Selectively connecting the tip electrode during therapy for MRI shielding

Information

  • Patent Grant
  • 8897875
  • Patent Number
    8,897,875
  • Date Filed
    Tuesday, November 22, 2011
    13 years ago
  • Date Issued
    Tuesday, November 25, 2014
    10 years ago
Abstract
A medical device includes a pulse generator and an electrode configured to contact tissue in a body vessel. The medical device includes a lead that includes a lead connector. The lead connector connects a pulse generator with an electrode via a conductive path. An electrode switch is electrically connected between the lead conductor and the electrode. The electrode switch includes an open state preventing the conductive path between the lead and the electrode. The electrode switch includes a closed state establishing the conductive path between the lead and the electrode when a voltage is applied across the electrode switch that exceeds a threshold voltage. The electrode switch in the open state electrically shields the electrode from electromagnetic radiation and induced voltages during magnetic resonance imaging.
Description
TECHNICAL FIELD

Embodiments of the present invention relate to medical devices and the simultaneous delivery of diagnostic and therapeutic treatments. More specifically, embodiments of the present invention generally relate to implantable medical devices and minimizing the delivery of RF induced voltages to surrounding body tissue in an MRI environment.


BACKGROUND

Magnetic resonance imaging (MRI) is a non-invasive imaging method that utilizes nuclear magnetic resonance techniques to render images within a patient's body. Typically, MRI systems employ the use of a static magnetic coil having a magnetic field strength of between about 0.2 to 3 Teslas. During the procedure, the body tissue is briefly exposed to RF pulses of electromagnetic energy in a plane perpendicular to the magnetic field. The resultant electromagnetic energy from these pulses can be used to image the body tissue by measuring the relaxation properties of the excited atomic nuclei in the tissue.


During imaging, the electromagnetic radiation produced by the MRI system may be picked up by implantable device leads used in implantable medical devices such as pacemakers or cardiac defibrillators. This energy may be transferred through the lead to the electrode in contact with the tissue, which may lead to elevated temperatures at the point of contact. The degree of tissue heating is typically related to factors such as the length of the lead, the properties of the tissue near the lead, the conductivity or impedance of the lead, the shape of the lead, and the surface area of the lead electrodes. Exposure to a magnetic field may also induce an undesired voltage in the lead.


SUMMARY

Embodiments of the present invention generally relate to implantable medical devices and minimizing the delivery of RF induced voltages to surrounding body tissue in an MRI environment. An illustrative medical device includes a pulse generator configured to emit therapy pulses and a lead including an electrode configured to contact tissue in a body vessel. The lead includes a lead conductor electrically coupling the pulse generator with the electrode via a conductive path. The medical device further includes an electrode switch electrically connected between the lead conductor and the electrode. The electrode switch includes an open state preventing formation of the conductive path between the lead and the electrode. The electrode switch further includes a closed state allowing formation of the conductive path between the lead and the electrode upon reception of a voltage applied across the electrode switch which exceeds a threshold voltage. The electrode switch in the open state electrically shields the electrode from at least electromagnetic radiation within the body during an magnetic resonance imaging procedure, thereby preventing the inducement of a voltage on the electrode.


While some embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic drawing of a cardiac rhythm management system including a pulse generator coupled to a lead deployed in a patient's heart.



FIG. 2 illustrates a pulse generator and a lead with an electrode switch.



FIG. 3 graphically illustrates the state of the switch as “on” when the voltage applied across the switch is higher than the threshold voltage, and as “off” when the voltage applied across the switch is lower than or equal to the threshold voltage.



FIG. 4 graphically illustrates the state of the switch as “on” when the voltage applied across the switch is higher than Vth1 or lower than −Vth2, and as “off” when the voltage applied across the switch is between −Vth2 and Vth1.



FIG. 5 illustrates the open or closed state of the switch versus time.



FIG. 6 illustrates a pulse generator and a lead with a switch between the lead conductor and the electrode.



FIG. 7 illustrates a characteristic voltage-current curve for the switch illustrated in FIGS. 6 and 8.



FIG. 8 illustrates a pulse generator and a lead with a switch between the lead conductor and the electrode along with an optional control line for varying the threshold voltage of the device or giving a direct command to turn the switch on or off.



FIG. 9 illustrates an example method for monitoring a voltage across a switch and adjusting a voltage threshold.



FIG. 10 is a cross-sectional view of an illustrative lead.



FIG. 11 is another cross-sectional view of the lead.





While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the present disclosure.


DETAILED DESCRIPTION


FIG. 1 is a schematic drawing of a cardiac rhythm management system 10 including a pulse generator 12 coupled to a lead 14 deployed in a patient's heart 16. According to some embodiments, the pulse generator 12 is typically implanted subcutaneously at an implantation location in the patient's chest or abdomen. As shown, the heart 16 includes, a superior vena cava 17, a right atrium 18 and a right ventricle 20, a left atrium 22 and a left ventricle 24, a coronary sinus ostium 26, a coronary sinus 28, and various cardiac branch vessels including a great cardiac vein 30 and an exemplary branch vessel 32.


As shown in FIG. 1, the lead 14 may include an elongated body 34 having a proximal region 36 and a distal region 38. The distal region 38 has a distal end 40 including an electrode 42, according to embodiments of the present invention. The lead 14 includes a lead conductor which electrically connects the pulse generator 12 to the electrode 42. To facilitate left ventricular pacing epicardially via an epicardial approach, lead 14 may be deployed in coronary veins 32 through the coronary sinus 28. In embodiments, the lead 14 can be implanted in other locations of the body such as the right ventricle, right atrium, or any other desired location in the body. Although FIG. 1 depicts the lead 14 as part of a cardiac rhythm management system 10 with an electrode 42, the lead 14 may alternatively include one or more sensors and/or one or more electrodes 42, and may couple the one or more sensors with a monitor in addition to, or in lieu of, the pulse generator 12. Additionally, although only one lead is illustrated in FIG. 1, the cardiac management system 10 may include any desired number of leads.



