Selectively Controlling fluid flow through a fluid pathway

Information

  • Patent Grant
  • 10293107
  • Patent Number
    10,293,107
  • Date Filed
    Thursday, June 21, 2012
    12 years ago
  • Date Issued
    Tuesday, May 21, 2019
    5 years ago
Abstract
Systems and methods for controlling fluid delivery via a manually administrable medication container to a patient through a fluid delivery pathway are provided. The systems and methods described herein incorporate rules-based clinical decision support logic to drive a flow control valve within a flow pathway to determine whether the IV fluid connected to the input port is consistent with medical orders, accepted delivery protocols, and/or specific patient and patient histories. Related apparatus, systems, methods and articles are also described.
Description
FIELD

The subject matter described herein relates to systems and methods for controlling fluid flow to a patient through a fluid pathway.


BACKGROUND

There are a number of patient clinical settings including in-hospital, outpatient, in-home care and emergency medical services (EMS) that require fluid administration to a patient. Standard clinical best practice is to label fluids intended to be delivered to patients to reduce the potential for errors. However, mistakes in compatibility of fluids with a particular patient, incorrect dose measurements, inappropriate sequence of medications, incorrect transfer of labeling information and other factors are a major obstacle to overcome in patient care.


SUMMARY

In one aspect, an apparatus includes a fluid inlet, a fluid outlet, a fluid flow stop, an identification sensor, and a flow state controller. The fluid inlet is configured to couple to an outlet of a manually administrable fluid source having fluid source information encoded thereon. The fluid outlet is configured to deliver fluid from the manually administrable fluid source to a fluid line leading to a patient. The fluid flow stop is disposed between the fluid inlet and the fluid outlet that prevents fluid flow in a first state and permits fluid flow in a second state. The identification sensor to detect the fluid source information when the manually administrable fluid source is being coupled or is coupled to the fluid inlet. The flow state controller selectively causes the fluid flow stop to transition between the first state and the second state based on the fluid source information detected by the identification sensor.


The flow state controller can use a plurality of rules to determine whether to transition the current state of the fluid flow stop to the other state. Some or all of the rules can be obtained from a remote data source polled by the flow state controller. A rules engine (i.e., software and/or hardware for applying the rules, etc.) can take into account the fluid source information, flow control input data, and one or more attributes of the patient and their history, clinical circumstances, environmental factors, clinical best practices and the like. The rules engine can be configurable and programmable according to one or more of user-inputted specifications (via for example, an interface on the apparatus or via a remote computing system/interface, etc.), patient specific data, and/or medication specific data.


A fluid composition sensor can be additionally incorporated to characterize a composition of the fluid when the manually administrable fluid source is coupled to the fluid inlet. In some cases, the fluid composition sensor can be used in place of the identification sensor while in other implementations it is used in combination with the identification sensor. In either arrangement, the flow state controller can further selectively cause the fluid flow stop to transition between the first state and the second state based on the fluid composition detected by the fluid composition sensor.


The flow state controller can transmit data characterizing the fluid source information detected by the identification sensor to a remote rules engine that sends a signal indicating whether to change a current state of the fluid flow stop. The fluid source information can be indicative of a characteristic of the fluid (e.g., medication, etc.) contained therein and can include one or more of an NDC code (National Drug Code), a segment of the NDC code identifying the drug product, a segment of the NDC code identifying the drug package, a unique identifier code, a human readable alphanumeric string, a machine readable code, a name of the medication, a manufacturer of the medication, a re-packager of the medication, a distributor of the medication, a strength of the medication, a dosage form of the medication, dose instructions for the medication, administration instructions for a specific patient, medication formulation, medication package form, medication package size, medication contained volume, medication package serial number, medication lot number, and medication expiration date, fluid type, and blood type. The fluid source information can include a code or identifier used to reference a secondary data set that is characteristic of the fluid contained therein (i.e., a reference to a lookup table, a database object, a URL, etc.). The apparatus can include memory that stores the secondary data set locally and/or a remote data store can be coupled to the flow state controller that stores the secondary data set. The remote data store can form part of a medical device or medical information system.


The transition between states can be automatically initiated and executed by the flow state controller without user intervention. The transition between states can be automatically initiated and executed by the flow state controller as a result of coupling the fluid source outlet to the fluid inlet.


An interface can be included to provide audio and/or visual feedback to a user characterizing one or more of the fluid source information, volume of fluid administration, rules engine information, and/or rules engine output. The interface can provide an indication to the user when the fluid flow stop is in the first state, an indication to the user of one or more rules used by a rules engine causing a fluid flow stop state transition, and/or an indication to the user without a fluid flow stop state transition. The interface can be adjacent to the fluid inlet and/or it can be remote from the fluid inlet (e.g., a display monitor wirelessly coupled to the flow state controller, etc).


The interface can display medication administration information associated with the fluid. Such medication administration information can be stored on local memory. A communications module can be included to transmit and/or receive the medication administration information to or from a remote data source. The interface can be adjacent to or remote from the fluid inlet.


A manual override element, which when activated by a user, can cause the flow state controller to cause the fluid flow stop to transition from the first state to the second state.


A communications module can be included to transmit and/or receive data to or from a remote data source characterizing one or more of the flow control input data, fluid source, the rules or a portion of the rules, and/or the patient.


In some implementations, there can be a plurality of fluid inlets that are each configured to couple to an outlet of one of a plurality of manually administrable fluid sources each having fluid source information thereon. In these arrangements, there can be a plurality of fluid flow stops that are each coupled to the flow state controller to selectively prevent fluid flow in at least one of the plurality of fluid inlets.


The fluid flow stop can be maintained in the first state until it is determined, by using the fluid source information, to transition the fluid flow stop to the second state. The fluid flow stop can be maintained in the second state until it is determined, by using the fluid source information, to transition the fluid flow stop to the first state. The flow state controller can receive data characterizing the patient that is used, in combination with the fluid flow source information, to determine whether to transition the current state of the fluid flow stop. The data characterizing the patient can include, for example, a medication order that is used to confirm whether the fluid in the fluid source matches one or more parameters specified by the at least one medication order. The data characterizing the patient can include a patient identifier that the flow state controller uses to poll at least one remote data store using the patient identifier to obtain reference information for the flow state controller to determine whether to transition the current state of the fluid flow stop.


A fluid flow sensor can be utilized that measures how much fluid has been delivered from the fluid source into the fluid inlet. The flow state controller can cause the fluid flow stop to transition from the second state to the first state when a pre-determined volume has been delivered as measured by the fluid flow sensor. An interface can provide audio and/or visual feedback indicating how much fluid has been delivered as measured by the fluid flow sensor. The flow state controller can cause the fluid flow stop to transition from the second state to the first state when a first pre-determined volume has been delivered as measured by the fluid flow sensor, and after a pre-determined span of time, can cause the fluid flow stop to transition from the first state to the second state. The rules can utilize flow control input data information such as fluid information, patient-specific information, medical order information, clinical guideline information, contraindications, environmental factor information including time, flow control valve status, and historical information.


The identification sensor can detect the fluid source information using one or more technologies selected from a group consisting of: optical, magnetic, mechanical, conductive, switchable, infrared, switchable RFID and proximity sensors. In some cases, the identification sensor includes an optical element which detects an identifier encoded on a tip/outlet of the manually injectable medication container.


A housing can envelope at least a portion of each of the fluid inlet, the fluid outlet, the fluid flow stop, the identification sensor, and the flow state controller. Such a housing can have a compact form/shape and size that allows a user to hold the housing in a first hand while activating the manually injectable medication container in a second hand. The housing can also include a self-contained power source within the housing powering the fluid flow stop, the identification sensor, and the flow state controller and the fluid line can be an intravenous (IV) fluid line. The compact housing can, for example, be suspected from the IV fluid line.


The housing can be subdivided into reusable sub-housing and a disposable sub-housing. The reusable sub-housing can be operatively coupled to the disposable sub-housing with the reusable sub-housing being intended for use by a plurality of patients and the disposable sub-housing being intended for use by a single patient. The disposable sub-housing can contain at least the fluid inlet, fluid outlet, flow channel, and fluid flow stop. The disposable sub-housing can be part of a kit including a sterile pouch enveloping the disposable sub-housing. The disposable sub-housing can include memory for storing data that can include flow stop configuration information, flow sensor calibration information and/or a serial number or a unique identification number.


In an interrelated aspect, fluid source information of a manually administrable fluid source is detected by an identification sensor of a fluid delivery device, Thereafter, it is determined, using the detected fluid source information, whether to transition the current state of the fluid flow stop to the other state. A flow state controller of the fluid delivery device then causes a fluid flow stop to transition to the other state (e.g., open or closed) if it is determined that the fluid flow stop should transition to the other state. Otherwise, the current state of the fluid flow stop is maintained if it is not determined that the fluid flow stop should transition to the other state.


