may expand after the collet sleeve 138 has detached from the sliding sleeve 118 and moved axially relative to the sliding sleeve 118 from the first seat position to the second seat position, where the seat 136 may be axially aligned with an inner diameter DSS3 of the sliding sleeve 118 that is greater (i.e., expanded) at an axial location above the first ports 128A, enabling the collet sleeve 138 to expand within the larger inner diameter DSS3 of the sliding sleeve 118. The seat 136 may have a diameter DS smaller than a greatest inner diameter DSS2 of the sliding sleeve 118, but greater than a smallest inner diameter DSS4 of the sliding sleeve 118. The seat 136 may be coupled to the sliding sleeve 118 by detachable hardware 126B. The detachable hardware 126B may comprise, for example, locking dogs, exploding bolts, or shear screws.


When in use, drilling fluid may flow from the upper end 110 of the expandable reamer 100, down through the axial fluid passageway 120 defined by the sliding sleeve 118, and out the lower end 112 of the expandable reamer 100. Drilling fluid may also flow through the second ports 128B and optionally through the first ports 128A. The drilling fluid flowing through the first and second ports 128A and 128B may be insufficient to actuate the expandable reamer 100 (i.e., to extend the blades 114). In addition, or in the alternative, detachable hardware 126C, such as, for example, locking dogs, shear screws, or exploding bolts, may secure the blades 114 in the retracted state regardless of the pressure of the drilling fluid flowing through the first and second ports 128A and 128B. Thus, the expandable reamer 100 may remain in the first state until actuated. In the first state of operation of the expandable reamer 100, the plurality of blades 114 may be in the retracted position, the sliding sleeve 118 may be coupled to the housing 102 in the first sleeve position, and the seat 136 may be coupled to the sliding sleeve 118 in the first seat position.


Referring to FIG. 3, a cross-sectional view of the expandable reamer 100 of FIG. 2 in a second operational state is shown. This second state may correspond to a subsequent, actuated, extended state. To place the expandable reamer 100 in the second state, a first obstruction 140 may be placed in the central bore 104. For example, the first obstruction 140 may be dropped into a drilling fluid flow path of a drill string (not shown) and travel down the drill string to the expandable reamer 100, where it may enter the central bore 104. The first obstruction 140 may comprise, for example, a ball (e.g., a sphere or ovoid) comprising a material suitable for use in a downhole environment (e.g., a metal, a polymer, a particle- or fiber-matrix composite, etc.). The first obstruction 140 may engage with the sliding sleeve 118 to obstruct the axial fluid passageway 120. For example, the first obstruction 140 may have a diameter DO1 smaller than the diameter DS of the seat 136, but greater than the smallest inner diameter DSS4 of the sliding sleeve 118. Thus, the first obstruction 140 may pass through the seat 136 and become lodged in the sliding sleeve 118 at the smallest inner diameter DSS4 of the sliding sleeve 118.


Obstruction of the axial fluid passageway 120 may move the sliding sleeve 118 relative to the housing 102 from the first sleeve position (see FIG. 2) to the second sleeve position. For example, obstruction of the axial fluid passageway may cause drilling fluid to exert a pressure against the first obstruction 140 engaged with the sliding sleeve 118. The pressure exerted by the drilling fluid against the first obstruction 140 engaged with the sliding sleeve 118 may be sufficient to detach the sliding sleeve 118 from the housing 102. For example, the pressure exerted by the drilling fluid may be sufficient to shear detachable hardware 126A (see FIG. 2) comprising shear screws coupling the sliding sleeve 118 to the housing 102.


Upon detaching the sliding sleeve 118 from the housing 102, the pressure exerted against the first obstruction 140 engaged with the sliding sleeve 118 may also be sufficient to move the sliding sleeve 118 relative to the housing 102. For example, the sliding sleeve 118 may slide downward in response to the pressure exerted by the drilling fluid from the first sleeve position (see FIG. 2) to the second sleeve position. A shoulder at the upper end 131 of the sliding sleeve 118 may engage with a stop 146 (e.g., a ledge) within the central bore 104 defined by the housing 102 to stop movement of the sliding sleeve 118 at the second sleeve position. Once the sliding sleeve 118 has moved, the first ports 128A may remain on a first side of the seal 134 (e.g., an upper side of the seal 134), and the second ports 128B may have passed from the first side of the seal 134 to a second, opposing side of the seal 134 (e.g., a lower side of the seal 134).


Obstruction of the axial fluid passageway 120 may cause the blades 114 to move from the retracted position (see FIG. 2) to the extended position. For example, obstruction of the axial fluid passageway 120 may redirect flow of drilling fluid from the axial fluid passageway 120, through the first ports 128A located on the first side of the seal 134 (e.g., an upper side of the seal 134), to exert a pressure against a push sleeve 142. The pressure exerted by the redirected drilling fluid may be sufficient to move the push sleeve 142 and compress a spring 144 engaged with the push sleeve 142. Movement of the sliding sleeve 118 relative to the housing 102 may also release detachable hardware 126C that previously held the push sleeve 142 and the blades 114 to which the push sleeve 142 is connected in their retracted position. As a specific, non-limiting example, the detachable hardware 126C may comprise locking dogs as disclosed in U.S. Pat. No. 7,900,717, issued Mar. 8, 2011, to Radford et al., or U.S. Pat. No. 8,028,767, issued Oct. 4, 2011, to Radford et al., the disclosure of each of which is incorporated herein in its entirety by this reference. Movement of the push sleeve 142 may translate to corresponding movement of the blades 114. The blades 114 may move to the extended position to engage with a wall of a subterranean formation. In alternative embodiments, obstruction of the axial fluid passageway 120 may redirect flow of drilling fluid from the axial fluid passageway 120, through the first ports 128A on the first side of the seal 134 to exert a pressure directly against the blades 114. Thus, fluid flowing through the first ports 128A may extend and maintain the blades 114 in their extended position, and fluid flowing through the second ports 128B may flow past the expandable reamer 100 (e.g., to a BHA below the expandable reamer 100). In the second state of operation of the expandable reamer 100, the plurality of blades 114 may have moved from the retracted position to the extended position and may be selectively movable between the extended and retracted positions, the sliding sleeve 118 may have moved from the first sleeve position to the second sleeve position, and the seat 136 may remain coupled to the sliding sleeve 118 in the first seat position.