FIG. 2 illustrates a pulse generator 12 and a lead 14 with an electrode switch 44, according to some embodiments. In the embodiment of FIG. 2, the switch 44 is normally open, but is configured to close during the delivery of therapeutic pacing. In its normally open state, the switch 44 either creates an electrical discontinuity between the lead conductor and the electrode 42, or provides a relatively high resistance between the lead conductor and the electrode 42 and thus, between the lead conductor and the surrounding tissue. Accordingly, in its normally open state the switch 44 substantially shields the electrode 42 and surrounding tissue from receiving induced current pulses and/or electromagnetic radiation generated by an MRI system. Thus, in this configuration, the electrode 42 and surrounding tissue is isolated from the electromagnetic (e.g., RF) energy picked up by the lead 14 during magnetic resonance imaging. In embodiments, a relatively high resistance is a resistance high enough to substantially shield an electrode and surrounding tissue from receiving induced current pulses and/or electromagnetic radiation generated by an MRI system.


According to some embodiments, the switch 44 is configured to permit electrical continuity between the lead conductor and the electrode 42 when a voltage exceeding a threshold voltage is applied across the switch 44. Alternatively, in those embodiments in which the switch 44 increases the resistance between the lead conductor and the electrode 42 when open, the switch 44 can be configured to reduce its resistance when a voltage exceeding a threshold voltage is applied across the switch 44. In embodiments, this threshold voltage is selected as a result of the design of the switch 44 circuitry. Accordingly, the threshold voltage required to trigger the switch 44 may differ depending on the type and configuration of the switch 44. As an example, the threshold voltage of the switch 44 does not exceed a supply voltage such as 12V. As another example, the threshold voltage of a switch is fixed between 12V to 30V. As another example, the threshold voltage is variable.


In embodiments, the pulse generator 12 is configured to emit therapy pulses. Examples of therapy pulses include, but are not limited to, cardiac pacing pulses for heart failure and bradycardia; anti-tachy pacing and shock therapy for tachycardia; and pacing pulses for neurostimulation and pain mitigation. According to some embodiments, the pulse generator 12 is configured to provide a pacing pulse with a voltage amplitude higher than the threshold voltage of the switch 44, such that the switch 44 establishes a conductive path by completing the circuit between the lead conductor and the electrode 42 for the duration of the pacing pulse. In embodiments, the switch 44 includes a normally open switch 43 and a controller 45 that monitors the voltage applied across the normally open switch 43. In embodiments, when the voltage applied across the normally open switch 43 is greater than the threshold voltage, the controller 45 causes the switch 43 to close, creating a conductive path between the lead 14 and the electrode 42.


In embodiments, the threshold voltage of the switch 44 is selected such that the voltage level of the pacing pulse is sufficient to activate the switch, but the voltage level of energy in the lead induced by an MRI field by itself is not high enough to activate the switch 44. In this manner, the desired pacing pulses are effectively delivered to the electrode 42 and into the surrounding tissue while the undesirable MRI induced current and generated electromagnetic radiation are prevented from flowing through the switch 44 to the electrode 42.



FIG. 3 graphically illustrates the state of the switch 44 as “on” when the voltage applied across the switch 44 is higher than the threshold voltage, and as “off” when the voltage applied across the switch 44 is lower than or equal to the threshold voltage. In some embodiments, and as further illustrated in FIG. 4, the threshold voltage may be a negative or a positive voltage. For example, as illustrated in FIG. 4, the switch 44 is “on” when the voltage applied across the switch is higher than Vth1 or lower than −Vth2, and “off” when the voltage applied across the switch 44 is between −Vth2 and Vth1. In embodiments, Vth1 is equal to Vth2. In other embodiments, Vth1 is greater than or equal to Vth2.



FIG. 5 illustrates the open or closed state of the switch 44 versus time, showing that the switch 44 is “closed” during the interval of the pacing pulse, and is “open” otherwise. At time t1, the switch 44 is off (e.g., open) since the measured voltage across the switch 44 is zero. At time t2, a first pacing pulse P1 is applied across the switch 44. Accordingly, the switch 44 is closed at time t2. At time t3, the switch 44 is open since the measured voltage across the switch 44 is zero. At time t4, a second pacing pulse P2 with a negative voltage value is applied across the switch 44. Since the absolute value of the pacing pulse is greater than the absolute value of Vth2, the switch 44 is on. At time t5, the switch 44 is off since the measured voltage across the switch 44 is zero.


In embodiments, the duration of pacing pulses and signals emitted from the pulse generator 12 are longer than a threshold duration, which means that the frequency of the pacing pulses is not higher than a threshold frequency (e.g., frequency=1/duration). In embodiments, the threshold duration is 60 nanoseconds and the threshold frequency is 8.5 MHz. In embodiments, any switch, controller, or device that receives pacing pulses or signals from the pulse generator 12 is responsive to pacing pulses or signals below a particular frequency. As an example, the switch 44 (FIG. 2) closes upon receiving one or more pacing pulses from the pulse generator 12 that are above the threshold voltage and have a duration longer than the threshold duration.


According to some embodiments, the switch 44 is an electrical switch such as, for example, a diode for alternating current (“DIAC”) switch, which changes its resistance based upon the magnitude of the applied voltage. According to other embodiments, the switch 44 is a mechanical switch, with additional circuitry to monitor the voltage applied across the switch 44 and to accomplish closure of the switch 44 when the voltage applied across the switch exceeds a predetermined voltage level. In some embodiment, the switch 44 may be a DIAC, TRISIL™, or similar device. The switch 44 may include other types of circuit components, including, but not limited to transistors, diodes, field-effect transistors (“FET”), and/or electro-mechanical relays. According to some embodiments the switch 44 may be unipolar or bipolar, depending on the application.