Computer program products are also described that comprise non-transitory computer readable media storing instructions, which when executed by at least one data processor of one or more computing systems, causes the at least one data processor to perform operations herein. Similarly, computer systems are also described that may include one or more data processors and a memory coupled to the one or more data processors. The memory may temporarily or permanently store instructions that cause at least one processor to perform one or more of the operations described herein. In addition, methods can be implemented by one or more data processors either within a single computing system or distributed among two or more computing systems. For example, the rules engine can be software-based or a combination of software-hardware based.





DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, show certain aspects of the subject matter disclosed herein and, together with the description, help explain some of the principles associated with the disclosed embodiments. In the drawings:



FIG. 1 is a diagram illustrating a system for controlling flow in a fluid delivery pathway;



FIGS. 2A-2G are diagrams illustrating alternative configurations of a fluid delivery pathway having a flow control valve;



FIG. 3 is a diagram illustrating examples of flow control input data for the system of FIG. 1;



FIG. 4 is a flow chart illustrating an implementation of an operating mode of a system for controlling flow in a fluid delivery pathway; and



FIG. 5 is a flow chart illustrating another implementation of an operating mode of a system for controlling flow in a fluid delivery pathway.





Like reference symbols in the various drawings indicate like or similar elements.


DETAILED DESCRIPTION

Described herein are systems and methods for controlling fluid delivery to a patient through a fluid delivery pathway. The systems and methods described herein incorporate a rules-based clinical decision support logic to drive a flow control valve within a flow pathway to determine whether the IV fluid connected to the input port is appropriate for delivery to a specific patient (consistent with medical orders, accepted delivery protocols, and/or specific patient and patient histories, etc.).


It is standard practice to query patients and place in the patient file medical record information such as blood type, known drug allergies, drugs patient is currently taking, dietary restrictions, etc. This data provides a caregiver with information regarding potential adverse reactions a particular patient may experience upon administration of fluids to be administered. In an in-hospital setting this patient-specific information typically is entered or resides in an Admission, Discharge and Transfer (ADT) system or other clinical documentation system. Clinical guidelines and best practices also support a host of non-patient-specific medical information that can be routinely taken into consideration by prescribers of IV medications/fluids such that administering clinicians can avoid inducing patient adverse events. This information can include, but is not limited to drug-drug interactions, blood type matching, appropriate drug dosing limits, impact of current vital signs on treatments, metabolic factors and/or lab results.


Fluids can be delivered according to a medical order defined by a prescribing physician. Delivery orders can specify information such as type of fluid, medication dose, frequency of dose, administration route, etc. In an in-hospital setting these orders can typically reside in a Pharmacy Information System (PIS), Blood Bank Information System (BBIS), or Operating Room Information System (ORIS). Safe delivery of medications or other fluids to patients can require clinicians to execute according to the prescribed medical orders, while simultaneously taking into consideration patient-specific health characteristics (e.g. blood type) and history (e.g. medications previously administered, allergies), drug-specific clinical guidelines, and a host of environmental circumstances such as current vital signs, time, etc.


Turning now to FIG. 1, the system 100 can include a fluid delivery inlet 105 connected to a fluid delivery outlet 110 and one or more programmable flow control valves 115 positioned within the flow path 120 between the inlet 105 and the outlet 110. The system 100 can include a microprocessor 125 that interacts bi-directionally with a configurable rules engine 130. The configurable rules engine 130 can send flow state commands 122 to the flow control valve 115 in the flow path 120. The microprocessor 125 also can communicate with an internal memory 150 and be powered by a power source 155. The system 100 also can include a transmitter/receiver 157.


The microprocessor 125 can communicate with one or more external systems 135. Communication between the system 100 described herein and the one or more external systems 135 can include wired or wireless communication methods. The external system 135 also can include, for example, a data collection system such as a personal computer or computer server running various healthcare information systems such as PIS, BBIS, ORIS, or ADT systems. Additionally, the external system 135 also can be a medical device such as an IV infusion. The system 100 can include a fluid source reader 145 coupled to the inlet 105 and configured to detect one or more information sources carried by the fluid source connected to the inlet 105. Information detected by the fluid source reader 145 can be indicative of a characteristic of the fluid contained within the fluid source container, such as type, volume, concentration, expiration, manufacturer's information regarding contents, etc. The information can be detected by the fluid source reader 145 according to a variety of methods, including but not limited to optical, magnetic, mechanical, conductive, switchable, proximity sensors, IrDA, RFID, etc. Communication systems between inlets, fluid source readers and fluid source identification systems are described in detail in U.S. Pat. Nos. 8,394,053, filed Nov. 6, 2009; 8,355,753, filed Apr. 22, 2010; and 8,385,972, filed Nov. 2, 2010, which are each incorporated by reference herein in their entirety.


The communication between the microprocessor 125 and the one or more external systems 135 can be bi-directional such that the microprocessor 125 can both receive and transmit flow control input data 140. Flow control input data 140 can include, but are not limited to, 1) information about the fluid source such as type of fluid, volume of fluid, concentration of fluid, etc.; 2) constant patient-specific information such as patient identification number, drug allergies, blood type, etc.; 3) variable patient-specific information such as patient vitals, lab results, current disease states and/or clinical diagnoses, drugs previously administered, etc.; 4) medical orders such as drug, dose, route of administration, treatment schedule, etc.; 5) clinical guidelines such as known drug-drug interactions, recommended treatment protocols, etc.; 6) environmental factors such as time of day, date, temperature, etc.; 7) valve status such as currently open (second state) or currently closed (first state); 8) historic patient information such as disease state, clinical diagnosis, dosing history, etc.; and 9) other miscellaneous information such as manual valve override, etc. Communication between the system 100 and the one or more external systems 135 is discussed in more detail below.


The systems described herein are generally small and light-weight systems that can reduce the risk of serious medical errors and deaths by controlling flow through a fluid delivery pathway. It should be appreciated that the systems described herein can be applied to any care environment where fluids are delivered to patients, including hospitals, clinics, outpatient surgery centers, doctor's offices, home health settings, EMS, ambulances, etc.


The system 100 described herein can be enclosed by a small plastic housing such that fluid inlet 105 and outlet 110 are available for external connections. The housing can enclose the fluid pathway 120, one or more flow control valves 115, and a power source 155. The housing can additionally enclose one or more of a microprocessor 125, a memory 150, a transmitter/receiver 157, a rules engine 130, and a fluid source reader 145. The housing can be a low-cost, single-patient use, sterile, disposable assembly. Alternatively, the housing can include most or all of the system components and be reusable and rechargeable. In some implementations, the reusable housing can mate with and attach to a disposable flow path 120 with the flow control valve 115, power source 155 and transmitter/receiver 157. The disposable housing can be packaged sterile and be provided in a protective pouch. Any one or more of the components of the system 100 can be included or excluded from the housing in any number of alternative implementations.


In some implementations, system 100 can be subdivided and have components distributed such that a portion reside within a disposable sub-housing and the remainder reside outside the disposable sub-housing. The disposable sub-housing can include a subset of memory 150 storing characteristics of the components within the disposable sub-housing relevant for proper operation when the disposable and reusable components are combined to form a complete system 100 (e.g. flow path characteristics, number of fluid inlets, number and arrangement of flow control valves, serial number, etc.).


As mentioned above, the system 100 can include a flow control valve 115 positioned within the flow path 120 between the inlet 105 and the outlet 110. The flow control valve 115 can be a programmable valve that can toggle between two states in response to flow state commands 122 from the configurable rules engine 130. The actual configuration of the valve 115 can vary, but generally the valve type is limited to all-on “OPEN” state or an all-off “CLOSED” state. The valve type can vary including, but not limited to, gate valves, globe valves, T valves, butterfly valves, ball valves, check valves, plug valves, pinch valves, diaphragm valves, and the like.


The flow control valve 115 is generally positioned upstream from the fluid outlet 110 and downstream from the fluid inlet 105, but the actual location of the valve 115 relative to other components of the IV set can vary. FIGS. 2A-2G illustrate various locations for the flow control valve 115 to be positioned within an IV administration set flow path 120. The fluid delivery pathway 120 can have a variety of configurations consistent with commonly used IV fluid delivery sets including for example flow path 120 configured as a single flow path extension set (FIG. 2A), a “Y-site” IV set (FIGS. 2B-2D), a multiple-input to single-output IV set (e.g. triple lumen catheter) (FIGS. 2E-2G), and others as are known in the art. The flow control valve 115 can be positioned within a single flow path 120 between an input fluid connector 205a and an output fluid connector 210 (see FIG. 2A). The flow control valve 115 can be positioned within the single flow path 120 downstream of the Y-site with input 205b (see FIG. 2B). The flow control valve 115 can be positioned within the single flow path 120 upstream of the Y-site with input 205b near input 205a (see FIG. 2C). The flow control valve 115 can be positioned within the Y-site near input 205b (see FIG. 2D). The flow control valve 115 can be positioned within a single flow path 120 upstream of output 210 and downstream of multiple-inputs 205a, 205b, 205c, 205d (see FIG. 2E). The flow control valve 115 can be positioned upstream of the single flow path 120 and downstream of one or more of the multiple-inputs 205a, 205b, 205c, 205d (see FIGS. 2F and 2G).