In embodiments where the first obstruction 140 is compressible (e.g., comprises a compressible polymer material such as, for example, rubber), the first obstruction 140 may disengage from the sliding sleeve 118 to return the blades 114 to a retracted position. For example, a pressure of drilling fluid flowing through the expandable reamer 100 in the second state may be increased, and the pressure of the drilling fluid may force the first obstruction 140 through the sliding sleeve 118, and out of the expandable reamer 100. The first obstruction 140 may then pass down through the drill string and be caught in a capture screen (e.g., a mesh basket) disposed in the drill string below the expandable reamer 100, as known in the art. Drilling fluid may be redirected from the first and second ports 128A and 128B to flow through the axial fluid passageway 120 defined by the sliding sleeve 118. Thus, the drilling fluid may not exert pressure against the push sleeve 142 sufficient to compress the spring 144. The spring 144 may expand and move the push sleeve 142 to its initial position (see FIG. 2). Movement of the push sleeve 142 may translate to movement of the blades 114 to their retracted position (see FIG. 2). Deploying another first obstruction 140 into the central bore 104 may return the blades 114 to their extended position in the same manner as described previously. Thus, the blades 114 may be selectively extended and retracted in some embodiments. In other embodiments, the first obstruction 140 may remain engaged with the sliding sleeve 118 for so long as the expandable reamer 100 remains in the borehole.


In addition or in the alternative, reduction in the pressure of the drilling fluid against the push sleeve 142 (or directly against the blades 114 in some embodiments) may allow the spring 144 to expand and retract the blades 114. Raising the pressure of the drilling fluid against the push sleeve 142 (or directly against the blades 114 in some embodiments) may compress the spring 144 and extend the blades 114. In this way, the blades 114 may be selectively extended and retracted when the expandable reamer 114 is in the second state of operation.


Referring to FIG. 4, a cross-sectional view of the expandable reamer 100 of FIG. 2 still in the second state, but transitioning to a third state is shown. This third state may correspond to a final, de-actuated, retracted state. To transition the expandable reamer 100 from the second state to the third state, a second obstruction 148 may be placed in the central bore 104. For example, the second obstruction 148 may be dropped into a drilling fluid flow path of a drill string (not shown) and travel down the drill string to the expandable reamer 100, where it may enter the central bore 104. The second obstruction 148 may comprise, for example, a ball (e.g., a sphere or ovoid) comprising a material suitable for use in a downhole environment (e.g., a metal, a polymer, a composite, etc.). The second obstruction 148 may engage with the seat 136 to obstruct the axial fluid passageway 120. For example, the second obstruction 148 may have a diameter DO2 greater than the diameter DS of the seat 136. In other words, the second obstruction 148 may have an average diameter DO2 greater than an average diameter DO1 of the first obstruction 140. Thus, the second obstruction 148 may become lodged in the seat 136.


Obstruction of the axial fluid passageway 120 may cause the seat 136 to detach from the sliding sleeve 118 and move from the first seat position to the second seat position (see FIG. 5). For example, obstruction of the axial fluid passageway 120 may cause drilling fluid to exert a pressure against the second obstruction 148 and the seat 136. The pressure may be sufficient to detach the seat 136 from the sliding sleeve 118. For example, the pressure may be sufficient to shear detachable hardware 126B comprising shear screws coupling the seat 136 to the sliding sleeve 118. Once the seat 136 is detached from the sliding sleeve 118, the seat 136 may move relative to the sliding sleeve 118 from the first seat position to the second seat position (see FIG. 5) to redirect flow of the drilling fluid through the expandable reamer 100.


Referring to FIG. 5, a cross-sectional view of the expandable reamer of FIG. 2 in the third state is shown. As stated previously, the third state may correspond to a final, de-actuated, retracted state. The seat 136 may obstruct the first ports 128A (see FIG. 4) to redirect flow of the drilling fluid through the expandable reamer 100 when the seat 136 is in the second seat position. For example, the detached seat 136 may travel axially downward within the sliding sleeve 118 until it contacts a portion of the sliding sleeve 118 having an inner diameter DSS3 less than an outer diameter DCS of the collet sleeve 138. After movement of the seat 136 to the second seat position, a portion of the collet sleeve 138 (e.g., a solid lower sleeve portion from which the collet fingers extend) may obstruct the first ports 128A (see FIG. 4). Accordingly, the drilling fluid may no longer exert pressure against the push sleeve 142 sufficient to compress the spring 144 and maintain the blades 114 in an extended position. A pressure relief mechanism 150 (e.g., a bleed nozzle or bleed valve) may enable drilling fluid that previously exerted pressure against the push sleeve 142 to exit the expandable reamer 100 out into the borehole. The spring 144 may extend, displacing the push sleeve 142 and retracting the blades 114 from their extended position (see FIGS. 3 and 4) to their retracted position. In this way, the blades 114 may move to the retracted position to cease engagement with a subterranean formation in a borehole. In the third state of operation of the expandable reamer 100, the plurality of blades 114 may return from the extended position (see FIGS. 3 and 4) to the retracted position, the sliding sleeve 118 may be in the second sleeve position, and the seat 136 may have moved from the first seat position (see FIGS. 2 through 4) to the second seat position. This retraction of the blades 114 may be irreversible so long as the expandable reamer 100 remains in the borehole. After the expandable reamer 100 is extracted from the borehole, the various components (e.g., the sliding sleeve 118, the seat 136, the collet sleeve 138, and the first and second obstructions 140 and 148) may optionally be reset to the first state (i.e., the initial, pre-actuation, retracted state shown in FIG. 1), and the expandable reamer 100 may be redeployed in the same or another borehole.