FIG. 6 illustrates a pulse generator 12 and a lead 14 with a DIAC, TRISIL™, or similar device 46 between the lead conductor and the electrode 42. In some embodiments, the device 46 is constructed with discreet components, and exhibits a large resistance (approaching that of an open circuit) until a voltage which is higher than a threshold voltage of the device 46 is applied across the device 46, which then causes the resistance of the device 46 to drop significantly (approaching that of a short circuit to establish a conductive path). In embodiments, a high impedance resistor 47 is connected in parallel with the switch 46. As an example, the impedance of the resistor 47 is high enough to prevent electromagnetic energy picked up by the lead 14 from transferring to the surrounding tissue via the electrode 42. However, the impedance of the resistor 47 is low enough to provide a conductive path between the pulse generator 12 and a common ground to permit sensing of applications and re-charging of capacitors located in the pulse generator 12, which might otherwise be inhibited by including the normally-open switch at the electrode 42.



FIG. 7 illustrates a characteristic voltage-current curve for the device 46 of FIG. 6 according to some embodiments. As illustrated in FIG. 7, the magnitude of the voltage across the device 46 increases at a low current until the threshold voltage (shown as “VBO”) is exceeded. When the threshold voltage is exceeded, the device 46 switches to a conductive state, at which point the resistance breaks down and current flows easily across the device 46 as indicated at 47A in FIG. 7. The device 46 switches back to a non-conductive state when the current flowing through the device 46 falls below a specified level, at which point the high resistance of the device is re-established as indicated at 47B in FIG. 7.



FIG. 8 illustrates a pulse generator 12 and a lead 14 with a switching device 48 between the lead conductor and the electrode 42. An expanded view of the switching device 48 is provided below the arrow. In embodiments, the switching device 48 includes an optional control line 50 for varying the threshold voltage of the switching device 48. According to some embodiments, a controller 52 integrated within the switching device 48 receives a control signal from the pulse generator 12 via the control line 50, and changes the threshold voltage across the switching device 48 based on the control signal. In certain embodiments, the controller 52 selects between two or more circuits having characteristic voltage-current curves similar to that of FIG. 7 but with different threshold voltages. In other embodiments, the pulse generator 12 directly commands the controller 52 via control line 50 to turn the device on or off.


During an MRI scan, the switching device 48 can be used alone to isolate the electrode 42 from the rest of the conductor within the lead 14. Therapy applied voltages which exceed the breakdown voltage of the switching device 48 create a low impedance path for the duration of the pulse. After the pulse is removed, the switching device 48 resumes a high impedance state and opens the electrical connection between the lead conductor and the electrode 42. As depicted in FIG. 8, a separate control line 50 can be used to control the gate of the switching device 48 or change its threshold voltage. According to some embodiments, using a DIAC, TRISIL™, or similar device can be ideal for use in a defibrillator or other device that applies high voltages to an electrode. Typical DIACs with a threshold voltage of 20 to 30 volts may be sufficient for use in a defibrillator, for example. In some embodiments, a special version of a DIAC constructed with discrete components such as silicon-controlled rectifiers (“SCR”)/triodes for alternating current (“TRIAC”) and controlling (gate firing) circuits may be used for therapy voltages lower than 20 to 30 volts.


The controller 52 may be directly controlled through the main lead 14 or through a separate line 50. In embodiments, the controller 52 is any desired microcontroller. The controller 52 may also be programmed dynamically via any external device such as a remote terminal, according to embodiments. As an example, a remote terminal communicates with the pulse generator 12 via any suitable wireless interface. Accordingly, in this example, commands from the remote device are forwarded from the pulse generator 12 to the controller 52 via the control line 50.



FIG. 9 illustrates an example process for monitoring a voltage across at a switch and adjusting a voltage threshold using the switching device 48 of FIG. 8. The process may generally begin at block 60 where the switch controller 52 monitors a voltage (V) across the switching device 48. In embodiments, the voltage (V) is provided by the pulse generator 12. After measuring the voltage (V), the switch controller 52 determines if the measured voltage (V) is greater than the voltage threshold (Vth) 62. If V>Vth, the switch controller 52 determines if the switching device 48 is closed at block 64. If the switch controller 52 determines that the switching device 48 is not closed, the switch controller 52 closes the switching device (block 68). If the switch controller 52 determines that the switching device 48 is closed at block 64, the switch controller 52 proceeds to determine if a command to adjust Vth has been received at block at block 72. If V≦Vth (block 62), the switch controller 52 determines if the switch 48 is open at block 66. If the switching device 48 is not open, the switch controller 52 opens the switching device 48 (block 70). If switching device 48 is open, the switch controller proceeds to determine if a command to adjust Vth has been received at block 72.


If the switch controller 52 determines that a command to adjust Vth has not been received (block 72), the switch controller 52 returns to monitoring the voltage (V) across the switching device 48 (block 60). If the switch controller 52 determines that a command to adjust Vth has been received, the switch controller 52 adjusts Vth 72 based on the command. In some embodiments, the switch controller 52 receives the command from the pulse generator 12 via the control line 50.


In embodiments, the command is a voltage “high” or a voltage “low.” Upon receiving the voltage “high” (e.g., 1) or voltage “low” (e.g., 0) from the pulse generator 12, the switch controller 52 switches between a first voltage threshold and a second voltage threshold. In embodiments, when the switching device 48 includes more than two voltage thresholds, the switch controller 52 receives a series of commands from the pulse generator 12. For example, a switching device 48 with four voltage thresholds (e.g., Vth1, Vth2, Vth3, and Vth4) receives two signals from the pulse generator 12 via the control line 50 before switching voltage thresholds. As an example, the four threshold voltages may be distinguished by the following control signals: Vth1=00, Vth2=01, Vth3=10, Vth4=11. Accordingly, when the switch controller 52 receives two voltage “low” signals in series (e.g., 00), the switch controller 52 switches to Vth1. Similarly, when the switch controller 52 receives a voltage “high” and a voltage “low” in series (e.g., 01), the switch controller 52 switches to Vth2. In embodiments, the switching device 48 is not limited to any particular number of voltage thresholds, and the switch controller 52 is configured to handle any signaling pattern transmitted from the pulse generator 12.



