Selectively degradable passage restriction and method

Information

  • Patent Grant
  • 9033055
  • Patent Number
    9,033,055
  • Date Filed
    Wednesday, August 17, 2011
    12 years ago
  • Date Issued
    Tuesday, May 19, 2015
    9 years ago
Abstract
An actuation system and method includes a tubular defining a passage, and an assembly disposed with the tubular. The assembly includes a restriction operatively arranged to receive a restrictor for enabling actuation of the assembly. The restriction includes a degradable material with a protective layer thereon, the degradable material degrading upon exposure to a fluid in the passage and the protective layer isolating the degradable material from the fluid.
Description
BACKGROUND

Plugs, balls, darts, etc. are used in the downhole drilling and completions industry for actuating of a variety of tools and assemblies. Typically, the plugs land in a seat, blocking fluid flow through a passage and enabling a differential pressure to be created thereacross for actuating a tool or assembly. After actuation of the tool or assembly, it is often desirable to remove the resulting obstruction. Advances in selectively removable plugs and plug seats are accordingly well received by the industry.


BRIEF DESCRIPTION

An actuation system and method, the system including a tubular defining a passage, and an assembly disposed with the tubular, the assembly including a restriction operatively arranged to receive a restrictor for enabling actuation of the assembly, the restriction including a degradable material with a protective layer thereon, the degradable material degrading upon exposure to a fluid in the passage and the protective layer isolating the degradable material from the fluid.


An actuation system including a tubular defining a passage, and an assembly disposed with the tubular, the assembly having a restriction operatively arranged for receiving a restrictor, the restrictor enabling actuation of the assembly, the restriction at least partially formed from a degradable material responsive to a fluid in the passage, wherein actuating the assembly performs a primary function and also exposes the degradable material to the fluid.


A method of operating a downhole system, including launching a restrictor through a passage in a tubular, receiving the restrictor at a restriction of an assembly, the restriction formed from a degradable material with a protective layer thereon, actuating the assembly with the restrictor for performing a primary function of the assembly, wherein actuation of the assembly also exposes the degradable material to the fluid.





BRIEF DESCRIPTION OF THE DRAWINGS

The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:



FIG. 1 is a cross-sectional view of a downhole system having an actuatable plug assembly with a degradable seat in an initial position;



FIG. 2 is a cross-sectional view of the system of FIG. 1 with the plug assembly in an actuated position for exposing a degradable core of the seat to a downhole fluid;



FIG. 3 is a quarter-sectional view of another downhole system having an actuatable plug assembly with a degradable seat;



FIG. 4 is a quarter-sectional view of the system of FIG. 3 with a pressure applied to the plug assembly for exposing a degradable core of the seat to a downhole fluid;



FIG. 5 is an enlarged view of the area generally encircled in FIG. 4 showing a protective layer penetrated in order to expose the core to the downhole fluid;



FIG. 6 is a quarter-sectional view of a downhole assembly having an extension for delaying degradation of a restriction; and



FIG. 7 is a view of the assembly taken generally along line 7-7 in FIG. 6.





DETAILED DESCRIPTION

A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.


Referring now to FIG. 1, a system 10 is shown including a tubular 12 having a plurality of ports 14. The ports 14 are selectively openable by use of an assembly 16, which includes a sleeve 18 actuatable by a restrictor 20. That is, by landing the restrictor 20 at a restriction 22 disposed with the sleeve 18, the restrictor 20 blocks fluid flow through a passage 24. In the illustrated embodiments, the restrictor 20 takes the form of a ball and the restriction 22 takes the form of a seat, although these are not to be considered limiting as discussed below. Blockage of the passage 24 enables a pressure differential to be formed across the restrictor 20 for urging the sleeve 18 from an initial or run-in position in which the ports 14 are closed, as shown in FIG. 1, to an actuated position in which the ports 14 are open, as shown in FIG. 2.


The assembly 16 could be used in fracturing operations or the like. The restrictor 20 could be any type of ball, dart, plug, etc. that lands at the restriction 22 for blocking fluid flow and enabling creation of a differential pressure. The restrictor 20 could alternatively be some other element that at least partially blocks fluid flow through the passage 24 and is received at least temporarily fleetingly by the restriction 22 for applying a force on the restriction 22 as it passes through or by the restriction 22, such as a collet, dart, etc. Similarly, the restriction 22 or any other restriction discussed herein could be a full or partial ring, sleeve, cup, etc., or any other member capable of at least partially restricting its corresponding passage, e.g., the passage 24. Likewise, the assembly 16 could be substituted with any other tool or assembly that is triggered, actuated, shifted, moved, opened, closed, etc. (generally, “actuated”) by use of a restrictor. It is thus to be appreciated that the current invention is not limited to merely port control assemblies or fracturing operations. A release member such as a collet, shear screw, etc., could be used to hold the sleeve 18 in the initial position until a differential pressure is created across the restrictor 20 to overcome the release member.