Referring to FIG. 6, a cross-sectional view of the expandable reamer of FIG. 2 still in the third state is shown. As stated previously, this third state may correspond to a final, de-actuated, retracted state. The second obstruction 148 may pass through the collet sleeve 138 to enable drilling fluid to flow down the axial fluid passageway 120 and out the second ports 128B on the second, opposing side (i.e., the lower side) of the seal 134. For example, the seat 136 and expandable portion of the collet sleeve 138 may be located at a portion of the sliding sleeve 118 having a diameter DSS3 greater than the diameter DSS2 of the sliding sleeve 118 where the seat 136 and expandable portion of the collet sleeve 138 were initially located in the first seat position. As drilling fluid exerts pressure against the second obstruction 148, the second obstruction 148 may expand the collet sleeve 138 at the second seat position and be forced through the collet sleeve 138. The second obstruction 148 may pass axially down the expandable reamer 100 and come to rest on the first obstruction 140. Thus, drilling fluid may be redirected from the first ports 128A and the push sleeve 142, down the axial fluid passageway 120, and out the second ports 128B into the central bore 104. Drilling fluid may then proceed down past the expandable reamer 100 to other portions of the drill string, such as, for example, a BHA (not shown).


Referring to FIG. 7, a cross-sectional view of another embodiment of an expandable reamer 100′ in a first state is shown. This first state may correspond to an initial, pre-actuation, retracted state. The expandable reamer 100′ may include an actuation mechanism configured to selectively extend and retract blades 114 of the expandable reamer 100′. The actuation mechanism may include a sliding sleeve 118′ disposed within a central bore 104 defined by a housing 102, and the sliding sleeve 118′ may be coupled to the housing 102. The sliding sleeve 118′ may be in a first sleeve position when coupled to the housing 102 and may be movable to at least a second sleeve position when detached from the housing 102 (see FIGS. 8 and 9). For example, the sliding sleeve 118′ may be movable from a first, initial sleeve position, to a second, intermediate sleeve position (see FIG. 8), and a third, final sleeve position (see FIG. 9). The sliding sleeve 118′ may comprise a generally cylindrical tubular structure defining an axial fluid passageway 120. The sliding sleeve 118′ may comprise a first portion 152 and a second, telescoping portion 154 coupled to the first portion 152. The first portion 152 may comprise a first tubular member disposed within the central bore 104 of the housing 102 and coupled to the housing 102 and the second, telescoping portion 154 may comprise a second tubular member disposed within and coupled to the first portion 152.


The sliding sleeve 118′ may be configured to move relative to the housing 102 from the first sleeve position to the second and third sleeve positions (see FIGS. 8 and 9) to alter a flow path of drilling fluid through the expandable reamer 100′. For example, the first portion 152 of the sliding sleeve 118′ may be coupled to the housing 102 by detachable hardware 126A. The detachable hardware 126A may comprise, for example, locking dogs, exploding bolts, or shear screws. When detached, the detachable hardware 126A may enable the sliding sleeve 118′ to move axially (e.g., by sliding axially downward) relative to the housing 102 from the first sleeve position to the second sleeve position (see FIG. 8). In addition, the second, telescoping portion 154 may be configured to move relative to the first portion 152 from the second sleeve position (see FIG. 8) to the third sleeve position (see FIG. 9) to alter the flow path of drilling fluid through the expandable reamer 100′. For example, the second, telescoping portion 154 may be coupled to the first portion 152 by detachable hardware 126D. The detachable hardware 126D may comprise, for example, locking dogs, exploding bolts, or shear screws. When detached, the second, telescoping portion 154 may move relative to the first portion 152 from the second sleeve position (see FIG. 8) to the third sleeve position (see FIG. 9), while remaining at least partially within the first portion 152.


The sliding sleeve 118′ may comprise at least one port 128 in a sidewall of the sliding sleeve 118′. For example, the sliding sleeve 118′ may comprise a plurality of ports 128 through the sidewall of the second, telescoping portion 154 proximate an end 130′ (e.g., a lower end) of the sliding sleeve 118′. When the sliding sleeve 118′ is in the first sleeve position, the ports 128 may be obstructed by the housing 102. For example, a surface of the housing 102 defining the central bore 104 may cover the ports 128, obstructing or at least impeding fluid flow through the ports 128.