FIG. 10 illustrates a cross-sectional view of a lead 80, according to embodiments of the present invention. As shown in FIG. 10, lead 80 includes an outer conductor 82, an insulating layer of material 84 with a breakdown voltage of a certain threshold, and an inner conductor 86. According to some embodiments, a pulse generator 12 is in electrical communication with the outer conductor 82, and the electrode 42 is in electrical communication with the inner conductor 86. In embodiments, the insulating layer of material 84 is a varistor (e.g., variable resistor). Example varistors are disclosed in U.S. patent application Ser. No. 11/498,916 entitled “Transient Voltage Protection Circuit Boards and Manufacturing Methods,” the entire contents of which are incorporated herein by reference. In other embodiments, the insulating layer of material 84 is any other desired material having a breakdown voltage of a certain threshold.


Electromagnetic radiation generated by or current induced by an MRI system is received by the outer conductor 82, but is not transmitted through the insulating layer 84, which acts as a highly resistive barrier until the threshold voltage is exceeded. The pulse generator 12 may then generate a pulse with a voltage value exceeding the threshold voltage of the insulating layer 84, at which point the breakdown voltage of the insulating layer 84 is exceeded and the pacing pulse proceeds through the insulating layer 84, into the inner conductor 86, and to the electrode 42 and surrounding tissue. The lead 80 cross section as depicted in FIG. 10 may be formed along the length of a lead, or may optionally be formed only along the distal section of the lead so as to minimize induced currents on the inner conductor 86 at or near the electrode 42 during an MRI scan. In one alternative embodiment, the pulse generator 12 is in electrical communication with the inner conductor 86, and the electrode 42 is in electrical communication with the outer conductor 82.



FIG. 11 illustrates the lead 80 connected with the pulse generator 12. The electrode 42 is on the distal end of the lead 80. FIG. 11 further illustrates a longitudinal cross-sectional view of a portion of the lead 80 according to some embodiments of the present invention. In some embodiments, the lead 80 includes an outer insulating layer 88 encapsulating the outer conductor 82. As illustrated in FIG. 11, the insulating material 84 is positioned between the outer conductor 82 and the inner conductor 86. In embodiments, the pulse generator 12 connects to the outer conductor 82 on a proximal portion of the lead 80, and the electrode 42 connects to the inner conductor 86 on a distal portion of the lead 80. In other embodiments, the pulse generator 12 connects to the inner conductor 86 on the distal portion of the lead 80, and the electrode 42 connects to the outer conductor 82 on the proximal portion of the lead 80.


Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the present disclosure, together with all equivalents thereof.

Claims
  • 1. A medical device comprising: a pulse generator configured to deliver one or more therapy pulses;an electrode configured to contact tissue in a body vessel;a lead comprising proximal and distal ends, the lead selectively connecting the pulse generator with the electrode via a conductive path;an inner conductor and an outer conductor, each of the inner conductor and the outer conductor extending within the lead and the outer conductor extending coaxially around the inner conductor, the inner conductor in electrical communication with the pulse generator, the outer conductor in electrical communication with the electrode;at least one portion of the lead located proximal of the electrode and between the proximal and distal ends, the at least one portion including an insulating material between the outer conductor and the inner conductor, the insulating material configured to: exhibit a non-conductive state in which the insulating material is configured to block current induced in the outer conductor by an MRI system from being transmitted to the inner conductor to minimize current on the inner conductor during an MRI scan, andexhibit a conductive state in which the insulating material is configured to permit the one or more therapy pulses from the pulse generator to be transmitted between the inner conductor and the outer conductor through the insulating material, wherein the insulating material has a breakdown voltage threshold between a first voltage associated with the current induced by the MRI system and a second voltage associated with the stimulation energy;an outer insulating layer extending over and encapsulating the outer conductor; andwherein each of the insulating material, the outer conductor, and the outer insulating layer are concentrically disposed around the inner conductor at a cross section of the at least one portion of the lead that is orthogonal to a longitudinal axis of the lead.
  • 2. The medical device of claim 1, wherein the at least one portion of the lead extends along the length of the lead between the proximal and distal ends, and wherein each of the insulating material, the outer conductor, and the outer insulating layer are concentrically disposed around the inner conductor along the length of the lead.
  • 3. A medical device lead comprising: a first conductor;an electrode distal of the first conductor and electrically coupled to the first conductor;a second conductor that is coaxial with the first conductor along at least a portion of the lead;an insulating layer radially between the first conductor and the second conductor along at least the portion of the lead, the insulating layer proximal of the electrode, the insulating layer having a breakdown voltage threshold between a first voltage associated with a current induced in the second conductor by an MRI system and a second voltage associated with therapeutic stimulation energy such that the insulating layer permits conduction of the therapeutic stimulation energy from the first conductor to the second conductor across the insulating layer and to the electrode but the insulating layer blocks the current induced by the MRI system from being transmitted from the first conductor to the second conductor to minimize current on the second conductor during an MRI scan; andan outer insulating layer extending around the first conductor and the second conductor and defining an exterior of the lead,wherein each of the insulating layer, the first conductor, the second conductor, and the outer insulating layer overlap each other along at least the portion of the lead.
  • 4. The medical device lead of claim 3, further comprising a pulse generator configured to electrically connect to the second conductor and output the stimulation energy to the second conductor.
  • 5. The medical device lead of claim 3, wherein the insulating layer comprises a variable resistor.
  • 6. The medical device lead of claim 3, wherein the second conductor surrounds the first conductor along at least the portion of the lead.
  • 7. The medical device lead of claim 3, wherein the insulating layer extends only along the portion of the lead.
  • 8. The medical device lead of claim 3, wherein the first conductor surrounds the second conductor along at least the portion of the lead.
  • 9. A medical device comprising: a pulse generator configured to deliver therapeutic stimulation energy; anda lead comprising: a first conductor configured to electrically couple to the pulse generator;a second conductor coaxial with the first conductor along a portion of the lead;an electrode that is distal of the portion of the lead, the electrode electrically coupled with the second conductor;an insulating layer between the first conductor and the second conductor, the insulating layer proximal of the electrode and having a breakdown voltage threshold that is between a first voltage associated with a current induced by an MRI system on the first conductor and a second voltage associated with the therapeutic stimulation energy delivered by the pulse generator, the insulating layer configured to permit conduction of the therapeutic stimulation energy from the first conductor to the second conductor through the insulating layer but block conduction of the current induced by the MRI system from being transmitted from the first conductor to the second conductor through the insulating layer to minimize current on the second conductor during an MRI scan; andan outer insulating layer extending around the first conductor and the second conductor and defining an exterior of the lead,wherein each of the insulating layer, the first conductor, the second conductor, and the outer insulating layer overlap each other along at least the portion of the lead.
  • 10. The medical device of claim 9, wherein the insulating layer comprises a variable resistor.
  • 11. The medical device of claim 9, wherein the first conductor surrounds the second conductor along at least the portion of the lead.
  • 12. The medical device of claim 9, wherein the insulating layer extends only along the portion of the lead.
  • 13. The medical device of claim 9, wherein the second conductor surrounds the first conductor along at least the portion the lead.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a division of U.S. patent application Ser. No. 12/329,399, filed Dec. 5, 2008, now U.S. Pat. No. 8,083,321, and entitled SELECTIVELY CONNECTING THE TIP ELECTRODE DURING THERAPY FOR MRI SHIELDING, and claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application No. 60/992,990 filed on Dec. 6, 2007, the entire contents of which are incorporated herein by reference.