Similarly, the fluid source reader 145 can be positioned on various segments of the flow path 120 depending on the configuration of the components in the set. In some implementations, the fluid source reader 145 can be positioned in an upstream location along the same flow path as the flow control valve 115. In some implementations, the fluid source reader 145 can be positioned along a different portion of the flow path 120 as the flow control valve 115. For example, in a “Y-site” configuration such as shown in FIG. 2B, the flow control valve 115 can be positioned within the single flow path 120 upstream of output 210 and downstream of the Y-site. In this implementation, the fluid source reader 145 can be positioned upstream of the flow control valve 115 in the same flow path 120 or a different flow path upstream of the Y-site. The fluid source reader 145 can also be positioned upstream of the flow control valve 115 in the same flow path 120 downstream of the Y-site.


The microprocessor 125 can include a flow control valve software application in combination with rules engine 130 that evaluates combinations of flow control input data 140 against configurable logic for determining the proper state of the flow control valve 115 at any given time prior to or during a treatment regimen or fluid delivery protocol (see the diagram 300 of FIG. 3). Microprocessor 125, rules engine 130 and any associated flow control valve software application and/or configurable rules used by the rules engine 130 can sometimes be collectively referred to as a “flow state controller”. Access to the relevant flow control input data 140 allows the system 100 to support, guide, dictate, or perform clinical decisions as to whether or not a particular fluid coupled to the system 100 should be allowed to flow through the flow path 120 to a patient. As described above, the flow control input data 140 can be any data, whether patient-specific or non-patient-specific. The data 140 can be stored in a medical information system, medical database, manually entered, input from an external device and/or system (e.g. vital signs monitor, laboratory information system, temperature sensor, etc.) or based on feedback from the system 100. The data 140 can be static or dynamic. Generally, the data 140 are applicable to and can provide support for making decisions on the appropriateness and/or safety of delivering a fluid to a patient.


The system 100 can be configured to operate in different operative modes. In some implementations, the system 100 operates in a normally CLOSED mode where the baseline state of the flow control valve 115 is closed (first state) and the fluid path 120 is opened during a fluid delivery and then closed again upon completion of the delivery (see FIG. 4). The normally CLOSED mode can be advantageous in higher risk scenarios, for example, in instances in which a caregiver is less experienced or has limited clearance for delivery of care, a fluid administration that requires more checks, involves fluid delivery of higher cost treatments, or administration of fluid treatments where mistakes have dire consequences such as infusion of incompatible blood products, or potent or toxic substances (e.g. chemotherapy). The system 100 also can operate in a normally OPEN mode where the baseline state of the flow control valve 115 is open (second state) and closes only when there is an identified potential safety risk (see FIG. 5). The normally OPEN mode can be desirable or advantageous in scenarios such as, for example, instances in which a caregiver is more experienced or desires more manual control over fluid delivery, or the fluid administration and time-frame requires fewer checks. It should be appreciated that the system 100 can include a manual override mechanism such that at any time during a particular fluid administration the clinician can override the system to an OPEN state allowing them to perform a conventional fluid administration as if the system 100 were not in place in the patient fluid line. The override mechanism can be reset manually by the clinician or automatically by the flow state controller based on a timeout or other applicable rule.


As shown in the process flow diagram 400 of FIG. 4, the normally CLOSED mode is characterized by the flow control valve 115 normally in a closed state and temporarily opened to allow a fluid to pass through the flow path 120. A fluid source can be connected with fluid inlet 105 while the valve 115 is in a closed state (402). Various relevant characteristics of the fluid source can be identified by the system 100 (404). The current time and other environmental factors can be determined (406). A series of safety checks can be performed by the flow-control software application to assess, for example, whether the fluid coupled to the inlet 105 matches the fluid currently ordered (408), the patient is allergic to the fluid connected to the fluid inlet 105 (410), whether any drug-drug interactions exist (412), whether the current time is the correct time for the administration of the attached fluid (414), or whether any other contraindications to administering the fluid to the patient exist (416). If the system 100 fails one or more of the safety checks, a determination can be made whether the safety risk justifies flow stop (420). If the risk does not justify the flow stop, then the flow valve can be opened and the caregiver can administer the dose (422), otherwise the flow control valve is maintained in a closed position (424) by sending, for example, a flow state command 122 indicating that valve 115 should remain closed. Thereafter, the fluid source can be detached (426), results can be transmitted to a remote system (e.g., a recording system) (428), and if the valve is opened, the valve can be closed (430). In addition, the safety check can trigger an alarm to alert a clinician (418). Data can be transmitted to record the potential safety risk in an external system 135. If the system 100 passes all the safety checks, a flow state command 122 can be sent to the flow control valve 115 to open and allow fluid delivery to the patient.


If the system 100 does not fail one or more of the safety checks, the valve, if closed, can be changed from a closed state to an open state (432). In some implementations, the system 100 can measure fluid volume in real-time during delivery of the fluid (434) and calculate the actual dose delivered and compare it to the ordered dose (436). The ordered “dose” can include a specific fluid volume (e.g. 1 liter of blood) or a quantity calculated by multiplying fluid volume by a fluid source concentration (e.g. 2 mL of 1 mg/mL concentration of morphine fluid source). Once the ordered dose is reached or the system 100 detects the fluid source is detached from the system 100, a flow state command 122 can be sent to close flow control valve 115 (440) in preparation for the next fluid administration. The administration conditions and results can be communicated to the system memory 150 and/or an external system 135 for recording (438).


In some implementations, the rules engine 130 logic can be defined such that triggering an alarm or alarm message to alert the clinician is an independent event from sending a flow control command 122 to flow control valve 115. Rules logic can generate tiered messages and/or flow state commands 122 using multiple trigger points based on the severity of a potential safety risk. For example, if the physician-ordered dose for a fluid is 100 mL, the rules engine 130 can send an message to the clinician without closing the flow control valve 115 when the dose administered reaches 105 mL of fluid. However, if dose administration continues and the cumulative dose volume reaches 110 mL of fluid, the rules engine can send a second clinician message and a flow state command 122 to close flow control.


Referring now to the process flow diagram 500 of FIG. 5, the normally OPEN mode is characterized by the flow control valve 115 normally in an open position to allow fluid to pass through the flow path 120. A fluid source can be connected with a fluid inlet 105 while the flow control valve 115 is in the open state (502). Various relevant characteristics of the fluid source can be identified by the system 100 (504) as well as current time and environmental factors (506). A series of safety checks (508-516) similar to those described in connection with FIG. 4 can be performed by the flow state controller software application (e.g., a rules engine, etc.) using the current flow control input data 140 as described above with respect to FIG. 3. If one or more of the safety checks fail, a flow control command 122 can be sent to close the flow control valve 115. In particular, if one or of the safety checks fail, an alert can be provided (518). Thereafter, it can be determined if the safety risk justifies flow stop (520). If the answer is yes—then the flow control valve can be switched to a closed position (524) and the fluid source detached (526), otherwise the fluid can be administered (522). Results can be transmitted to a recording system (either internal or external) (528) and the valve, if in the closed position, can be switched to an open position (530).


If no safety checks are triggered, fluid volume can be measured in real-time during administration (532). If it is determined during administration that the ordered dose was achieved or the fluid source was detached (534), then proceed to 536, if not the process 534 continues. Once such a determination is made administration results are transmitted to a recording system (internal or external) (536).


As described above, the rules engine can also trigger messages independent of flow state command 122 and transmit the data to record the condition in a memory 150 of the system 100 and/or one or more external systems 135. The valve 115 can re-open after the error condition is resolved, after a clinician manually overrides the flow control valve 115, or once the fluid source is detached. If all the safety checks are passed, a flow state command 122 can be sent to flow control valve 115 to remain open and allow fluid delivery to the patient.


It should be appreciated that the systems described herein can, but need not transmit data to an external system 135 for recording and logging data. For example, the system 100 can incorporate the intelligent flow control features of the programmable flow control valve 115 and provide user feedback (such as alarms and other alert messages) without transmitting, and/or recording the data to an external system 135.


The system 100 can be programmed with information downloaded into the system memory 150 prior to use, in real-time using on-demand connectivity with the external systems 135 or a combination of the two. In some implementations, the system 100 can be pre-programmed according to a subset of static flow control data 140 (e.g. patient blood type, known drug allergies, dose limits, etc.) prior to or upon connection to a patient's fluid line. The system can be programmed using a dockable cradle, wireless communications interface or a wired connector. In some implementations, a low-cost, non-wireless version of the system 100 can be pre-programmed with only non-patient-specific rules such as drug-drug interactions, hard dosing limits, etc. for generic use with any patient. The system 100 can be provided to a buyer including the pre-programmed non-patient-specific information or according to published clinical guidelines and standards. The non-patient-specific information can be programmed prior to clinical use by a manufacturer, care provider or by a hospital pharmacist, or other care setting based on provider-specific rules and operating procedures.