An inner diameter DSS of the sliding sleeve 118′ may not be constant. For example, the inner diameter DSS4 of the sliding sleeve 118′ may be smaller (i.e., constricted) at an axial location below the ports 128 (e.g., at the end 130′ of the sliding sleeve 118′ when the sliding sleeve 118′ is in the first sleeve position) than the inner diameter DSS2 of the sliding sleeve 118′ at axial positions at and above the ports 128 when the sliding sleeve 118′ is in the first sleeve position. The reduction in inner diameter DSS4 at the end 130′ of the sliding sleeve 118′ may enable the sliding sleeve 118′ to engage with an obstruction. In some embodiments, the end 130′ of the sliding sleeve 118′ may comprise a seat, for example, a ball seat, a ball trap, a solid seat, an expandable seat, or other seats known in the art for engaging with obstructions to alter flow paths in expandable reamers 100′, coupled to the second, telescoping portion 154. Thus, the sliding sleeve 118′ may be configured to engage with an obstruction to alter a flow path of drilling fluid through the expandable reamer 100′.


The expandable reamer 100′ may include at least one sealing member 132′ configured to form a seal between the housing 102 and the sliding sleeve 118′. For example, a sealing member 132′ may be coupled to the housing 102 at an axial location below the end 130′ of the sliding sleeve 118′ when the sliding sleeve 118′ is in the first and second sleeve positions (see FIG. 8). Thus, the sealing member 132′ may not form a seal 134′ (see FIG. 9) between the housing 102 and the sliding sleeve 118′ when the sliding sleeve 118′ is in the first and second positions (see FIG. 8). The sealing member 132′ may selectively form the seal 134′ (see FIG. 9) between the housing 102 and the sliding sleeve 118′ depending on the sleeve position of the sliding sleeve 118′, and specifically depending on the sleeve position of the second, telescoping portion 154 of the sliding sleeve 118′. In other words, the seal 134′ (see FIG. 9) may not be formed before extension of the blades 114, but may be formed before or during retraction of the blades 114 from their extended position (see FIG. 8) to their retracted position. The sealing member 132′ may comprise, for example, an O-ring, an omni-directional sealing ring, a unidirectional sealing ring, V-packing, and other members for forming seals between components of expandable reamers 100′ known in the art. The lower end 130 of the sliding sleeve 118′ may be located above the sealing member 132′ when the sliding sleeve 118′ is in the first and second sleeve positions (see FIG. 8), but may be configured to pass through and engage with the sealing member 132′ to form the seal 134′ when the sleeve 118′ is in the third position (see FIG. 9).


An inner diameter DH of the housing 102 may not be constant. For example, the inner diameter DH1 of the housing 102 may be smaller at an axial location of the sealing member 132′ than the inner diameter DH2 of the housing 102 at axial locations immediately above and below the sealing member 132′.


A seat 136′ may be disposed within and coupled to the sliding sleeve 118′. The seat 136′ may be in a first seat position and may be movable to a second seat position (see FIG. 9) when detached from the sliding sleeve 118′ to alter flow of drilling fluid through the expandable reamer 100. For example, the seat 136′ may be configured to engage with another obstruction to alter a flow path of drilling fluid through the expandable reamer 100′. The seat 136′ may comprise, for example, a ball seat, a ball trap, a solid seat, an expandable seat, or other seats known in the art for engaging with obstructions to alter flow paths in expandable reamers 100′. The seat 136′ may be configured to engage with the other obstruction and to detach from the sliding sleeve 118′ when the second obstruction engages with the seat 136′ to move from the first seat position to the second seat position. The seat 136′ may have a diameter DS smaller than a greatest inner diameter DSS2 of the sliding sleeve 118′, but greater than a smallest inner diameter DSS4 of the sliding sleeve 118′. The seat 136′ may be coupled to the sliding sleeve 118′ by detachable hardware 126B. The detachable hardware 126B may comprise, for example, locking dogs, exploding bolts, or shear screws.


When in use, drilling fluid may flow from the upper end 110 of the expandable reamer 100′, down through the axial fluid passageway 120 defined by the sliding sleeve 118′, and out the lower end 112 of the expandable reamer 100′. Drilling fluid may optionally flow through the ports 128. The drilling fluid flowing through the ports 128 may be insufficient to actuate the expandable reamer 100′ (i.e., to extend the blades 114). In addition, or in the alternative, detachable hardware 126C, such as, for example, locking dogs, shear screws, or exploding bolts, may secure the blades 114 in the retracted state regardless of the pressure of the drilling fluid flowing through the ports 128. Thus, the expandable reamer 100′ may remain in the first state until actuated. In the first state of operation of the expandable reamer 100′, the plurality of blades 114 may be in the retracted position, the sliding sleeve 118′ may be coupled to the housing in the first sleeve position, and the seat 136′ may be coupled to the sliding sleeve 118′ in the first seat position.


Referring to FIG. 8, a cross-sectional view of the expandable reamer 100′ of FIG. 7 in a second state is shown. This second state may correspond to a subsequent, actuated, extended state. To place the expandable reamer 100′ in the second state, a first obstruction 140 may be placed in the central bore 104. For example, the first obstruction 140 may be dropped into a drilling fluid flow path of a drill string (not shown) and travel down the drill string to the expandable reamer 100′, where it may enter the central bore 104. The first obstruction 140 may comprise, for example, a ball (e.g., a sphere or ovoid) comprising a material suitable for use in a downhole environment (e.g., a metal, a polymer, a composite, etc.). The first obstruction 140 may engage with the sliding sleeve 118′ to obstruct the axial fluid passageway 120. For example, the first obstruction 140 may have a diameter DO1 smaller than the diameter DS of the seat 136, but greater than the smallest inner diameter DSS4 of the sliding sleeve 118′. Thus, the first obstruction 140 may become lodged in the sliding sleeve 118′ at the smallest inner diameter DSS4 of the sliding sleeve 118.