After actuation of the sleeve 18, the restriction 22 is intended to be removed. That is, the restriction 22 includes a core 26 that is degradable upon exposure to a downhole fluid. “Degradable” is intended to mean that the core 26 is disintegratable, dissolvable, weakenable, corrodible, consumable, or otherwise removable. It is to be understood that use herein of the term “degrade”, or any of its forms, incorporates the stated meaning. For example, the core 26 could be made from magnesium, aluminum, controlled electrolytic metallic materials, described in more detail below, etc. and degradable upon exposure to one or more fluids available or deliverable downhole, such as water, brine, acid, oil, etc. By exposing the core 26 to a specified downhole fluid, the restriction 22 can be removed without an intrusive, costly, or time-consuming operation such as milling. Furthermore, by degrading the core 26, the restrictor 20 will be released from the restriction 22 and pass further down the passage 24. For example, a single restrictor is thus usable to successively actuate a plurality of seats, sleeves, assemblies, tools etc. (generally, “assemblies”) down the length of the tubular 12 or a string in which the tubular 12 is installed. For example, a single restrictor could be used to actuate multiple port assemblies in a fracturing operation.


It is expected that the restriction 22 will be subjected to various downhole fluids well before the restrictor 20 has encountered the restriction 22 for actuating the assembly 16. Exposure to the downhole fluids prior to actuation of the assembly 16 would disable actuation of the assembly 16. That is, without the restriction 22, the restrictor 20 would not land or otherwise be interfered with, and a pressure would not be able to be applied across or to the restrictor 20 for actuating the assembly 16. Accordingly, the degradable core 26 includes a protective layer 28. For example, by manufacturing the protective layer 28 from a material that is resistant, inert, passive, inactive, etc. with respect to the downhole fluids, the protective layer 28 will temporarily protect the degradable core 26. The protective layer 28 could be made from, for example, cladding, polymers, thermosets, thermoplastics, elastomers, resins, epoxies, etc. In addition to chemical protection, the layer 28 could also lend additional mechanical strength or durability to the core 26 to protect the core 26 from impact or erosion. The layer 28 could be any thickness, e.g., based on the material used, properties desired to be imparted to the core 26, etc.


In the embodiment of FIGS. 1 and 2, the protective layer 28 does not fully enclose or encapsulate the core 26. That is, the core 26 includes an unprotected area 30 that is not coated by the protective layer 28. A channel 32 extends from the unprotected area 30 through the sleeve 18. When the sleeve 18 is in the initial position of FIG. 1, the channel 32 and the unprotected area 30 of the core 26 are isolated from the downhole fluids via a first pair of seals 34 located between the sleeve 18 and the tubular 12 and a second pair of seals 36 located between the sleeve 18 and the restriction 22. The seals 34 and 36 are, for example, o-rings, bonded seals, or any other suitable sealing element and can be manufactured from any suitable material known in the art. The seals 34 and 36 also isolate the sides of the passage 24 on opposite sides of the restrictor 20 from each other such that a differential pressure can be formed thereacross.


After actuation of the assembly 16, the differential pressure across the restrictor 20 is no longer needed and the restriction 22 and/or the restrictor 20 can be removed. In order to expose the core 26 to the downhole fluid, the protective layer 28 can be penetrated. For example, in the embodiment of FIGS. 1 and 2, actuation of the sleeve 18 not only performs a primary function of the assembly, e.g., selectively opening the ports 14, but also causes the restriction 22 to be exposed to the downhole fluids. Specifically, the passage 24 in the tubular 12 widens downhole for forming a cavity 38 between the sleeve 18 and the tubular 12 when the sleeve 18 is in its open position. Together with the channel 32, the cavity 38 enables fluid communication between the passage 24 and the unprotected area 30 of the core 26. Thus, by providing the proper fluid in the passage 24, degradation of the core 26 can commence immediately after actuation of the sleeve 18.