In some implementations, the system 100 can be programmed and/or communicate information in real-time to the one or more external systems 135 using a wireless transmission 157. A variety of wireless transmission hardware and protocols can be used such as RF, IrDA (infrared), Bluetooth, Zigbee, Continue, Wireless USB, Wibree, IEEE 802 relevant standards (e.g., 802.11, 802.15, or 802.16, etc.), Direct Sequence Spread Spectrum; Frequency Hopping Spread Spectrum; cellular/wireless/cordless telecommunication protocols, wireless home network communication protocols, paging network protocols, magnetic induction, satellite data communication protocols, wireless hospital or health care facility network protocols, and other methods. The data transmissions can, in some implementations, be encrypted in order to ensure patient privacy and/or to comply with various laws relating to handling of medical data. The transmitter can have such encryption capabilities or one or more additional chipsets can be incorporated within a region of the system 100 to provide such encryption.


In some implementations, the configurable rules engine 130 can run on a microprocessor 125 remote to the system 100. The commands 122 can be sent to the system 100 in a wireless or wired manner to the flow control valve 115 embedded within the system 100 instructing the flow control valve 115 to open or close.


The system 100 described herein can include one or more mechanisms configured for receiving input from a user to control operation of the system 100 and/or providing feedback to a user from the system 100. For example, the system 100 can incorporate one or more user inputs such as one or more keys, buttons, switches, dials, or touch-screens. The system 100 can incorporate one or more user feedback mechanisms such as one or more LEDs, graphical displays, sounds, speech synthesis technology or vibration mechanisms. The visual, tactile or auditory feedback can include a sequence of notifications such as volume, color, number, intensity, or other feature of the particular feedback mechanism is varied to indicate a particular state of the system 100. In some implementations, one or more of the user inputs and/or feedback mechanisms can be remote to the system 100, such as on a computing device in communication with the system 100 such as by a wired or wireless connection using the transmitter/receiver 157.


The power source 155 can include self-contained power source such as a battery, single-use or rechargeable battery, battery array or other type of power source known in the art. Where the battery is rechargeable, there can be a connector or other interface for attaching the device to an electrical outlet, docking station, portable recharger, or so forth to recharge the battery.


In some implementations, the system 100 can include an internal fluid composition sensor configured to allow the fluid composition and concentration from the fluid source to be empirically determined. The sensor can be positioned downstream of the fluid inlet 105 and upstream of control valve 115. The internal fluid composition sensor can be the sole source of fluid type detection. In some implementations, the composition sensor can be a supplement to fluid source information carried by the fluid source container and detected by a fluid source reader 145.


The system 100 can accommodate a variety of volumes and doses, including fractional doses, or multiple fluid source connections to fulfill the desired treatment protocol of a single patient medical order. For example, a physician can order a 2 mg dose of morphine for a patient. The nurse can connect one 4 mg syringe of morphine, intending to deliver half the syringe to the patient and discard the other half. In this example, the system 100 can alert the clinician that a 4 mg syringe is connected to the system 100 and the potential dose to be delivered to the patient is too high. The system 100 can also prevent overdose by sending a flow state command 122 to close the flow control valve 115 after the first 2 mg of morphine have been delivered to the patient to prevent delivery of remaining 2 mg of morphine. Alternatively, a physician can order 2 mg of morphine for a patient. The care provider can fulfill the order by first connecting a 1 mg syringe of morphine to the system 100 and delivering the full contents of the syringe to the patient and then connecting a second 1 mg syringe of morphine to the system 100 and delivering the full contents of the second syringe to the patient. In either scenario, the physician order for 2 mg have been fulfilled and the system 100 would not provide an alert or constrain fluid flow unless a further morphine syringe is coupled to the system 100.


It should be appreciated that use of the term “therapies” or “fluids” herein is not limited to a specific fluid type, therapy or medication and can include a variety of appropriate fluids. Fluids as used herein can include, but are not limited to medications, blood-based products, nutritional solutions, electrolytes, buffer solutions, lactated Ringer's solutions, sodium bicarbonate, crystalloids, colloids, saline solutions. Blood-based products can include, but are not limited to, any component of the blood for use in blood transfusions, whole blood, fresh frozen plasma, cryoprecipitate, blood substitutes, artificial blood, oxygen-carrying substitutes. Medications can include any therapeutic fluid that can be administered intravenously or another appropriate parenteral route of administration such as intra-arterial, intraosseous, intracerebral, intracardiac, subcutaneous, or intraperitoneal. Similarly, the systems described herein can use any sort of manually administered fluid source and are not limited to a specific IV fluid source type and can include syringes, IV bags, disposable medication cartridges or pouches, IV tubing, etc. It should be appreciated that the systems described herein can be used for delivery of fluids by a variety of routes of administrations. Unless otherwise specified the terms injection, administration, or delivery as they relate to introducing a fluid to a patient is not intended to be limiting to a particular route of manual administration (i.e., administration effected by a human being as opposed to a pump).


The subject matter described herein may be embodied in systems, apparatus, methods, and/or articles depending on the desired configuration. In particular, aspects of the subject matter described herein may be realized in digital electronic circuitry, integrated circuitry, specially designed ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various implementations may include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which may be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device.


These computer programs (also known as programs, software, software applications, applications, components, or code) include machine instructions for a programmable processor, and may be implemented in a high-level procedural and/or object-oriented programming language, and/or in assembly/machine language. As used herein, the term “machine-readable medium” refers to any tangible/non-transitory computer program product, apparatus and/or device (e.g., magnetic discs, optical disks, memory, Programmable Logic Devices (PLDs)) used to provide machine instructions and/or data to a programmable processor.


The implementations set forth in the foregoing description do not represent all implementations consistent with the subject matter described herein. Instead, they are merely some examples consistent with aspects related to the described subject matter. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.


Although a few variations have been described in detail above, other modifications or additions are possible. In particular, further features and/or variations can be provided in addition to those set forth herein. For example, the implementations described above can be directed to various combinations and sub-combinations of the disclosed features and/or combinations and sub-combinations of several further features disclosed above. In addition, the logic flows and steps for use described herein (e.g., FIGS. 4, 5 and accompanying text, etc.) do not require the particular order shown, or sequential order, to achieve desirable results. Other embodiments can be within the scope of the claim.