Obstruction of the axial fluid passageway 120 may move the sliding sleeve 118′ relative to the housing 102 from the first sleeve position (see FIG. 7) to the second sleeve position. For example, obstruction of the axial fluid passageway 120 may cause drilling fluid to exert a pressure against the first obstruction 140 engaged with the sliding sleeve 118′. The pressure exerted by the drilling fluid against the first obstruction 140 engaged with the sliding sleeve 118′ may be sufficient to detach the sliding sleeve 118′ from the housing 102. For example, the pressure exerted by the drilling fluid may be sufficient to shear detachable hardware 126A (see FIG. 2) comprising shear screws coupling the sliding sleeve 118′ to the housing 102.


Upon detaching the sliding sleeve 118′ from the housing 102, the pressure exerted against the first obstruction 140 engaged with the sliding sleeve 118′ may also be sufficient to move the sliding sleeve 118′ relative to the housing 102. For example, the sliding sleeve 118′ may slide downward in response to the pressure exerted by the drilling fluid from the first sleeve position (see FIG. 7) to the second sleeve position. The sliding sleeve 118′ may cease displacing relative to the housing 102 at the second sleeve position when the ports 128 are exposed within the central bore 104 of the housing 102. For example, the ports 128 may move from a portion of the housing 102 having a diameter DH3 that obstructs the ports 128 to a portion of the housing 102 having a larger diameter DH2 that does not obstruct the ports 128. Drilling fluid may resume flow through the ports 128 to the central bore 104, relieving the pressure against the first obstruction 140 and ceasing movement of the sliding sleeve 118′. In addition or in the alternative, a shoulder at the upper end 131 of the sliding sleeve 118′ may engage with a stop 146 (e.g., a ledge) within the central bore 104 defined by the housing 102 to stop movement of the sliding sleeve 118′ at the second sleeve position.


Obstruction of the axial fluid passageway 120 may cause the blades 114 to extend. For example, obstruction of the axial fluid passageway 120 may redirect flow of drilling fluid from the axial fluid passageway 120, through the exposed ports 128, to exert a pressure against a push sleeve 142. The pressure exerted by the redirected drilling fluid may be sufficient to move the push sleeve 142 and compress a spring 144 engaged with the push sleeve 142. Movement of the sliding sleeve 118 relative to the housing 102 may also release detachable hardware 126C that previously held the push sleeve 142 and the blades to which the push sleeve 142 is connected in their retracted position. As a specific, non-limiting example, the detachable hardware 126C may comprise locking dogs as disclosed in U.S. Pat. No. 7,900,717, issued Mar. 8, 2011, to Radford et al., or U.S. Pat. No. 8,028,767, issued Oct. 4, 2011, to Radford et al., the disclosure of each of which is incorporated herein in its entirety by this reference. Movement of the push sleeve 142 may translate to corresponding movement of the blades 114. Thus, the blades 114 may be extended from their retracted position to their extended position to engage with a wall of a subterranean formation. In alternative embodiments, obstruction of the axial fluid passageway 120 may redirect flow of drilling fluid from the axial fluid passageway 120, through the exposed ports 128 on the first side of the seal 134 to exert a pressure directly against the blades 114.


The blades 114 may extend after the sliding sleeve 118′ moves. For example, drilling fluid flowing through the exposed ports 128 may exert the pressure against the push sleeve 142 to extend the blades 114 and down past the expandable reamer 100′ to components of the drill string located below the expandable reamer 100′, such as, for example, a BHA (not shown). The first obstruction 140 may remain engaged with the sliding sleeve 118′ for so long as the expandable reamer 100′ remains in the borehole. In the second state of operation of the expandable reamer 100′, the plurality of blades 114 may have moved from their retracted position to their extended position, the sliding sleeve 118′ may have moved from a first sleeve position to a second sleeve position, and the seat 136′ may remain in the first seat position.


Referring to FIG. 9, a cross-sectional view of the expandable reamer of FIG. 7 in a third state is shown. This third state may correspond to a final, de-actuated, retracted state. To place the expandable reamer 100′ in the third state, a second obstruction 148 may be placed in the central bore 104. For example, the second obstruction 148 may be dropped into a drilling fluid flow path of a drill string (not shown) and travel down the drill string to the expandable reamer 100′, where it may enter the central bore 104. The second obstruction 148 may comprise, for example, a ball (e.g., a sphere or ovoid) comprising a material suitable for use in a downhole environment (e.g., a metal, a polymer, a composite, etc.). The second obstruction 148 may engage with the seat 136′ to obstruct the axial fluid passageway 120. For example, the second obstruction 148 may have a diameter DO2 greater than the diameter DS of the seat 136. In other words, the second obstruction 148 may have a diameter DO2 greater than a diameter DO1 of the first obstruction 140. Thus, the second obstruction 148 may become lodged in the seat 136′.


Obstruction of the axial fluid passageway 120 may cause the seat 136′ to detach from the sliding sleeve 118′ and move from the first seat position (see FIGS. 7 and 8) to the second seat position. For example, obstruction of the axial fluid passageway 120 may cause drilling fluid to exert a pressure against the second obstruction 148 and the seat 136′. The pressure may be sufficient to detach the seat 136′ from the sliding sleeve 118′. For example, the pressure may be sufficient to shear detachable hardware 126B (see FIG. 8) comprising shear screws coupling the seat 136′ to the sliding sleeve 118′. Once the seat 136′ is detached from the sliding sleeve 118′, the seat 136′ may move relative to the sliding sleeve 118′ from the first seat position (see FIGS. 7 and 8) to the second seat position to redirect flow of the drilling fluid through the expandable reamer 100′.