A system 40 is shown in FIGS. 3 and 4 having an assembly 42 in an initial position and after a pressure is applied thereto, respectively. The assembly 42 generally resembles the assembly 16 in that it includes a sleeve 44 and a restriction 46, with the restriction 46 formed from a degradable core 48 and a protective layer 50. However, unlike the system 10, the protective layer 50 fully encloses the core 48. Instead of channeling fluid into an unprotected area of the core, actuation of the assembly 42 causes the layer 50 to be penetrated.


For example, in addition to performing some primary task or operation (e.g., opening ports, triggering a tool, etc.), actuation of the assembly 42 also drives the restriction 46 into a plurality of penetrating elements 52 on the sleeve 44. The penetrating elements 52 could be any features that penetrate, puncture, pierce, enter, or otherwise provide fluid access through the layer 50 to the core 48. The penetration of the layer 50 is shown in more detail in FIG. 5. The penetrating elements could take the form of sharp points, teeth, spikes, etc. The penetrating elements 52 could also include fins, blades, points, protrusions, abrasive or rough textures, etc., arranged on the circumferential surface of the sleeve 44 or the exterior of the restrictor 20, particularly if the restrictor 20 takes the form of an element that passes through or by the restriction instead of landing at the restriction, for scouring, etching, or abrading the layer 50 as the restriction 46 is actuated. Once the layer 50 is penetrated, the core 48 is exposable to downhole fluids for effecting removal of the restriction 46. In view of this embodiment it is to be appreciated that by positioning ports or the like radially outwardly from the restriction, making the restriction slidable directly against the tubular, and including the penetrating elements on the tubular, sleeves such as the sleeve 44 can be avoided, with the ports opening upon degradation of the restriction.


Another embodiment is shown in FIGS. 6 and 7, namely including an assembly 54. The assembly 54 generally resembles the assemblies discussed above, having a sleeve 56 and a restriction or seat 58. Also similar to the above, the restriction 58 comprises a degradable core 60 and a protective layer 62. In the assembly 54, however, the restriction 58 has an extension 64 protruding axially therefrom. The extension 64 is coated by the layer 62 except for an uncovered area 66 at an end thereof. By distancing the uncovered area 66 from the main body of the restriction 58, the extension 64 acts as a “fuse” for delaying degradation of the restriction 58 until the extension 64 has fully degraded upon exposure of the uncovered area 66 to the downhole fluid. In this way, the length of the extension 64 can be set to delay degradation of the restriction 58 long enough for the restriction 58 to be first used for its primary purpose, e.g., receiving the restrictor 20 or some other plug for opening ports, etc., and then degrading thereafter.


Materials appropriate for the purpose of degradable restriction cores include magnesium, aluminum, controlled electrolytic metallic materials, etc. The controlled electrolytic materials as described herein are lightweight, high-strength metallic materials. Examples of suitable materials and their methods of manufacture are given in United States Patent Publication No. 2011/0135953 (Xu, et al.), which Patent Publication is hereby incorporated by reference in its entirety. These lightweight, high-strength and selectably and controllably degradable materials include fully-dense, sintered powder compacts formed from coated powder materials that include various lightweight particle cores and core materials having various single layer and multilayer nanoscale coatings. These powder compacts are made from coated metallic powders that include various electrochemically-active (e.g., having relatively higher standard oxidation potentials) lightweight, high-strength particle cores and core materials, such as electrochemically active metals, that are dispersed within a cellular nanomatrix formed from the various nanoscale metallic coating layers of metallic coating materials, and are particularly useful in borehole applications. Suitable core materials include electrochemically active metals having a standard oxidation potential greater than or equal to that of Zn, including as Mg, Al, Mn or Zn or alloys or combinations thereof. For example, tertiary Mg—Al—X alloys may include, by weight, up to about 85% Mg, up to about 15% Al and up to about 5% X, where X is another material. The core material may also include a rare earth element such as Sc, Y, La, Ce, Pr, Nd or Er, or a combination of rare earth elements. In other embodiments, the materials could include other metals having a standard oxidation potential less than that of Zn. Also, suitable non-metallic materials include ceramics, glasses (e.g., hollow glass microspheres), carbon, or a combination thereof. In one embodiment, the material has a substantially uniform average thickness between dispersed particles of about 50 nm to about 5000 nm. In one embodiment, the coating layers are formed from Al, Ni, W or Al2O3, or combinations thereof. In one embodiment, the coating is a multi-layer coating, for example, comprising a first Al layer, an Al2O3 layer, and a second Al layer. In some embodiments, the coating may have a thickness of about 25 nm to about 2500 nm.