Claims
  • 1. An apparatus comprising: a fluid inlet configured to couple to an outlet of a manually administrable fluid source having fluid source information encoded thereon;a fluid outlet configured to deliver fluid from the manually administrable fluid source to a fluid line leading to a patient;a fluid flow stop disposed between the fluid inlet and the fluid outlet that prevents fluid flow in a first state and permits fluid flow in a second state;an identification sensor to detect the fluid source information when the manually administrable fluid source is being coupled or is coupled to the fluid inlet;a fluid flow sensor disposed between the fluid inlet and the fluid outlet for measuring a specific value of how much fluid has been delivered from the manually administrable fluid source into the fluid inlet;a flow state controller to selectively cause the fluid flow stop to transition between the first state and the second state automatically in response to the fluid source information being detected by the identification sensor, wherein the flow state controller causes the fluid flow stop to transition from the second state to the first state when a predetermined volume of fluid has been delivered as measured by the fluid flow sensor;a housing including a reusable sub-housing and a disposable sub-housing, the disposable sub-housing enveloping at least a portion of each of the fluid inlet, the fluid outlet, and the fluid flow stop, wherein the fluid inlet and the fluid outlet are configured relative to the disposable sub-housing such that they are available for external connections, wherein the disposable sub-housing is operatively coupled to the reusable sub-housing, wherein the reusable sub-housing is intended for use by a plurality of patients and the disposable sub-housing is intended for use by a single patient; anda memory within the disposable sub-housing storing a characteristic of a fluid flow path between the fluid inlet and the fluid outlet, a number of fluid inlets, a number of flow control valves, and an arrangement of the flow control valves.
  • 2. The apparatus as in claim 1, wherein the flow state controller uses a plurality of rules to determine whether to transition the fluid flow stop between the states.
  • 3. The apparatus as in claim 2, wherein the flow state controller polls at least one remote data source to obtain at least a portion of the rules.
  • 4. The apparatus of claim 2, wherein the flow state controller uses a rules engine that utilizes flow control input data to determine whether to transition the fluid flow stop between the states, wherein the flow control input data is selected from a group consisting of: fluid information, patient-specific information, medical order information, clinical guideline information, environmental factors, flow control valve status, and historical information.
  • 5. The apparatus as in claim 2, wherein the rules are utilized by a rules engine that takes into account the fluid source information and flow control input data selected from a group consisting of: fluid information, patient-specific information, medical order information, clinical guideline information, environmental factors, flow control valve status, and historical information.
  • 6. The apparatus as in claim 5, wherein the flow state controller comprises the rules engine and the rules engine is programmable.
  • 7. The apparatus of claim 5, further comprising: a communications module configured to transmit at least one of the flow control input data, rules engine output data, and data characterizing the manually administrable fluid source to a remote data processing apparatus and receive the at least one of the flow control input data, the rules engine output data, and the data characterizing the manually administrable fluid source from the remote data processing apparatus.
  • 8. The apparatus of claim 5, further comprising: an interface to provide at least one of audio and visual feedback to a user characterizing one or more of the fluid source information, a volume of fluid administration from the manually administrable fluid source, rules engine information, and rules engine output.
  • 9. The apparatus of claim 8, wherein the interface provides an indication to the user when the fluid flow stop is in the first state.
  • 10. The apparatus of claim 8, wherein the interface provides an indication to the user of one or more of the rules used by the rules engine causing a fluid flow stop state transition.
  • 11. The apparatus of claim 8, wherein the interface provides an indication to the user without a fluid flow stop state transition.
  • 12. The apparatus of claim 8, wherein the interface displays medication administration information associated with the fluid.
  • 13. The apparatus of claim 8, wherein the memory stores medication administration information.
  • 14. The apparatus of claim 13, further comprising: a communications module configured to transmit the medication administration information to a remote data source and receive the medication administration information from the remote data source.
  • 15. The apparatus of claim 8, wherein the interface is adjacent to the fluid inlet.
  • 16. The apparatus of claim 8, wherein the interface is remote from the fluid inlet.
  • 17. The apparatus as in claim 1, further comprising: a fluid composition sensor to characterize composition of the fluid when the manually administrable fluid source is coupled to the fluid inlet; and wherein the flow state controller further selectively causes the fluid flow stop to transition between the first state and the second state based on the composition detected by the fluid composition sensor.
  • 18. The apparatus as in claim 1, wherein the flow state controller transmits data characterizing the fluid source information detected by the identification sensor to a remote rules engine that sends a signal indicating whether to change the state of the fluid flow stop.
  • 19. The apparatus of claim 1, wherein the fluid is medication and the fluid source information characterizes one or more of a group consisting of: medication type, medication concentration, medication volume, medication expiration date, a dosage form of the medication, dose instructions for the medication, administration instructions for a specific patient, medication formulation, medication manufacturer information, a re-packager of the medication, a distributor of the medication, medication package form, medication package size, medication package serial number, medication lot number, blood type, an NDC code (National Drug Code), a segment of an NDC code identifying a corresponding medication product, a segment of an NDC code identifying a corresponding medication package, a unique identifier code, a human readable alphanumeric string, and a machine readable code.
  • 20. The apparatus of claim 1, wherein the fluid source information is a code or an identifier used to reference a secondary data set that is characteristic of the fluid contained in the manually administrable fluid source.
  • 21. The apparatus of claim 20, wherein the memory stores the secondary data set.
  • 22. The apparatus of claim 20, further comprising: a remote data store coupled to the flow state controller by at least one network storing the secondary data set.
  • 23. The apparatus of claim 22, wherein the remote data store forms part of at least one of a medical device and a medical information system.
  • 24. The apparatus of claim 1, wherein the transition between the states is automatically initiated and executed by the flow state controller without user intervention.
  • 25. The apparatus of claim 1, wherein the transition between the states is automatically initiated and executed by the flow state controller as a result of coupling the outlet of the manually administrable fluid source to the fluid inlet.
  • 26. The apparatus of claim 1, further comprising: a manual override element which, when activated by a user, causes the flow state controller to cause the fluid flow stop to transition from the first state to the second state.
  • 27. The apparatus of claim 1, further comprising at least one additional fluid inlet, wherein each additional fluid inlet is configured to couple to an outlet of at least one additional manually administrable fluid source, wherein each additional manually administrable fluid source has fluid source information thereon.
  • 28. The apparatus of claim 27, further comprising at least one additional fluid flow stop, wherein each additional fluid flow stop is coupled to the flow state controller to selectively prevent fluid flow in a respective one of the additional fluid inlets.
  • 29. The apparatus of claim 1, wherein the fluid flow stop is maintained in the first state until it is determined, by using the fluid source information, to transition the fluid flow stop to the second state.
  • 30. The apparatus of claim 1, wherein the fluid flow stop is maintained in the second state until it is determined, by using the fluid source information, to transition the fluid flow stop to the first state.
  • 31. The apparatus of claim 1, wherein the flow state controller receives data characterizing the patient that is used, in combination with the fluid source information, to determine whether to transition the fluid flow stop between the states.
  • 32. The apparatus of claim 31, wherein the data characterizing the patient comprises at least one medication order, the at least one medication order being used to confirm whether the fluid in the manually administrable fluid source matches one or more parameters specified by the at least one medication order.
  • 33. The apparatus of claim 31, wherein the data characterizing the patient comprises a patient identifier and the flow state controller polls at least one remote data store using the patient identifier to obtain reference information for a rules engine to determine whether to transition the fluid flow stop between the states.
  • 34. The apparatus of claim 1, further comprising: an interface providing at least one of audio and visual feedback indicating how much fluid has been delivered as measured by the fluid flow sensor.
  • 35. The apparatus of claim 1, wherein the flow state controller causes the fluid flow stop to transition from the second state to the first state when the predetermined volume of fluid has been delivered as measured by the fluid flow sensor, and after a pre-determined span of time, causes the fluid flow stop to transition from the first state to the second state.
  • 36. The apparatus of claim 1, wherein the identification sensor detects the fluid source information using one or more technologies selected from a group consisting of: optical, magnetic, mechanical, conductive, switchable, infrared, switchable RFID, and proximity sensors.
  • 37. An apparatus as in claim 1, wherein the disposable sub-housing is part of a kit including a sterile pouch enveloping the disposable sub-housing.
  • 38. The apparatus as in claim 1, wherein the housing has a shape and a size allowing a user to hold the housing in a first hand while activating the manually administrable fluid source in a second hand.
  • 39. The apparatus of claim 1, further comprising: a self-contained power source within the housing powering the fluid flow stop, the identification sensor, and the flow state controller.
  • 40. The apparatus of claim 39, further comprising the fluid line, wherein the fluid line is an IV fluid line and the housing is suspended on the IV fluid line.
  • 41. The apparatus of claim 1, wherein the manually administrable fluid source is selected from a group consisting of: syringes, IV bags, disposable medication cartridges, disposable medication pouches, and IV tubing.
  • 42. The apparatus of claim 1, wherein the memory within the disposable sub-housing stores rules used by the flow state controller to selectively cause the fluid flow stop to transition between the first state and the second state automatically in response to the fluid source information being detected by the identification sensor.
  • 43. The apparatus of claim 1, further comprising: a self-contained power source within the disposable sub-housing that powers the fluid flow stop; anda transmitter/receiver within the disposable sub-housing that wirelessly communicates with one or more external systems.
  • 44. A method of using the apparatus of claim 1, comprising: determining, by using the detected fluid source information, whether to transition the fluid flow stop from its current state to its other state; andcausing, by the flow state controller, the fluid flow stop to transition to the other state if it is determined that the fluid flow stop should transition to the other state; ormaintaining the fluid flow stop in the current state if it is not determined that the fluid flow stop should transition to the other state.
  • 45. An apparatus comprising: a fluid inlet configured to couple to an outlet of a manually administrable fluid source having fluid source information encoded thereon;a fluid outlet configured to deliver fluid from the manually administrable fluid source to a fluid line leading to a patient;a fluid flow stop disposed between the fluid inlet and the fluid outlet that prevents fluid flow in a first state and permits fluid flow in a second state;an identification sensor to detect the fluid source information when the manually administrable fluid source is being coupled or is coupled to the fluid inlet;a memory storing rules;a fluid flow sensor disposed between the fluid inlet and the fluid outlet for measuring a specific value of how much fluid has been delivered from the manually administrable fluid source into the fluid inlet;a flow state controller to selectively cause the fluid flow stop to transition between the first state and the second state automatically in response to the rules as applied to the fluid source information being detected by the identification sensor, wherein the flow state controller causes the fluid flow stop to transition from the second state to the first state when a predetermined volume of fluid has been delivered as measured by the fluid flow sensor; anda housing including a reusable sub-housing and a disposable sub-housing, the disposable sub-housing enveloping at least a portion of each of the fluid inlet, the fluid outlet, and the fluid flow stop, wherein the fluid inlet and the fluid outlet are configured relative to the disposable sub-housing such that they are available for external connections, wherein the disposable sub-housing is operatively coupled to the reusable sub-housing, wherein the reusable sub-housing is intended for use by a plurality of patients and the disposable sub-housing is intended for use by a single patient, wherein the memory is included within the disposable sub-housing, and wherein the memory stores a characteristic of a fluid flow path between the fluid inlet and the fluid outlet, a number of fluid inlets, a number of flow control valves, and an arrangement of the flow control valves.
  • 46. An apparatus comprising: a fluid inlet configured to couple to an outlet of a manually administrable fluid source having fluid source information encoded thereon;a fluid outlet configured to deliver fluid from the manually administrable fluid source to a fluid line leading to a patient;a fluid flow stop disposed between the fluid inlet and the fluid outlet that prevents fluid flow in a first state and permits fluid flow in a second state;an identification sensor to detect the fluid source information when the manually administrable fluid source is being coupled or is coupled to the fluid inlet;a communications module to transmit data to at least one remote system storing at least one of rules and reference information and receive the at least one of the rules and the reference information from the at least one remote system;a fluid flow sensor disposed between the fluid inlet and the fluid outlet for measuring a specific value of how much fluid has been delivered from the manually administrable fluid source into the fluid inlet;a flow state controller to poll, via the communications module, the at least one remote system with the fluid source information, and based on a response from the at least one remote system, selectively cause the fluid flow stop to transition between the first state and the second state automatically in response to the fluid source information being detected by the identification sensor, wherein the flow state controller causes the fluid flow stop to transition from the second state to the first state when a predetermined volume of fluid has been delivered as measured by the fluid flow sensor; anda housing including a reusable sub-housing and a disposable sub-housing, the disposable sub-housing enveloping at least a portion of each of the fluid inlet, the fluid outlet, and the fluid flow stop, wherein the fluid inlet and the fluid outlet are configured relative to the disposable sub-housing such that they are available for external connections, wherein the disposable sub-housing is operatively coupled to the reusable sub-housing, wherein the reusable sub-housing is intended for use by a plurality of patients and the disposable sub-housing is intended for use by a single patient; anda memory within the disposable sub-housing storing a characteristic of a fluid flow path between the fluid inlet and the fluid outlet, a number of fluid inlets, a number of flow control valves, and an arrangement of the flow control valves.
RELATED APPLICATION