US Referenced Citations (342)
Number Name Date Kind
3888260 Fischell Jun 1975 A
3898995 Dresbach Aug 1975 A
4091818 Brownlee et al. May 1978 A
4379459 Stein Apr 1983 A
4404125 Abolins et al. Sep 1983 A
4516579 Irnich May 1985 A
4611127 Ibrahim et al. Sep 1986 A
4694837 Blakeley et al. Sep 1987 A
4729376 DeCote, Jr. Mar 1988 A
4751110 Gulla et al. Jun 1988 A
4779617 Whigham Oct 1988 A
4823075 Alley Apr 1989 A
4841259 Mayer Jun 1989 A
4869970 Gulla et al. Sep 1989 A
4934366 Truex et al. Jun 1990 A
5038785 Blakeley et al. Aug 1991 A
5075039 Goldberg Dec 1991 A
5076841 Chen et al. Dec 1991 A
5120578 Chen et al. Jun 1992 A
5181511 Nickolls et al. Jan 1993 A
5187136 Klobucar et al. Feb 1993 A
5188117 Steinhaus et al. Feb 1993 A
5197468 Proctor et al. Mar 1993 A
5217010 Tsitlik et al. Jun 1993 A
5243911 Dow et al. Sep 1993 A
5279225 Dow et al. Jan 1994 A
5288313 Portner Feb 1994 A
5292342 Nelson et al. Mar 1994 A
5309096 Hoegnelid May 1994 A
5325728 Zimmerman et al. Jul 1994 A
5345362 Winkler Sep 1994 A
5391188 Nelson et al. Feb 1995 A
5406444 Selfried et al. Apr 1995 A
5424642 Ekwall Jun 1995 A
5438900 Sundstrom Aug 1995 A
5454837 Lindegren et al. Oct 1995 A
5470345 Hassler et al. Nov 1995 A
5523578 Herskovic Jun 1996 A
5527348 Winkler et al. Jun 1996 A
5529578 Struble Jun 1996 A
5545187 Bergstrom et al. Aug 1996 A
5562714 Grevious Oct 1996 A
5607458 Causey, III et al. Mar 1997 A
5609622 Soukup et al. Mar 1997 A
5618208 Crouse et al. Apr 1997 A
5620476 Truex et al. Apr 1997 A
5647379 Meltzer Jul 1997 A
5649965 Pons et al. Jul 1997 A
5650759 Hittman et al. Jul 1997 A
5662694 Lidman et al. Sep 1997 A
5662697 Li et al. Sep 1997 A
5683434 Archer Nov 1997 A
5687735 Forbes et al. Nov 1997 A
5694952 Lidman et al. Dec 1997 A
5697958 Paul et al. Dec 1997 A
5709225 Budgifvars et al. Jan 1998 A
5714536 Ziolo et al. Feb 1998 A
5722998 Prutchi et al. Mar 1998 A
5727552 Ryan Mar 1998 A
5735884 Thompson et al. Apr 1998 A
5749910 Brumwell et al. May 1998 A
5751539 Stevenson et al. May 1998 A
5759197 Sawchuk et al. Jun 1998 A
5764052 Renger Jun 1998 A
5766227 Nappholz et al. Jun 1998 A
5776168 Gunderson Jul 1998 A
5782241 Felblinger et al. Jul 1998 A
5782891 Hassler et al. Jul 1998 A
5792201 Causey, III et al. Aug 1998 A
5800496 Swoyer et al. Sep 1998 A
5800497 Bakels et al. Sep 1998 A
5814090 Latterell et al. Sep 1998 A
5817130 Cox et al. Oct 1998 A
5827997 Chung et al. Oct 1998 A
5853375 Orr Dec 1998 A
5867361 Wolf et al. Feb 1999 A
5869078 Baudino Feb 1999 A
5870272 Seifried et al. Feb 1999 A
5871509 Noren Feb 1999 A
5877630 Kraz Mar 1999 A
5895980 Thompson Apr 1999 A
5905627 Brendel et al. May 1999 A
5959829 Stevenson et al. Sep 1999 A
5964705 Truwit et al. Oct 1999 A
5968854 Akopian et al. Oct 1999 A
5973906 Stevenson et al. Oct 1999 A
5978204 Stevenson Nov 1999 A
5978710 Prutchi et al. Nov 1999 A
5999398 Makl et al. Dec 1999 A
6008980 Stevenson et al. Dec 1999 A
6031710 Wolf et al. Feb 2000 A
6032063 Hoar et al. Feb 2000 A
6055455 O'Phelan et al. Apr 2000 A
6079681 Stern et al. Jun 2000 A
6101417 Vogel et al. Aug 2000 A
6147301 Bhatia Nov 2000 A
6161046 Maniglia et al. Dec 2000 A
6162180 Miesel et al. Dec 2000 A
6173203 Barkley et al. Jan 2001 B1
6188926 Vock Feb 2001 B1
6192279 Barreras, Sr. et al. Feb 2001 B1
6198968 Prutchi et al. Mar 2001 B1
6198972 Hartlaub et al. Mar 2001 B1
6209764 Hartlaub et al. Apr 2001 B1
6217800 Hayward Apr 2001 B1
6235038 Hunter et al. May 2001 B1
6245464 Spillman et al. Jun 2001 B1
6246902 Naylor et al. Jun 2001 B1
6249701 Rajasekhar et al. Jun 2001 B1
6268725 Vernon et al. Jul 2001 B1
6270831 Kumar et al. Aug 2001 B2
6275369 Stevenson et al. Aug 2001 B1
6288344 Youker et al. Sep 2001 B1
6324431 Zarinetchi et al. Nov 2001 B1
6358281 Berrang et al. Mar 2002 B1
6365076 Bhatia Apr 2002 B1
6381494 Gilkerson et al. Apr 2002 B1
6421555 Nappholz Jul 2002 B1
6424234 Stevenson Jul 2002 B1
6446512 Zimmerman et al. Sep 2002 B2
6452564 Schoen et al. Sep 2002 B1