These powder compacts provide a unique and advantageous combination of mechanical strength properties, such as compression and shear strength, low density and selectable and controllable corrosion properties, particularly rapid and controlled dissolution in various borehole fluids. The fluids may include any number of ionic fluids or highly polar fluids, such as those that contain various chlorides. Examples include fluids comprising potassium chloride (KCl), hydrochloric acid (HCl), calcium chloride (CaCl2), calcium bromide (CaBr2) or zinc bromide (ZnBr2). For example, the particle core and coating layers of these powders may be selected to provide sintered powder compacts suitable for use as high strength engineered materials having a compressive strength and shear strength comparable to various other engineered materials, including carbon, stainless and alloy steels, but which also have a low density comparable to various polymers, elastomers, low-density porous ceramics and composite materials.


While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.

Claims
  • 1. An actuation system comprising: a tubular defining a passage; andan assembly disposed with the tubular, the assembly including a restriction operatively arranged to receive a restrictor for enabling actuation of the assembly, the restriction including a degradable material with a protective layer thereon, the degradable material degrading upon exposure to a fluid in the passage and the protective layer isolating the degradable material from the fluid, the degradable material including an uncovered area with respect to the protective layer;wherein the restrictor blocks fluid flow through the passage, the assembly is actuated by creating a pressure differential across the restrictor, and actuation of the assembly establishes fluid communication between the uncovered area and the passage.
  • 2. The system of claim 1, wherein at least one seal element is included to isolate the uncovered area from the fluid.
  • 3. The system of claim 1, wherein fluid communication between the uncovered area and the passage is enabled by a cavity in the tubular, the cavity misaligned with the uncovered area before actuation.
  • 4. The system of claim 1, wherein actuation of the assembly opens at least one port in the tubular.
  • 5. The system of claim 4, wherein the assembly includes a sleeve disposed between the restriction and the tubular and actuation of the assembly shifts the sleeve to open the at least one port.
  • 6. The system of claim 1, wherein the degradable material is a controlled electrolytic metallic material.
  • 7. An actuation system, comprising: a tubular defining a passage; andan assembly disposed with the tubular, the assembly having a restriction operatively arranged for receiving a restrictor, the restrictor enabling actuation of the assembly, the restriction at least partially formed from a degradable material responsive to a fluid in the passage, wherein actuating the assembly performs a primary function and also exposes the degradable material to the fluid;wherein the degradable material is at least partially encapsulated by a protective layer, and wherein actuating the assembly aligns an uncovered area of the degradable material with a cavity in the tubular, the cavity establishing fluid communication between the uncovered area and the passage.