This application claims priority to U.S. Pat. App. Ser. No. 61/500,073, filed on Jun. 22, 2011 the contents of which are hereby fully incorporated by reference.

US Referenced Citations (421)
Number Name Date Kind
607941 Mayo Jul 1898 A
614703 Delory Nov 1898 A
3430625 McLeod, Jr. Mar 1969 A
4003252 Dewath Jan 1977 A
4415802 Long Nov 1983 A
4650475 Smith et al. Mar 1987 A
4684367 Schaffer Aug 1987 A
4853521 Claeys et al. Aug 1989 A
4857713 Brown Aug 1989 A
4921277 McDonough May 1990 A
4978335 Arthur, III Dec 1990 A
5011032 Rollman Apr 1991 A
5040422 Frankenberger et al. Aug 1991 A
5062774 Kramer Nov 1991 A
5078683 Sancoff et al. Jan 1992 A
5179862 Lynnworth Jan 1993 A
5247826 Frola et al. Sep 1993 A
5279576 Loo et al. Jan 1994 A
5317506 Coutre et al. May 1994 A
5338157 Blomquist Aug 1994 A
5383858 Reilly et al. Jan 1995 A
5429602 Hauser Jul 1995 A
5463906 Spani et al. Nov 1995 A
5531697 Olsen et al. Jul 1996 A
5531698 Olsen Jul 1996 A
5569212 Brown Oct 1996 A
5611784 Barresi et al. Mar 1997 A
5612524 Sant'Anselmo et al. Mar 1997 A
5628309 Brown May 1997 A
5651775 Walker et al. Jul 1997 A
5692640 Caulfield et al. Dec 1997 A
5713856 Eggers et al. Feb 1998 A
5720733 Brown Feb 1998 A
5740428 Mortimore et al. Apr 1998 A
5781442 Engleson et al. Jul 1998 A
5782814 Brown et al. Jul 1998 A
5792117 Brown Aug 1998 A
5845264 Nellhaus Dec 1998 A
5873731 Prendergast Feb 1999 A
5882338 Gray Mar 1999 A
5920263 Huttenhoff et al. Jul 1999 A
5925014 Teeple, Jr. Jul 1999 A
5941846 Duffy et al. Aug 1999 A
5984901 Sudo et al. Nov 1999 A
6019745 Gray Feb 2000 A
6039251 Holowko et al. Mar 2000 A
6106498 Friedli et al. Aug 2000 A
6123686 Olsen et al. Sep 2000 A
6192945 Ford et al. Feb 2001 B1
D438634 Merry Mar 2001 S
6249299 Tainer Jun 2001 B1
6256037 Callahan Jul 2001 B1
6270455 Brown Aug 2001 B1
6277099 Strowe et al. Aug 2001 B1
6338200 Baxa et al. Jan 2002 B1
6341174 Callahan et al. Jan 2002 B1
6342889 Callahan Jan 2002 B1
6381029 Tipirneni Apr 2002 B1
6422094 Ganshorn Jul 2002 B1
6464667 Kamen et al. Oct 2002 B1
6468424 Donig et al. Oct 2002 B1
6471089 Liff et al. Oct 2002 B2
6482185 Hartmann Nov 2002 B1
6497680 Holst et al. Dec 2002 B1
6519569 White Feb 2003 B1
6579231 Phipps Jun 2003 B1
RE38189 Walker et al. Jul 2003 E
6626355 Sasse et al. Sep 2003 B2
6626862 Duchon et al. Sep 2003 B1
D481121 Evans Oct 2003 S
6641562 Peterson Nov 2003 B1
6644130 Imai et al. Nov 2003 B2
6671563 Engelson et al. Dec 2003 B1
D485356 Evans Jan 2004 S
6675660 Mosier et al. Jan 2004 B1
6685227 Merry et al. Feb 2004 B2
6685678 Evans et al. Feb 2004 B2
6697067 Callahan et al. Feb 2004 B1
6731989 Engleson et al. May 2004 B2
6733495 Bek et al. May 2004 B1
6742992 Davis Jun 2004 B2
6790198 White et al. Sep 2004 B1
6798533 Tipirneni Sep 2004 B2
6825864 Botten et al. Nov 2004 B2
6851615 Jones Feb 2005 B2
6854338 Khuri-Yakub et al. Feb 2005 B2
6915170 Engleson et al. Jul 2005 B2
6960192 Flaherty et al. Nov 2005 B1
6985870 Martucci et al. Jan 2006 B2
6993402 Klass et al. Jan 2006 B2
7000485 Ao et al. Feb 2006 B2
7017623 Tribble et al. Mar 2006 B2
7061831 De La Huerga Jun 2006 B2
7074205 Duffy et al. Jul 2006 B1
7074209 Evans et al. Jul 2006 B2
7096072 Engleson et al. Aug 2006 B2
7103419 Engleson et al. Sep 2006 B2
7106479 Roy et al. Sep 2006 B2
7107106 Engleson et al. Sep 2006 B2
7115113 Evans et al. Oct 2006 B2
7116343 Botten et al. Oct 2006 B2
7117041 Engleson et al. Oct 2006 B2
7161488 Frasch Jan 2007 B2
7171277 Engleson et al. Jan 2007 B2
7175081 Andreasson et al. Feb 2007 B2
7180624 Tipirneni Feb 2007 B2
7182256 Andreasson et al. Feb 2007 B2
7225683 Harnett et al. Jun 2007 B2
7236936 White et al. Jun 2007 B2
7237199 Menhardt et al. Jun 2007 B1
7264323 Tainer et al. Sep 2007 B2
7299981 Hickle et al. Nov 2007 B2
7319540 Tipirneni Jan 2008 B2
7347841 Elhadad et al. Mar 2008 B2
7358505 Woodworth et al. Apr 2008 B2
7360448 Maginnis et al. Apr 2008 B2
7364067 Steusloff et al. Apr 2008 B2
7370797 Sullivan et al. May 2008 B1
7375737 Botten et al. May 2008 B2
7384410 Eggers et al. Jun 2008 B2
7442181 Schubert et al. Oct 2008 B2
7469598 Shkarlet et al. Dec 2008 B2
7469599 Froehlich et al. Dec 2008 B2
7470266 Massengale et al. Dec 2008 B2
7483756 Engleson et al. Jan 2009 B2
D588200 Langan et al. Mar 2009 S
7534239 Schneider et al. May 2009 B1
D593613 Langan et al. Jun 2009 S
D595361 Langan et al. Jun 2009 S
7559483 Hickle et al. Jul 2009 B2
7564579 Tipirneni Jul 2009 B2
D597608 Langan et al. Aug 2009 S
D602534 Langan et al. Oct 2009 S
7614545 Christoffersen et al. Nov 2009 B2
7617739 Dam Nov 2009 B1
D605228 Langan et al. Dec 2009 S
D605229 Langan et al. Dec 2009 S
D605230 Langan et al. Dec 2009 S
7645258 White et al. Jan 2010 B2
7673527 Ehring et al. Mar 2010 B2
7694565 Koerdt et al. Apr 2010 B2
7703336 Genosar Apr 2010 B2
7704231 Pongpairochana et al. Apr 2010 B2
7722083 McCarthy et al. May 2010 B2
7727196 Neer Jun 2010 B2
7753880 Malackowski Jul 2010 B2
7753891 Tennican et al. Jul 2010 B2
7756724 Gropper et al. Jul 2010 B2
7763006 Tennican Jul 2010 B2
D621879 Langan et al. Aug 2010 S
D621880 Langan et al. Aug 2010 S
7771385 Eggers et al. Aug 2010 B2
D624595 Langan et al. Sep 2010 S
D624596 Langan et al. Sep 2010 S
7799010 Tennican Sep 2010 B2
7813939 Clements et al. Oct 2010 B2
7815123 Conner et al. Oct 2010 B2
7815605 Souter Oct 2010 B2
7819838 Ziegler et al. Oct 2010 B2
7822096 Kuksenkov Oct 2010 B2
7834816 Marino et al. Nov 2010 B2
7859473 Gibson Dec 2010 B2
D633151 Langan et al. Feb 2011 S
7887513 Nemoto et al. Feb 2011 B2
D634367 Langan et al. Mar 2011 S
D634368 Langan et al. Mar 2011 S