6456481 Stevenson Sep 2002 B1
6459935 Piersma Oct 2002 B1
6470212 Weijand et al. Oct 2002 B1
6487452 Legay Nov 2002 B2
6490148 Allen et al. Dec 2002 B1
6496714 Weiss et al. Dec 2002 B1
6503964 Smith et al. Jan 2003 B2
6506972 Wang Jan 2003 B1
6510345 Van Bentem Jan 2003 B1
6512666 Duva Jan 2003 B1
6522920 Silvian et al. Feb 2003 B2
6526321 Spehr Feb 2003 B1
6539253 Thompson et al. Mar 2003 B2
6545854 Trinh et al. Apr 2003 B2
6555745 Kruse et al. Apr 2003 B1
6563132 Talroze et al. May 2003 B1
6566978 Stevenson et al. May 2003 B2
6567259 Stevenson et al. May 2003 B2
6580947 Thompson Jun 2003 B1
6584351 Ekwall Jun 2003 B1
6595756 Gray et al. Jul 2003 B2
6607485 Bardy Aug 2003 B2
6626937 Cox Sep 2003 B1
6629938 Engvall et al. Oct 2003 B1
6631290 Guck et al. Oct 2003 B1
6631555 Youker et al. Oct 2003 B1
6640137 MacDonald Oct 2003 B2
6643903 Stevenson et al. Nov 2003 B2
6646198 Maciver et al. Nov 2003 B2
6648914 Berrang et al. Nov 2003 B2
6662049 Miller Dec 2003 B1
6673999 Wang et al. Jan 2004 B1
6711440 Deal et al. Mar 2004 B2
6713671 Wang et al. Mar 2004 B1
6718203 Weiner et al. Apr 2004 B2
6718207 Connelly Apr 2004 B2
6725092 MacDonald et al. Apr 2004 B2
6731979 MacDonald May 2004 B2
6795730 Connelly et al. Sep 2004 B2
6901292 Hrdlicka et al. May 2005 B2
6925328 Foster et al. Aug 2005 B2
6937906 Terry et al. Aug 2005 B2
6944489 Zeijlemaker et al. Sep 2005 B2
6963779 Shankar Nov 2005 B1
7013180 Dublin et al. Mar 2006 B2
7020517 Weiner Mar 2006 B2
7050855 Zeijlemaker et al. May 2006 B2
7076283 Cho et al. Jul 2006 B2
7082328 Funke Jul 2006 B2
7092756 Zhang et al. Aug 2006 B2
7123013 Gray Oct 2006 B2
7138582 Lessar et al. Nov 2006 B2
7164950 Kroll et al. Jan 2007 B2
7174219 Wahlstrand et al. Feb 2007 B2
7174220 Chitre et al. Feb 2007 B1
7212863 Strandberg May 2007 B2
7231251 Yonce et al. Jun 2007 B2
7242981 Ginggen Jul 2007 B2
7272444 Peterson et al. Sep 2007 B2
7369898 Kroll et al. May 2008 B1
7388378 Gray et al. Jun 2008 B2
7509167 Stessman Mar 2009 B2
7561915 Cooke et al. Jul 2009 B1
7801625 MacDonald Sep 2010 B2
7835803 Malinowski et al. Nov 2010 B1
7839146 Gray Nov 2010 B2
8014867 Cooke et al. Sep 2011 B2
8032228 Ameri et al. Oct 2011 B2
8086321 Ameri Dec 2011 B2
8121705 MacDonald Feb 2012 B2
8160717 Ameri Apr 2012 B2
8311637 Ameri Nov 2012 B2
8639331 Stubbs et al. Jan 2014 B2
20010002000 Kumar et al. May 2001 A1
20010006263 Hayward Jul 2001 A1
20010011175 Hunter et al. Aug 2001 A1
20010018123 Furumori et al. Aug 2001 A1
20010025139 Pearlman Sep 2001 A1
20010037134 Munshi Nov 2001 A1
20010050837 Stevenson et al. Dec 2001 A1
20020019658 Munshi Feb 2002 A1
20020026224 Thompson et al. Feb 2002 A1
20020038135 Connelly et al. Mar 2002 A1
20020050401 Youker et al. May 2002 A1
20020072769 Silvian et al. Jun 2002 A1
20020082648 Kramer et al. Jun 2002 A1
20020102835 Stucchi et al. Aug 2002 A1
20020116028 Greatbatch et al. Aug 2002 A1
20020116029 Miller et al. Aug 2002 A1
20020116033 Greatbatch et al. Aug 2002 A1
20020116034 Miller et al. Aug 2002 A1
20020117314 Maciver et al. Aug 2002 A1
20020128689 Connelly et al. Sep 2002 A1
20020128691 Connelly Sep 2002 A1
20020133086 Connelly et al. Sep 2002 A1
20020133199 MacDonald et al. Sep 2002 A1
20020133200 Weiner et al. Sep 2002 A1
20020133201 Connelly et al. Sep 2002 A1
20020133202 Connelly et al. Sep 2002 A1
20020133208 Connelly Sep 2002 A1
20020133211 Weiner et al. Sep 2002 A1
20020133216 Connelly et al. Sep 2002 A1
20020138102 Weiner et al. Sep 2002 A1
20020138107 Weiner et al. Sep 2002 A1
20020138108 Weiner et al. Sep 2002 A1
20020138110 Connelly et al. Sep 2002 A1
20020138112 Connelly et al. Sep 2002 A1
20020138113 Connelly et al. Sep 2002 A1
20020138124 Helfer et al. Sep 2002 A1
20020143258 Weiner et al. Oct 2002 A1
20020147388 Mass et al. Oct 2002 A1
20020147470 Weiner et al. Oct 2002 A1
20020162605 Horton et al. Nov 2002 A1
20020166618 Wolf et al. Nov 2002 A1
20020175782 Trinh et al. Nov 2002 A1
20020183796 Connelly Dec 2002 A1