  • 8. The system of claim 7, wherein the primary function of the assembly is to selectively open at least one port in the tubular.
  • 9. A method of operating the system of claim 1, comprising: launching the restrictor through the passage in the tubular;receiving the restrictor at the restriction of the assembly;actuating the assembly with the restrictor for performing a primary function of the assembly, wherein actuation of the assembly also exposes the degradable material to the fluid.
  • 10. The method of claim 9, wherein the primary function of the assembly is to selectively open at least one port in the tubular.
  • 11. The method of claim 9, wherein actuating the assembly aligns an uncovered area of the degradable material with a cavity in the tubular, the cavity establishing fluid communication between the uncovered area and the passage.
US Referenced Citations (672)
Number Name Date Kind
2238895 Gage Apr 1941 A
2261292 Salnikov Nov 1941 A
2294648 Ansel et al. Sep 1942 A
2301624 Holt Nov 1942 A
2754910 Derrick et al. Jul 1956 A
2983634 Budininkas et al. May 1961 A
3057405 Mallinger Oct 1962 A
3106959 Huitt et al. Oct 1963 A
3152009 DeLong Oct 1964 A
3196949 Thomas Jul 1965 A
3242988 McGuire et al. Mar 1966 A
3316748 Lang et al. May 1967 A
3347317 Zandmer Oct 1967 A
3347714 Broverman et al. Oct 1967 A
3390724 Caldwell Jul 1968 A
3395758 Kelly et al. Aug 1968 A
3406101 Kilpatrick Oct 1968 A
3434537 Zandmer Mar 1969 A
3513230 Rhees et al. May 1970 A
3637446 Elliott et al. Jan 1972 A
3645331 Maurer et al. Feb 1972 A
3765484 Hamby, Jr. et al. Oct 1973 A
3768563 Blount Oct 1973 A
3775823 Adolph et al. Dec 1973 A
3878889 Seabourn Apr 1975 A
3894850 Kovalchuk et al. Jul 1975 A
3924677 Prenner et al. Dec 1975 A
4010583 Highberg Mar 1977 A
4039717 Titus Aug 1977 A
4050529 Tagirov et al. Sep 1977 A
4248307 Silberman et al. Feb 1981 A
4372384 Kinney Feb 1983 A
4373584 Silberman et al. Feb 1983 A
4373952 Parent Feb 1983 A
4374543 Richardson Feb 1983 A
4384616 Dellinger May 1983 A
4395440 Abe et al. Jul 1983 A
4399871 Adkins et al. Aug 1983 A
4407368 Erbstoesser Oct 1983 A
4422508 Rutledge, Jr. et al. Dec 1983 A
4452311 Speegle et al. Jun 1984 A
4475729 Costigan Oct 1984 A
4498543 Pye et al. Feb 1985 A
4499048 Hanejko Feb 1985 A
4499049 Hanejko Feb 1985 A
4526840 Jarabek Jul 1985 A
4534414 Pringle Aug 1985 A
4539175 Lichti et al. Sep 1985 A
4554986 Jones Nov 1985 A
4640354 Boisson Feb 1987 A
4664962 DesMarais, Jr. May 1987 A
4668470 Gilman et al. May 1987 A
4673549 Ecer Jun 1987 A
4674572 Gallus Jun 1987 A
4678037 Smith Jul 1987 A
4681133 Weston Jul 1987 A
4688641 Knieriemen Aug 1987 A
4693863 Del Corso et al. Sep 1987 A
4703807 Weston Nov 1987 A
4706753 Ohkochi et al. Nov 1987 A
4708202 Sukup et al. Nov 1987 A
4708208 Halbardier Nov 1987 A
4709761 Setterberg, Jr. Dec 1987 A
4714116 Brunner Dec 1987 A
4721159 Ohkochi et al. Jan 1988 A
4738599 Shilling Apr 1988 A
4768588 Kupsa Sep 1988 A
4784226 Wyatt Nov 1988 A
4805699 Halbardier Feb 1989 A
4817725 Jenkins Apr 1989 A
4834184 Streich et al. May 1989 A
H635 Johnson et al. Jun 1989 H
4850432 Porter et al. Jul 1989 A
4853056 Hoffman Aug 1989 A
4869324 Holder Sep 1989 A
4869325 Halbardier Sep 1989 A
4889187 Terrell et al. Dec 1989 A
4890675 Dew Jan 1990 A
4909320 Hebert et al. Mar 1990 A
4929415 Okazaki May 1990 A