D634369 Langan et al. Mar 2011 S
7905861 Rhinehart et al. Mar 2011 B2
7918830 Langan et al. Apr 2011 B2
7922073 de la Huerga Apr 2011 B2
7927313 Stewart et al. Apr 2011 B2
7933780 De La Huerga Apr 2011 B2
7941949 Cloninger May 2011 B2
D639861 Langan et al. Jun 2011 S
D639862 Langan et al. Jun 2011 S
D639863 Langan et al. Jun 2011 S
7967778 Nemoto et al. Jun 2011 B2
D641421 Langan et al. Jul 2011 S
D641422 Langan et al. Jul 2011 S
7976508 Hoag Jul 2011 B2
D643468 Langan et al. Aug 2011 S
D643469 Langan et al. Aug 2011 S
D643470 Langan et al. Aug 2011 S
D643471 Langan et al. Aug 2011 S
D643472 Langan et al. Aug 2011 S
7991627 Hutchinson et al. Aug 2011 B2
D645094 Langan et al. Sep 2011 S
8031347 Edwards et al. Oct 2011 B2
8035517 Gibson Oct 2011 B2
D649196 Langan et al. Nov 2011 S
8059297 Tipirneni Nov 2011 B2
8063925 Tainer et al. Nov 2011 B2
8065924 Ziegler et al. Nov 2011 B2
8069060 Tipirneni Nov 2011 B2
8111159 Andreasson et al. Feb 2012 B2
8133178 Brauker et al. Mar 2012 B2
8140349 Hanson et al. Mar 2012 B2
8151835 Khan et al. Apr 2012 B2
8235938 Eggers et al. Aug 2012 B2
8240550 Steusloff et al. Aug 2012 B2
8303547 Brown Nov 2012 B2
8328082 Bochenko et al. Dec 2012 B1
8355753 Bochenko et al. Jan 2013 B2
8385972 Bochenko et al. Feb 2013 B2
8394053 Bochenko et al. Mar 2013 B2
8480834 Rice et al. Jul 2013 B2
8505809 Steusloff et al. Aug 2013 B2
8606596 Bochenko et al. Dec 2013 B1
8636202 Keefe et al. Jan 2014 B2
8639521 Eggers et al. Jan 2014 B2
8639525 Levine et al. Jan 2014 B2
8645154 Eggers et al. Feb 2014 B2
8702674 Bochenko Apr 2014 B2
8752088 Harvey et al. Jun 2014 B1
20010020148 Sasse et al. Sep 2001 A1
20010049608 Hochman Dec 2001 A1
20010056258 Evans Dec 2001 A1
20020040208 Flaherty et al. Apr 2002 A1
20020077852 Ford et al. Jun 2002 A1
20020088131 Baxa et al. Jul 2002 A1
20020098598 Coffen et al. Jul 2002 A1
20020099334 Hanson et al. Jul 2002 A1
20020177811 Reilly et al. Nov 2002 A1
20020188259 Hickle et al. Dec 2002 A1
20030012701 Sangha et al. Jan 2003 A1
20030052787 Zerhusen et al. Mar 2003 A1
20030055685 Cobb et al. Mar 2003 A1
20030065537 Evans Apr 2003 A1
20030088238 Poulsen et al. May 2003 A1
20030135388 Martucci et al. Jul 2003 A1
20030139701 White et al. Jul 2003 A1
20030139706 Gray Jul 2003 A1
20030140929 Wilkes et al. Jul 2003 A1
20030141981 Bui et al. Jul 2003 A1
20030160698 Andreasson et al. Aug 2003 A1
20030164401 Andreasson et al. Sep 2003 A1
20030174326 Rzasa et al. Sep 2003 A1
20040051368 Caputo et al. Mar 2004 A1
20040082918 Evans et al. Apr 2004 A1
20040092885 Duchon et al. May 2004 A1
20040103951 Osborne et al. Jun 2004 A1
20040104271 Martucci et al. Jun 2004 A1
20040105115 Edwards et al. Jun 2004 A1
20040179051 Tainer et al. Sep 2004 A1
20040179132 Fujino et al. Sep 2004 A1
20040186437 Frenette et al. Sep 2004 A1
20040193453 Butterfield et al. Sep 2004 A1
20040204673 Flaherty Oct 2004 A1
20040212834 Edwards et al. Oct 2004 A1
20040238631 Andreasson et al. Dec 2004 A1
20050055242 Bello et al. Mar 2005 A1
20050059926 Sage, Jr. et al. Mar 2005 A1
20050070978 Bek et al. Mar 2005 A1
20050088306 Andreasson et al. Apr 2005 A1
20050101905 Merry May 2005 A1
20050106225 Massengale et al. May 2005 A1
20050107923 Vanderveen May 2005 A1
20050118048 Traxinger Jun 2005 A1
20050151652 Frasch Jul 2005 A1
20050151823 Botten et al. Jul 2005 A1
20050154368 Lim et al. Jul 2005 A1
20050165559 Nelson Jul 2005 A1
20050182358 Veit et al. Aug 2005 A1
20050189252 Naylor Sep 2005 A1
20050277873 Stewart et al. Dec 2005 A1
20050277890 Stewart et al. Dec 2005 A1
20060032918 Andreasson et al. Feb 2006 A1
20060065713 Kingery Mar 2006 A1
20060079767 Gibbs et al. Apr 2006 A1
20060079843 Brooks et al. Apr 2006 A1
20060102503 Elhadad et al. May 2006 A1
20060116639 Russell Jun 2006 A1
20060122577 Poulsen et al. Jun 2006 A1
20060143051 Eggers et al. Jun 2006 A1
20060144942 Evans et al. Jul 2006 A1
20060178617 Adams et al. Aug 2006 A1
20060190302 Eggers et al. Aug 2006 A1
20060206356 Vanderveen Sep 2006 A1
20060224125 Simpson et al. Oct 2006 A1
20060226089 Robinson et al. Oct 2006 A1
20060229551 Martinez et al. Oct 2006 A1
20060253346 Gomez Nov 2006 A1
20060258985 Russell Nov 2006 A1
20060265186 Holland et al. Nov 2006 A1
20060270997 Lim et al. Nov 2006 A1
20060287887 Hutchinson et al. Dec 2006 A1
20070008399 Botten et al. Jan 2007 A1
20070043335 Olsen et al. Feb 2007 A1
20070060874 Nesbitt et al. Mar 2007 A1
20070100316 Traxinger May 2007 A1
20070134044 Colbrunn et al. Jun 2007 A1
20070135765 Miller et al. Jun 2007 A1
20070136218 Bauer et al. Jun 2007 A1
20070166198 Sangha et al. Jul 2007 A1
20070167919 Nemoto et al. Jul 2007 A1
20070179448 Lim et al. Aug 2007 A1
20070186923 Poutiatine et al. Aug 2007 A1
20070187475 MacLeod Aug 2007 A1
20070191787 Lim et al. Aug 2007 A1
20070255199 Dewey Nov 2007 A1
20070279625 Rzasa et al. Dec 2007 A1
20070280710 Tainer et al. Dec 2007 A1
20070293830 Martin Dec 2007 A1
20070299421 Gibson Dec 2007 A1
20080045930 Makin et al. Feb 2008 A1
20080051937 Khan et al. Feb 2008 A1
20080061153 Hickle et al. Mar 2008 A1
20080065016 Peterson et al. Mar 2008 A1
20080071219 Rhinehart et al. Mar 2008 A1
20080118141 Sommer et al. May 2008 A1
20080125724 Monroe May 2008 A1
20080191013 Liberatore Aug 2008 A1
20080208042 Ortenzi et al. Aug 2008 A1
20080234630 Iddan et al. Sep 2008 A1
20080243054 Mollstam et al. Oct 2008 A1
20080243088 Evans Oct 2008 A1
20080255523 Grinberg Oct 2008 A1
20080287889 Sharvit Nov 2008 A1
20080294108 Briones et al. Nov 2008 A1
20080306439 Nelson et al. Dec 2008 A1
20090018494 Nemoto et al. Jan 2009 A1