20020198569 Foster et al. Dec 2002 A1
20030036774 Maier et al. Feb 2003 A1
20030036776 Foster et al. Feb 2003 A1
20030045907 MacDonald Mar 2003 A1
20030053284 Stevenson et al. Mar 2003 A1
20030055457 MacDonald Mar 2003 A1
20030056820 MacDonald Mar 2003 A1
20030074029 Deno et al. Apr 2003 A1
20030081370 Haskell et al. May 2003 A1
20030083570 Cho et al. May 2003 A1
20030083723 Wilkinson et al. May 2003 A1
20030083726 Zeijlemaker et al. May 2003 A1
20030083728 Greatbatch et al. May 2003 A1
20030100925 Pape et al. May 2003 A1
20030109901 Greatbatch Jun 2003 A1
20030111142 Horton et al. Jun 2003 A1
20030114897 Von Arx et al. Jun 2003 A1
20030114898 Von Arx et al. Jun 2003 A1
20030120197 Kaneko et al. Jun 2003 A1
20030130647 Gray et al. Jul 2003 A1
20030130700 Miller et al. Jul 2003 A1
20030130701 Miller Jul 2003 A1
20030130708 Von Arx et al. Jul 2003 A1
20030135114 Pacetti et al. Jul 2003 A1
20030135160 Gray et al. Jul 2003 A1
20030139096 Stevenson et al. Jul 2003 A1
20030140931 Zeijlemaker et al. Jul 2003 A1
20030144704 Terry et al. Jul 2003 A1
20030144705 Funke Jul 2003 A1
20030144706 Funke Jul 2003 A1
20030144716 Reinke et al. Jul 2003 A1
20030144717 Hagele Jul 2003 A1
20030144718 Zeijlemaker Jul 2003 A1
20030144719 Zeijlemaker Jul 2003 A1
20030144720 Villaseca et al. Jul 2003 A1
20030144721 Villaseca et al. Jul 2003 A1
20030149459 Von Arx et al. Aug 2003 A1
20030158584 Cates et al. Aug 2003 A1
20030176900 MacDonald Sep 2003 A1
20030179536 Stevenson et al. Sep 2003 A1
20030191505 Gryzwa et al. Oct 2003 A1
20030195570 Deal et al. Oct 2003 A1
20030199755 Halperin et al. Oct 2003 A1
20030204207 MacDonald et al. Oct 2003 A1
20030204215 Gunderson et al. Oct 2003 A1
20030204217 Greatbatch Oct 2003 A1
20030213604 Stevenson et al. Nov 2003 A1
20030213605 Brendel et al. Nov 2003 A1
20040005483 Lin Jan 2004 A1
20040015162 McGaffigan Jan 2004 A1
20040015197 Gunderson Jan 2004 A1
20040019273 Helfer et al. Jan 2004 A1
20040049237 Larson et al. Mar 2004 A1
20040088012 Kroll et al. May 2004 A1
20040093432 Luo et al. May 2004 A1
20040263174 Gray et al. Dec 2004 A1
20050043761 Connelly et al. Feb 2005 A1
20050070787 Zeijlemaker Mar 2005 A1
20050070975 Zeijlemaker et al. Mar 2005 A1
20050113676 Weiner et al. May 2005 A1
20050113873 Weiner et al. May 2005 A1
20050113876 Weiner et al. May 2005 A1
20050197677 Stevenson Sep 2005 A1
20050222656 Wahlstrand et al. Oct 2005 A1
20050222657 Wahlstrand et al. Oct 2005 A1
20050222658 Hoegh et al. Oct 2005 A1
20050222659 Olsen et al. Oct 2005 A1
20060025820 Phillips et al. Feb 2006 A1
20060030774 Gray et al. Feb 2006 A1
20060041294 Gray Feb 2006 A1
20060167496 Nelson et al. Jul 2006 A1
20060173295 Zeijlemaker Aug 2006 A1
20060247747 Olsen et al. Nov 2006 A1
20060247748 Wahlstrand et al. Nov 2006 A1
20060271138 MacDonald Nov 2006 A1
20060293591 Wahlstrand et al. Dec 2006 A1
20070019354 Kamath Jan 2007 A1
20070021814 Inman et al. Jan 2007 A1
20070179577 Marshall et al. Aug 2007 A1
20070179582 Marshall et al. Aug 2007 A1
20070191914 Stessman Aug 2007 A1
20070203523 Betzold Aug 2007 A1
20070238975 Zeijlemaker Oct 2007 A1
20070255332 Cabelka et al. Nov 2007 A1
20080033497 Bulkes et al. Feb 2008 A1
20080132985 Wedan et al. Jun 2008 A1
20080154342 Digby et al. Jun 2008 A1
20080221638 Wedan et al. Sep 2008 A1
20080234772 Shuros et al. Sep 2008 A1
20090138058 Cooke et al. May 2009 A1
20090149906 Ameri et al. Jun 2009 A1
20090149909 Ameri Jun 2009 A1
20090157146 Linder et al. Jun 2009 A1
20090204182 Ameri Aug 2009 A1
20090210025 Ameri Aug 2009 A1
20100087892 Stubbs et al. Apr 2010 A1
20100211123 Stubbs et al. Aug 2010 A1
20110137359 Stubbs et al. Jun 2011 A1
20110270338 Cooke et al. Nov 2011 A1
20110276104 Ameri et al. Nov 2011 A1
20120253425 Yoon et al. Oct 2012 A1
20140018870 Cooke et al. Jan 2014 A1
20140046390 Stubb et al. Feb 2014 A1
20140046392 Stubbs et al. Feb 2014 A1
20140135861 Stubbs et al. May 2014 A1
Foreign Referenced Citations (54)