4932474 Schroeder, Jr. et al. Jun 1990 A
4938309 Emdy Jul 1990 A
4938809 Das et al. Jul 1990 A
4944351 Eriksen et al. Jul 1990 A
4949788 Szarka et al. Aug 1990 A
4952902 Kawaguchi et al. Aug 1990 A
4975412 Okazaki et al. Dec 1990 A
4977958 Miller Dec 1990 A
4981177 Carmody et al. Jan 1991 A
4986361 Mueller et al. Jan 1991 A
4997622 Regazzoni et al. Mar 1991 A
5006044 Walker, Sr. et al. Apr 1991 A
5010955 Springer Apr 1991 A
5036921 Pittard et al. Aug 1991 A
5048611 Cochran Sep 1991 A
5049165 Tselesin Sep 1991 A
5061323 DeLuccia Oct 1991 A
5063775 Walker, Sr. et al. Nov 1991 A
5073207 Faure et al. Dec 1991 A
5074361 Brisco et al. Dec 1991 A
5076869 Bourell et al. Dec 1991 A
5084088 Okazaki Jan 1992 A
5087304 Chang et al. Feb 1992 A
5090480 Pittard et al. Feb 1992 A
5095988 Bode Mar 1992 A
5103911 Heijnen Apr 1992 A
5117915 Mueller et al. Jun 1992 A
5161614 Wu et al. Nov 1992 A
5178216 Giroux et al. Jan 1993 A
5181571 Mueller et al. Jan 1993 A
5188182 Echols, III et al. Feb 1993 A
5188183 Hopmann et al. Feb 1993 A
5204055 Sachs et al. Apr 1993 A
5222867 Walker, Sr. et al. Jun 1993 A
5226483 Williamson, Jr. Jul 1993 A
5228518 Wilson et al. Jul 1993 A
5234055 Cornette Aug 1993 A
5253714 Davis et al. Oct 1993 A
5271468 Streich et al. Dec 1993 A
5282509 Schurr, III Feb 1994 A
5293940 Hromas et al. Mar 1994 A
5304260 Aikawa et al. Apr 1994 A
5309874 Willermet et al. May 1994 A
5310000 Arterbury et al. May 1994 A
5316598 Chang et al. May 1994 A
5318746 Lashmore Jun 1994 A
5380473 Bogue et al. Jan 1995 A
5387380 Cima et al. Feb 1995 A
5392860 Ross Feb 1995 A
5394941 Venditto et al. Mar 1995 A
5398754 Dinhoble Mar 1995 A
5407011 Layton Apr 1995 A
5409555 Fujita et al. Apr 1995 A
5411082 Kennedy May 1995 A
5417285 Van Buskirk et al. May 1995 A
5427177 Jordan, Jr. et al. Jun 1995 A
5435392 Kennedy Jul 1995 A
5439051 Kennedy et al. Aug 1995 A
5454430 Kennedy et al. Oct 1995 A
5456317 Hood, III et al. Oct 1995 A
5464062 Blizzard, Jr. Nov 1995 A
5472048 Kennedy et al. Dec 1995 A
5474131 Jordan, Jr. et al. Dec 1995 A
5477923 Jordan, Jr. et al. Dec 1995 A
5507439 Story Apr 1996 A
5526880 Jordan, Jr. et al. Jun 1996 A
5526881 Martin et al. Jun 1996 A
5529746 Knoss et al. Jun 1996 A
5533573 Jordan, Jr. et al. Jul 1996 A
5536485 Kume et al. Jul 1996 A
5558153 Holcombe et al. Sep 1996 A
5607017 Owens et al. Mar 1997 A
5623993 Van Buskirk et al. Apr 1997 A
5623994 Robinson Apr 1997 A
5636691 Hendrickson et al. Jun 1997 A
5641023 Ross et al. Jun 1997 A
5647444 Williams Jul 1997 A
5665289 Chung et al. Sep 1997 A
5677372 Yamamoto et al. Oct 1997 A
5685372 Gano Nov 1997 A
5701576 Fujita et al. Dec 1997 A
5707214 Schmidt Jan 1998 A
5709269 Head Jan 1998 A
5720344 Newman Feb 1998 A
5728195 Eastman et al. Mar 1998 A
5765639 Muth Jun 1998 A
5772735 Sehgal et al. Jun 1998 A
5782305 Hicks Jul 1998 A
5797454 Hipp Aug 1998 A
5826652 Tapp Oct 1998 A
5826661 Parker et al. Oct 1998 A
5829520 Johnson Nov 1998 A
5836396 Norman Nov 1998 A
5857521 Ross et al. Jan 1999 A
5881816 Wright Mar 1999 A
5902424 Fujita et al. May 1999 A
5934372 Muth Aug 1999 A
5960881 Allamon et al. Oct 1999 A
5990051 Ischy et al. Nov 1999 A
5992452 Nelson, II Nov 1999 A
5992520 Schultz et al. Nov 1999 A
6007314 Nelson, II Dec 1999 A
6024915 Kume et al. Feb 2000 A
6032735 Echols Mar 2000 A
6036777 Sachs Mar 2000 A
6047773 Zeltmann et al. Apr 2000 A