Movement of the seat 136′ from the first seat position (see FIGS. 7 and 8) to the second seat position may release detachable hardware 126D coupling the first portion 152 of the sliding sleeve 118′ to the second, telescoping portion 154 of the sliding sleeve 118′. For example, the detached seat 136′ may travel axially downward within the sliding sleeve 118′ until it contacts the first obstruction 140 engaged with the sliding sleeve 118′ at the second seat position. After movement of the seat 136, the detachable hardware 126D, which may comprise locking dogs, may release engagement between the first and second telescoping portions 152 and 154. Accordingly, the second, telescoping portion 154 may move relative to the first portion 152, while at least a portion of the second, telescoping portion 154 may remain within the first portion 152. The end 130′ of the sliding sleeve 118′ may pass through the sealing member 132′, forming a seal 134′ between the housing 102 and the sliding sleeve 118′. The second, telescoping portion 154 may cease displacing when the end 130′ of the second, telescoping portion 154 engages with a stop 146′ coupled to the housing 102. For example, a stop 146′ comprising a ring configured to engage with the end 130′ of the second, telescoping portion 154 may be coupled to the housing 102 proximate the lower end 112 at a location where the inner diameter DH4 of the housing 102 is smaller than the sliding sleeve 118′. The second, telescoping portion 154 may contact the stop 146′ and stop displacing relative to the first portion 152. In other words, the sliding sleeve 118′ may move from the second sleeve position (see FIG. 8) to the third sleeve position.


The ports 128 may also pass from a first side of the seal 134′ (e.g., an upper side above the seal 134′), through the sealing member 132′, to a second, opposing side of the seal 134′ (e.g., a lower side below the seal 134′). The ports 128 may enable drilling fluid that previously exerted pressure against the push sleeve 142 to exit the sliding sleeve 118′ out into the central bore 104 because drilling fluid flowing through the ports 128 may not exert pressure against the push sleeve 142 on the first side of the seal 134′. The spring 144 may extend, displacing the push sleeve 142 and retracting the blades 114 from their extended position to their retracted position. In this way, the blades 114 may be retracted to cease engagement with a subterranean formation in a borehole. This retraction of the blades 114 may be irreversible so long as the expandable reamer 100′ remains in the borehole. After the expandable reamer 100′ is extracted from the borehole, the various components (e.g., the sliding sleeve 118′, the seat 136′, and the first and second obstructions 140 and 148) may optionally be reset to the first state (i.e., the initial, pre-actuation, retracted state shown in FIG. 7), and the expandable reamer 100′ may be redeployed in the same or another borehole.


Drilling fluid may flow through the ports 128 on the second, opposing side of the seal 134′. Thus, drilling fluid may be redirected from the push sleeve 142, down the axial fluid passageway 120, and out the ports 128 into the central bore 104. Drilling fluid may then proceed down past the expandable reamer 100′ to other portions of the drill string, such as, for example, a BHA (not shown). In the third state of operation of the expandable reamer 100′, the plurality of blades 114 may return from their extended position to their retracted position, the sliding sleeve 118′ may have moved from the second sleeve position to the third sleeve position, and the seat 136′ may have moved from the first seat position to the second seat position.


While certain illustrative embodiments have been described in connection with the figures, those of ordinary skill in the art will recognize and appreciate that embodiments of the invention are not limited to those embodiments explicitly shown and described herein. Rather, many additions, deletions, and modifications to the embodiments described herein may be made without departing from the scope of embodiments of the invention as hereinafter claimed, including legal equivalents. In addition, features from one disclosed embodiment may be combined with features of another disclosed embodiment while still being encompassed within the scope of embodiments of the invention as contemplated by the inventor.