20090030730 Dullemen et al. Jan 2009 A1
20090036846 Dacquay et al. Feb 2009 A1
20090043253 Podaima Feb 2009 A1
20090069714 Eichmann et al. Mar 2009 A1
20090069743 Krishnamoorthy et al. Mar 2009 A1
20090085768 Patel et al. Apr 2009 A1
20090112178 Behzadi Apr 2009 A1
20090112333 Sahai Apr 2009 A1
20090113996 Wang May 2009 A1
20090126483 Blendinger et al. May 2009 A1
20090126866 Stenner et al. May 2009 A1
20090137956 Souter May 2009 A1
20090143673 Drost et al. Jun 2009 A1
20090149744 Nemoto et al. Jun 2009 A1
20090156931 Nemoto et al. Jun 2009 A1
20090156985 Hottmann Jun 2009 A1
20090157008 Vitral Jun 2009 A1
20090159654 Grimard Jun 2009 A1
20090200185 Follman et al. Aug 2009 A1
20090209911 Cabus Aug 2009 A1
20090259176 Yairi Oct 2009 A1
20090288497 Ziegler et al. Nov 2009 A1
20090294521 de la Huerga Dec 2009 A1
20090296540 Gilbert et al. Dec 2009 A1
20090306620 Thilly et al. Dec 2009 A1
20090312635 Shimchuk et al. Dec 2009 A1
20100022953 Bochenko et al. Jan 2010 A1
20100022987 Bochenko et al. Jan 2010 A1
20100036310 Hillman Feb 2010 A1
20100036313 Shener et al. Feb 2010 A1
20100065633 Nelson et al. Mar 2010 A1
20100065643 Leyvraz et al. Mar 2010 A1
20100076310 Wenderow et al. Mar 2010 A1
20100095782 Ferencz et al. Apr 2010 A1
20100114951 Bauman et al. May 2010 A1
20100145165 Merry Jun 2010 A1
20100152562 Goodnow et al. Jun 2010 A1
20100153136 Whittacre et al. Jun 2010 A1
20100164727 Bazargan Jul 2010 A1
20100174266 Estes Jul 2010 A1
20100179417 Russo Jul 2010 A1
20100204659 Bochenko et al. Aug 2010 A1
20100262002 Martz Oct 2010 A1
20100280486 Khair et al. Nov 2010 A1
20100286599 Ziegler et al. Nov 2010 A1
20100305499 Matsiev et al. Dec 2010 A1
20110009800 Dam et al. Jan 2011 A1
20110009817 Bennett et al. Jan 2011 A1
20110028937 Powers et al. Feb 2011 A1
20110060198 Bennett et al. Mar 2011 A1
20110093279 Levine et al. Apr 2011 A1
20110111794 Bochenko et al. May 2011 A1
20110112473 Bochenko et al. May 2011 A1
20110112474 Bochenko et al. May 2011 A1
20110137288 Tallarida et al. Jun 2011 A1
20110152824 DiPerna et al. Jun 2011 A1
20110152825 Marggi Jun 2011 A1
20110152834 Langan et al. Jun 2011 A1
20110160655 Hanson et al. Jun 2011 A1
20110161112 Keefe et al. Jun 2011 A1
20110166511 Sharvit et al. Jul 2011 A1
20110176490 Mehta et al. Jul 2011 A1
20110185821 Genosar Aug 2011 A1
20110220713 Cloninger Sep 2011 A1
20110224649 Duane et al. Sep 2011 A1
20110259954 Bartz et al. Oct 2011 A1
20110264069 Bochenko Oct 2011 A1
20110295191 Injev Dec 2011 A1
20110313349 Krulevitch et al. Dec 2011 A1
20110315611 Fulkerson et al. Dec 2011 A1
20120004542 Nemoto et al. Jan 2012 A1
20120004602 Hanson et al. Jan 2012 A1
20120004637 Krulevitch et al. Jan 2012 A1
20120006127 Nielsen Jan 2012 A1
20120022458 Oh et al. Jan 2012 A1
20120035535 Johnson et al. Feb 2012 A1
20120037266 Bochenko Feb 2012 A1
20120041355 Edman et al. Feb 2012 A1
20120046295 Charrier et al. Feb 2012 A1
20120065617 Matsiev et al. Mar 2012 A1
20120073673 Kameyama Mar 2012 A1
20120222468 Nelson et al. Sep 2012 A1
20120226446 Nelson et al. Sep 2012 A1
20120226447 Nelson et al. Sep 2012 A1
20120287431 Matsiev et al. Nov 2012 A1
20120323208 Bochenko et al. Dec 2012 A1
20120325330 Prince et al. Dec 2012 A1
20130018356 Prince et al. Jan 2013 A1
20130105568 Jablonski et al. May 2013 A1
20130135388 Samoto et al. May 2013 A1
20130181046 Fedorko et al. Jul 2013 A1
20130204227 Bochenko et al. Aug 2013 A1
20130225945 Prince et al. Aug 2013 A1
20130226137 Brown Aug 2013 A1
20130327822 Keefe et al. Dec 2013 A1
20140039383 Dobbles et al. Feb 2014 A1
20140060729 Srnka et al. Mar 2014 A1
20140142975 Keefe et al. May 2014 A1
20150204705 Forster et al. Jul 2015 A1
20150211904 Forster Jul 2015 A1
Foreign Referenced Citations (24)
Number Date Country
101732778 Jun 2010 CN
4137837 Oct 1992 DE
29617777 Dec 1996 DE
1944709 Jul 2008 EP
1980974 Oct 2008 EP
2135630 Dec 2009 EP
2183046 May 1987 GB
2504288 Jan 2014 GB
2504295 Jan 2014 GB
2504297 Jan 2014 GB
5317421 Dec 1993 JP
2008517646 May 2008 JP
201266004 Apr 2012 JP
1020090025392 Mar 2009 KR
03063932 Aug 2003 WO
2009114115 Sep 2009 WO
2010144482 Dec 2010 WO
2011126485 Oct 2011 WO
2012034084 Mar 2012 WO
2012126744 Sep 2012 WO
2013096713 Jun 2013 WO
2014016311 Jan 2014 WO
2014016315 Jan 2014 WO
2014016316 Jan 2014 WO
Non-Patent Literature Citations (19)
Entry
U.S. Appl. No. 12/614,276, filed Nov. 6, 2009, 2011-0112473.
U.S. Appl. No. 12/765,707, filed Apr. 22, 2010, 2011-0111794.
U.S. Appl. No. 12/768,509, filed Apr. 27, 2010, 2011-0264069.
U.S. Appl. No. 12/938,300, filed Nov. 2, 2010, 2011-0112474.
U.S. Appl. No. 13/149,782, filed May 31, 2011.
U.S. Appl. No. 13/170,073, filed Jun. 27, 2011.
U.S. Appl. No. 13/282,255, filed Oct. 26, 2011, 2012-0037266.
U.S. Appl. No. 13/524,736, filed Jun. 15, 2012.
U.S. Appl. No. 13/549,278, filed Jul. 13, 2012.
U.S. Appl. No. 61/551,916, filed Oct. 26, 2011.
Google Scholar Search [Jul. 21, 2014].
U.S. Appl. No. 13/524,736, filed Jun. 15, 2012, 2012-0323208.
U.S. Appl. No. 13/549,278, filed Jul. 13, 2012, 2013-0018356.
U.S. Appl. No. 13/689,729, filed Nov. 29, 2012, 2014-0066880.
U.S. Appl. No. 13/777,831, filed Feb. 26, 2013, 2013-0225945.
U.S. Appl. No. 13/777,964, filed Feb. 26, 2013, 2013-0204227.
U.S. Appl. No. 13/802,231, filed Mar. 13, 2013, 2014-0276213.
U.S. Appl. No. 13/671,752, filed Nov. 8, 2012.
International Search Report dated Aug. 2, 2011 for corresponding PCT Application No. PCT/US2010/055322.
Related Publications (1)
Number Date Country
20120325330 A1 Dec 2012 US
Provisional Applications (1)
Number Date Country
61500073 Jun 2011 US