6050340 Scott Apr 2000 A
6069313 Kay May 2000 A
6076600 Vick, Jr. et al. Jun 2000 A
6079496 Hirth Jun 2000 A
6085837 Massinon et al. Jul 2000 A
6095247 Streich et al. Aug 2000 A
6119783 Parker et al. Sep 2000 A
6142237 Christmas et al. Nov 2000 A
6161622 Robb et al. Dec 2000 A
6167970 Stout et al. Jan 2001 B1
6170583 Boyce Jan 2001 B1
6173779 Smith Jan 2001 B1
6189616 Gano et al. Feb 2001 B1
6213202 Read, Jr. Apr 2001 B1
6220350 Brothers et al. Apr 2001 B1
6220357 Carmichael Apr 2001 B1
6228904 Yadav et al. May 2001 B1
6237688 Burleson et al. May 2001 B1
6238280 Ritt et al. May 2001 B1
6241021 Bowling Jun 2001 B1
6248399 Hehmann Jun 2001 B1
6250392 Muth Jun 2001 B1
6273187 Voisin, Jr. et al. Aug 2001 B1
6276452 Davis et al. Aug 2001 B1
6276457 Moffatt et al. Aug 2001 B1
6279656 Sinclair et al. Aug 2001 B1
6287445 Lashmore et al. Sep 2001 B1
6302205 Ryll Oct 2001 B1
6315041 Carlisle et al. Nov 2001 B1
6315050 Vaynshteyn et al. Nov 2001 B2
6325148 Trahan et al. Dec 2001 B1
6328110 Joubert Dec 2001 B1
6341653 Firmaniuk et al. Jan 2002 B1
6349766 Bussear et al. Feb 2002 B1
6354379 Miszewski et al. Mar 2002 B2
6357332 Vecchio Mar 2002 B1
6371206 Mills Apr 2002 B1
6372346 Toth Apr 2002 B1
6382244 Vann May 2002 B2
6390195 Nguyen et al. May 2002 B1
6390200 Allamon et al. May 2002 B1
6394185 Constien May 2002 B1
6397950 Streich et al. Jun 2002 B1
6408946 Marshall et al. Jun 2002 B1
6419023 George et al. Jul 2002 B1
6439313 Thomeer et al. Aug 2002 B1
6457525 Scott Oct 2002 B1
6467546 Allamon et al. Oct 2002 B2
6470965 Winzer Oct 2002 B1
6491097 ONeal et al. Dec 2002 B1
6491116 Berscheidt et al. Dec 2002 B2
6513598 Moore et al. Feb 2003 B2
6540033 Sullivan et al. Apr 2003 B1
6543543 Muth Apr 2003 B2
6561275 Glass et al. May 2003 B2
6588507 Dusterhoft et al. Jul 2003 B2
6591915 Burris et al. Jul 2003 B2
6601648 Ebinger Aug 2003 B2
6601650 Sundararajan Aug 2003 B2
6609569 Howlett et al. Aug 2003 B2
6612826 Bauer et al. Sep 2003 B1
6613383 George et al. Sep 2003 B1
6619400 Brunet Sep 2003 B2
6634428 Krauss et al. Oct 2003 B2
6662886 Russell Dec 2003 B2
6675889 Mullins et al. Jan 2004 B1
6699305 Myrick Mar 2004 B2
6713177 George et al. Mar 2004 B2
6715541 Pedersen et al. Apr 2004 B2
6719051 Hailey, Jr. et al. Apr 2004 B2
6755249 Robison et al. Jun 2004 B2
6776228 Pedersen et al. Aug 2004 B2
6779599 Mullins et al. Aug 2004 B2
6799638 Butterfield, Jr. Oct 2004 B2
6810960 Pia Nov 2004 B2
6817414 Lee Nov 2004 B2
6831044 Constien Dec 2004 B2
6883611 Smith et al. Apr 2005 B2
6887297 Winter et al. May 2005 B2
6896049 Moyes May 2005 B2
6896061 Hriscu et al. May 2005 B2
6899176 Hailey, Jr. et al. May 2005 B2
6899777 Vaidyanathan et al. May 2005 B2
6908516 Hehmann et al. Jun 2005 B2
6913827 George et al. Jul 2005 B2
6926086 Patterson et al. Aug 2005 B2
6932159 Hovem Aug 2005 B2
6945331 Patel Sep 2005 B2
6951331 Haughom et al. Oct 2005 B2
6959759 Doane et al. Nov 2005 B2
6973970 Johnston et al. Dec 2005 B2
6973973 Howard et al. Dec 2005 B2
6983796 Bayne et al. Jan 2006 B2
6986390 Doane et al. Jan 2006 B2
7013989 Hammond et al. Mar 2006 B2
7017664 Walker et al. Mar 2006 B2
7017677 Keshavan et al. Mar 2006 B2
7021389 Bishop et al. Apr 2006 B2
7025146 King et al. Apr 2006 B2
7028778 Krywitsky Apr 2006 B2
7044230 Starr et al. May 2006 B2
7049272 Sinclair et al. May 2006 B2
7051805 Doane et al. May 2006 B2