Claims
  • 1. An expandable reamer for use in a borehole in a subterranean formation, comprising: a housing defining a central bore;a plurality of blades carried by the housing and movable between a retracted position and an extended position responsive to flow of drilling fluid;a sliding sleeve disposed within the central bore and coupled to the housing, defining an axial fluid passageway, and comprising at least one port in a sidewall of the sliding sleeve, the sliding sleeve being movable between a first sleeve position and at least a second sleeve position to alter flow of drilling fluid;a seat disposed within and coupled to the sliding sleeve, the seat being movable between a first seat position and a second seat position to alter flow of drilling fluid; andat least one sealing member configured to form a seal between the housing and the sliding sleeve and to inhibit fluid flow in a space defined between the housing and the sliding sleeve between a first side of the at least one sealing member and a second, opposing side of the at least one sealing member when the at least one sealing member is engaged with the housing and the sliding sleeve, the at least one port in the sidewall of the sliding sleeve being located on the first side of the at least one sealing member in the first sleeve position and movable to the second, opposing side of the at least one sealing member when the sliding sleeve is in the at least a second sleeve position,wherein the expandable reamer is configured to operate in a first, retracted state in which the plurality of blades is in the retracted position when the sliding sleeve is in the first sleeve position and the seat is in the first seat position, to operate in a second, extended state in which the plurality of blades is movable to the extended position when the sliding sleeve is in the at least a second sleeve position and the seat is in the first seat position, and to operate in a third, retracted state in which the plurality of blades is returned to the retracted position when the sliding sleeve is in the at least a second position and the seat is in the second seat position.
  • 2. The expandable reamer of claim 1, wherein the at least one sealing member forms the seal between the housing and the sliding sleeve when the sliding sleeve is in the first sleeve position and in the at least a second sleeve position.
  • 3. The expandable reamer of claim 2, wherein the at least one port comprises at least one first port configured to remain on the first side of the seal when the sliding sleeve is moved from the first sleeve position to the second sleeve position and at least one second port configured to pass from the first side of the seal to the second, opposing side of the seal when the sliding sleeve is moved from the first sleeve position to the second sleeve position.
  • 4. The expandable reamer of claim 3, wherein the seat comprises a collet sleeve configured to detach from the sliding sleeve and move from the first seat position to the second seat position.
  • 5. The expandable reamer of claim 4, wherein the collet sleeve is configured to obstruct the at least one first port when the collet sleeve is in the second seat position.
  • 6. The expandable reamer of claim 1, wherein the sliding sleeve comprises a first portion coupled to the housing and a second, telescoping portion coupled to the first portion, the second, telescoping portion being configured to move to a third sleeve position when the second, telescoping portion is detached from the first portion, and wherein the at least one port is located on the second, opposing side of the at least one sealing member when the second, telescoping portion is in the third sleeve position and the expandable reamer is configured to operate in the third, retracted state when the second, telescoping portion is in the third sleeve position.
  • 7. The expandable reamer of claim 6, wherein the seat is coupled to the sliding sleeve and is positioned to maintain the second, telescoping portion coupled to the first portion when the seat is in the first seat position, and wherein the seat is movable to the second seat position to detach the second, telescoping portion from the first portion.
  • 8. The expandable reamer of claim 7, wherein an end of the second, telescoping portion is configured to remain on a first side of the at least one sealing member when the sliding sleeve is in the first position and the at least a second sleeve position and is configured to extend through the at least one sealing member to form the seal between the housing and the sliding sleeve when the second, telescoping portion is in the third sleeve position.
  • 9. The expandable reamer of claim 8, further comprising a stop configured to stop movement of the end of the second, telescoping portion after the end has passed through the at least one sealing member.
  • 10. The expandable reamer of claim 1, wherein the at least one sealing member comprises a one of an omni-directional sealing member, a unidirectional sealing member, and V-packing.
  • 11. A method of using an expandable reamer in a borehole in a subterranean formation, comprising: flowing a drilling fluid through a central bore defined by a housing carrying a plurality of blades;disposing a first obstruction in the central bore to engage a sliding sleeve located within the central bore, the sliding sleeve defining an axial fluid passageway within the central bore;redirecting flow of the drilling fluid from the axial fluid passageway to at least one port in the sliding sleeve to exert pressure causing at least one blade of the plurality of blades to move from a retracted state to an extended state by obstructing the axial fluid passageway with the first obstruction;extending the at least one blade responsive to the redirected flow of the drilling fluid;disposing a second obstruction in the central bore to engage a seat located within the sliding sleeve;positioning the at least one port on a second side of a seal between the housing and the sliding sleeve, the second side opposing a first side of the seal on which the at least one blade is disposed, by moving the sliding sleeve responsive to the first or second obstruction disposed in the central bore, the seal being configured to inhibit fluid flow in a space defined between the housing and the sliding sleeve between the first side of the seal and the second side of the seal when at least one sealing member is engaged with the housing and the sliding sleeve;redirecting flow of the drilling fluid through the at least one port on the second, opposing side of the seal responsive to the second obstruction disposed in the central bore; andallowing retraction of the at least one blade responsive to the redirected flow of the drilling fluid.