Number Date Country
0530006 Mar 1993 EP
0591334 Apr 1994 EP
0331959 Dec 1994 EP
0891786 Jan 1999 EP
0891207 Nov 1999 EP
0980105 Feb 2000 EP
0989623 Mar 2000 EP
0989624 Mar 2000 EP
1007132 Jun 2000 EP
1109180 Jun 2001 EP
1128764 Sep 2001 EP
0705621 Jan 2002 EP
1191556 Mar 2002 EP
1271579 Jan 2003 EP
0719570 Apr 2003 EP
1308971 May 2003 EP
1007140 Oct 2003 EP
1372782 Jan 2004 EP
0870517 Jun 2004 EP
1061849 Nov 2005 EP
1060762 Aug 2006 EP
0836413 Aug 2008 EP
WO9104069 Apr 1991 WO
WO9638200 Dec 1996 WO
WO9712645 Apr 1997 WO
WO0054953 Sep 2000 WO
WO0137286 May 2001 WO
WO0180940 Nov 2001 WO
WO0186774 Nov 2001 WO
WO02056761 Jul 2002 WO
WO02065895 Aug 2002 WO
WO02072004 Sep 2002 WO
WO02089665 Nov 2002 WO
WO02092161 Nov 2002 WO
WO03013199 Feb 2003 WO
WO03037399 May 2003 WO
WO03059445 Jul 2003 WO
WO03061755 Jul 2003 WO
WO03063258 Jul 2003 WO
WO03063952 Aug 2003 WO
WO03063954 Aug 2003 WO
WO03063955 Aug 2003 WO
WO03063956 Aug 2003 WO
WO03063958 Aug 2003 WO
WO03063962 Aug 2003 WO
WO03070098 Aug 2003 WO
WO03073449 Sep 2003 WO
WO03073450 Sep 2003 WO
WO03086538 Oct 2003 WO
WO03090846 Nov 2003 WO
WO03090854 Nov 2003 WO
WO03095022 Nov 2003 WO
WO03063946 Apr 2005 WO
WO2006124481 Nov 2006 WO
Non-Patent Literature Citations (14)
Entry
Dempsey Mary F. et al., “Investigation of the Factors Responsible for Burns During MRI”, Journal of Magnetic Resonance Imaging 2001;13:627-631.
File History for U.S. Appl. No. 11/015,807, filed Dec. 17, 2004.
International Search Report and Written Opinion issued in PCT/US2009/059093, mailed Dec. 29, 2009.
International Search Report and Written Opinion issued in PCT/US2009/068314, mailed Mar. 25, 2009, 14 pages.
Kerr, Martha, “Shock Rate Cut 70% With ICDs Programmed to First Deliver Antitachycardia Pacing: Results of the PainFREE Rx II Trial,” Medscape CRM News, May 21, 2003.
Luechinger, Roger et al., “In vivo heating of pacemaker leads during magnetic resonance imaging”, European Heart Journal 2005;26:376-383.
Schueler, et al., “MRI Compatibility and Visibility Assessment of Implantable Medical Devices”, Journal of Magnetic Resonance Imaging, 9:596-603 (1999).
Shellock FG, “Reference manual for magnetic resonance safety, implants, and devices”, pp. 136-139, 2008 ed. Los Angeles; Biomedical Research Publishing Group; 2008.
Shellock, Frank G. et al., “Cardiovascular catheters and accessories: ex vivo testing of ferromagnetism, heating, and artifacts associated with MRI”, Journal of Magnetic Resonance Imaging, Nov./Dec. 1998; 8:1338-1342.
Sweeney, Michael O. et al., Appropriate and Inappropriate Ventricular Therapies, Quality of Life, and Mortality Among Primary and Secondary Prevention Implantable Cardioverter Defibrillator Patients: Results From the Pacing Fast VT REduces Shock Therapies (PainFREE Rx II) Trial, American Heart Association, 2005.
Wilkoff, Bruce L. et al., “A Comparison of Empiric to Physician-Tailored Programming of Implantable Cardioverter-Defibrillators Results From the Prospective Randomized Multicenter Empiric Trial,” Journal of the American College of Cardiology vol. 48, No. 2, 2006. doi:10.1016/j.jacc.2006.03.037.
Hebrank FX, Gebhardt M. Safe model: a new method for predicting peripheral nerve stimulations in MRI (abstr) In: Proceedings of the Eighth Meeting of the International Society for Magnetic Resonance in Medicine. Berkeley, Calif: International Society for Magnetic Resonance in Medicine, 2000; 2007.
International Search Report and Written Opinion issued in PCT/US2010/053202, mailed Dec. 30, 2010, 12 pages.
Nyenhuis, John A. et al., “MRI and Implantable Medical Devices: Basic Interactions With an Emphasis on Heting”, IEEE Transactions on Device and Materials Reliability, vol. 5, No. Sep. 2005, pp. 467-480.
Related Publications (1)
Number Date Country
20120071941 A1 Mar 2012 US
Provisional Applications (1)
Number Date Country
60992990 Dec 2007 US
Divisions (1)
Number Date Country
Parent 12329399 Dec 2008 US
Child 13302715 US