  • 12. The method of claim 11, wherein positioning the at least one port on the second side of the seal comprises positioning at least one first port on the first side of the seal and positioning at least one second port on the second, opposing side of the seal.
  • 13. The method of claim 12, wherein disposing the second obstruction in the central bore to engage the seat comprises engaging a collet sleeve with the second obstruction.
  • 14. The method of claim 13, wherein engaging the collet sleeve with the second obstruction comprises detaching the collet sleeve from the sliding sleeve and moving the collet sleeve relative to the sliding sleeve responsive to pressure of the drilling fluid against the second obstruction engaged with the collet sleeve.
  • 15. The method of claim 13, wherein redirecting flow of the drilling fluid from the component through the at least one port on the second, opposing side of the seal comprises redirecting flow of the drilling fluid from the at least one first port on the first side of the seal to the at least one second port on the second, opposing side of the seal by displacing the collet sleeve from a first seat position to a second seat position to obstruct the at least one first port.
  • 16. The method of claim 15, further comprising passing the second obstruction through the collet sleeve by expanding the collet sleeve.
  • 17. The method of claim 11, wherein redirecting flow of the drilling fluid from the axial fluid passageway to the at least one port in the sliding sleeve to exert pressure against the component by obstructing the axial fluid passageway with the first obstruction comprises displacing the sliding sleeve from a first sleeve position to a second sleeve position to expose the at least one port on the first side of the seal.
  • 18. The method of claim 17, wherein the sliding sleeve comprises a first portion coupled to the housing and a second, telescoping portion coupled to the first portion and wherein disposing the second obstruction in the central bore to engage the seat comprises detaching a second, telescoping portion of the sliding sleeve from a first portion of the sliding sleeve by displacing the seat from a first seat position to a second seat position.
  • 19. The method of claim 18, wherein displacing the seat from the first seat position to the second seat position comprises detaching the seat from the sliding sleeve and moving the seat relative to the sliding sleeve responsive to pressure of the drilling fluid against the second obstruction engaged with the seat.
  • 20. The method of claim 18, wherein positioning the at least one port on the second side of the seal comprises forming the seal between the sliding sleeve and the housing by displacing an end of the second, telescoping portion of the sliding sleeve from the first side of the seal, through at least one sealing member, to a third sleeve position on the second, opposing side of the seal.
  • 21. The method of claim 11, wherein allowing retraction of the at least one blade comprises placing the at least one blade in the retracted state for as long as the at least one blade remains within the borehole.
  • 22. The method of claim 11, further comprising selecting the second obstruction to have an average diameter larger than an average diameter of the first obstruction.
US Referenced Citations (86)
Number Name Date Kind
1678075 Phipps Jul 1928 A
2069482 Seay Feb 1937 A
2177721 Johnson et al. Oct 1939 A
2344598 Church Mar 1944 A
2754089 Kammerer, Jr. Jul 1956 A
2758819 Kammerer, Jr. Aug 1956 A
2834578 Carr May 1958 A
2882019 Carr et al. Apr 1959 A
3105562 Stone et al. Oct 1963 A
3123162 Rowley Mar 1964 A
3126065 Chadderdon Mar 1964 A
3211232 Grimmer Oct 1965 A
3224507 Cordary, Jr. Dec 1965 A
3425500 Fuchs Feb 1969 A
3433313 Brown Mar 1969 A
3556233 Gilreath Jan 1971 A
4098335 Goad Jul 1978 A
4403659 Upchurch Sep 1983 A
4458761 Van Vreeswyk Jul 1984 A
4545441 Williamson Oct 1985 A
4589504 Simpson May 1986 A
4660657 Furse et al. Apr 1987 A
4690229 Raney Sep 1987 A
4693328 Furse et al. Sep 1987 A
4842083 Raney Jun 1989 A
4848490 Anderson Jul 1989 A
4854403 Ostertag et al. Aug 1989 A
4884477 Smith et al. Dec 1989 A
4889197 Boe Dec 1989 A
5139098 Blake Aug 1992 A
5211241 Mashaw et al. May 1993 A
5224558 Lee Jul 1993 A
5265684 Rosenhauch Nov 1993 A
5293945 Rosenhauch et al. Mar 1994 A
5305833 Collins Apr 1994 A
5318131 Baker Jun 1994 A
5318137 Johnson et al. Jun 1994 A
5318138 Dewey et al. Jun 1994 A
5332048 Underwood et al. Jul 1994 A
5343963 Bouldin et al. Sep 1994 A
5361859 Tibbitts Nov 1994 A
5368114 Tandberg et al. Nov 1994 A
5375662 Echols, III et al. Dec 1994 A
5425423 Dobson et al. Jun 1995 A
5437308 Morin et al. Aug 1995 A
5553678 Barr et al. Sep 1996 A
5560440 Tibbitts et al. Oct 1996 A
5740864 de Hoedt et al. Apr 1998 A
5788000 Maury et al. Aug 1998 A
5823254 Dobson et al. Oct 1998 A
5887655 Haugen et al. Mar 1999 A
6039131 Beaton Mar 2000 A
6059051 Jewkes et al. May 2000 A
6109354 Ringgenberg et al. Aug 2000 A
6116336 Adkins et al. Sep 2000 A
6131675 Anderson Oct 2000 A
6189631 Sheshtawy Feb 2001 B1
6213226 Eppink et al. Apr 2001 B1
6227312 Eppink et al. May 2001 B1
6289999 Dewey et al. Sep 2001 B1
6325151 Vincent et al. Dec 2001 B1
6378632 Dewey Apr 2002 B1
6488104 Eppink et al. Dec 2002 B1
6494272 Eppink et al. Dec 2002 B1
6615933 Eddison Sep 2003 B1
6668949 Rives Dec 2003 B1
6708785 Russell et al. Mar 2004 B1
6732817 Dewey et al. May 2004 B2
7048078 Dewey et al. May 2006 B2
7314099 Dewey et al. Jan 2008 B2
7493971 Nevlud et al. Feb 2009 B2
7513318 Underwood et al. Apr 2009 B2
7900717 Radford et al. Mar 2011 B2
8028767 Radford et al. Oct 2011 B2
20020070052 Armell Jun 2002 A1
20030029644 Hoffmaster et al. Feb 2003 A1
20030155155 Dewey et al. Aug 2003 A1
20060144623 Ollerensaw Jul 2006 A1
20070095573 Telfer May 2007 A1
20080128169 Radford et al. Jun 2008 A1
20100288557 Radford Nov 2010 A1
20110073370 Gentry Mar 2011 A1
20110073371 Radford Mar 2011 A1
20110073376 Radford et al. Mar 2011 A1
20110155465 Allamon et al. Jun 2011 A1
20110284233 Wu et al. Nov 2011 A1
Foreign Referenced Citations (7)
Number Date Country
246789 Nov 1987 EP
1036913 Sep 2000 EP
1044314 Mar 2005 EP
2328964 Mar 1999 GB
2344607 Jun 2000 GB
2344122 Apr 2003 GB
0031371 Jun 2000 WO
Non-Patent Literature Citations (4)
Entry
International Search Report for International Application No. PCT/US2012/069162 mailed Jun. 21, 2013, 5 pages.
International Written Opinion for International Application No. PCT/US2012/069162 mailed Jun. 21, 2013, 4 pages.
Radford et al., U.S. Appl. No. 13/794,251 entitled, Expandable Reamers and Methods of Using Expandable Reamers, filed Mar. 11, 2013.
International Preliminary Report on Patentability for International Application No. PCT/US2012/069162 mailed Jun. 17, 2014, 5 pages.
Related Publications (1)
Number Date Country
20130153300 A1 Jun 2013 US