7059410 Bousche et al. Jun 2006 B2
7090027 Williams Aug 2006 B1
7093664 Todd et al. Aug 2006 B2
7096945 Richards et al. Aug 2006 B2
7096946 Jasser et al. Aug 2006 B2
7097906 Gardner Aug 2006 B2
7108080 Tessari et al. Sep 2006 B2
7111682 Blaisdell Sep 2006 B2
7141207 Jandeska, Jr. et al. Nov 2006 B2
7150326 Bishop et al. Dec 2006 B2
7163066 Lehr Jan 2007 B2
7174963 Bertelsen Feb 2007 B2
7182135 Szarka Feb 2007 B2
7188559 Vecchio Mar 2007 B1
7210527 Walker et al. May 2007 B2
7210533 Starr et al. May 2007 B2
7217311 Hong et al. May 2007 B2
7234530 Gass Jun 2007 B2
7252162 Akinlade et al. Aug 2007 B2
7255172 Johnson Aug 2007 B2
7255178 Slup et al. Aug 2007 B2
7264060 Wills Sep 2007 B2
7267172 Hofman Sep 2007 B2
7267178 Krywitsky Sep 2007 B2
7270186 Johnson Sep 2007 B2
7287592 Surjaatmadja et al. Oct 2007 B2
7311152 Howard et al. Dec 2007 B2
7316274 Xu et al. Jan 2008 B2
7320365 Pia Jan 2008 B2
7322412 Badalamenti et al. Jan 2008 B2
7322417 Rytlewski et al. Jan 2008 B2
7325617 Murray Feb 2008 B2
7328750 Swor et al. Feb 2008 B2
7331388 Vilela et al. Feb 2008 B2
7337854 Horn et al. Mar 2008 B2
7346456 Le Bemadjiel Mar 2008 B2
7360593 Constien Apr 2008 B2
7360597 Blaisdell Apr 2008 B2
7384443 Mirchandani Jun 2008 B2
7387158 Murray et al. Jun 2008 B2
7387165 Lopez de Cardenas et al. Jun 2008 B2
7392841 Murray et al. Jul 2008 B2
7401648 Richard Jul 2008 B2
7416029 Telfer et al. Aug 2008 B2
7422058 O'Malley Sep 2008 B2
7426964 Lynde et al. Sep 2008 B2
7441596 Wood et al. Oct 2008 B2
7445049 Howard et al. Nov 2008 B2
7451815 Hailey, Jr. Nov 2008 B2
7451817 Reddy et al. Nov 2008 B2
7461699 Richard et al. Dec 2008 B2
7464764 Xu Dec 2008 B2
7472750 Walker et al. Jan 2009 B2
7478676 East, Jr. et al. Jan 2009 B2
7503390 Gomez Mar 2009 B2
7503399 Badalamenti et al. Mar 2009 B2
7510018 Williamson et al. Mar 2009 B2
7513311 Gramstad et al. Apr 2009 B2
7527103 Huang et al. May 2009 B2
7537825 Wardle et al. May 2009 B1
7552777 Murray et al. Jun 2009 B2
7552779 Murray Jun 2009 B2
7575062 East, Jr. Aug 2009 B2
7591318 Tilghman Sep 2009 B2
7600572 Slup et al. Oct 2009 B2
7604055 Richard et al. Oct 2009 B2
7617871 Surjaatmadja et al. Nov 2009 B2
7635023 Goldberg et al. Dec 2009 B2
7640988 Phi et al. Jan 2010 B2
7661480 Al-Anazi Feb 2010 B2
7661481 Todd et al. Feb 2010 B2
7665537 Patel et al. Feb 2010 B2
7686082 Marsh Mar 2010 B2
7690436 Turley et al. Apr 2010 B2
7699101 Fripp et al. Apr 2010 B2
7703510 Xu Apr 2010 B2
7703511 Buyers et al. Apr 2010 B2
7708078 Stoesz May 2010 B2
7709421 Jones et al. May 2010 B2
7712541 Loretz et al. May 2010 B2
7723272 Crews et al. May 2010 B2
7726406 Xu Jun 2010 B2
7735578 Loehr et al. Jun 2010 B2
7752971 Loehr Jul 2010 B2
7757773 Rytlewski Jul 2010 B2
7762342 Richard et al. Jul 2010 B2
7770652 Barnett Aug 2010 B2
7775284 Richards et al. Aug 2010 B2
7775285 Surjaatmadja et al. Aug 2010 B2
7775286 Duphorne Aug 2010 B2
7784543 Johnson Aug 2010 B2
7793714 Johnson Sep 2010 B2
7798225 Giroux et al. Sep 2010 B2
7798226 Themig Sep 2010 B2
7798236 McKeachnie et al. Sep 2010 B2
7806189 Frazier Oct 2010 B2
7806192 Foster et al. Oct 2010 B2
7810553 Cruickshank et al. Oct 2010 B2
7810567 Daniels et al. Oct 2010 B2
7819198 Birckhead et al. Oct 2010 B2
7828055 Willauer et al. Nov 2010 B2
7833944 Munoz et al. Nov 2010 B2
7849927 Herrera Dec 2010 B2
7855168 Fuller et al. Dec 2010 B2
7861781 D'Arcy Jan 2011 B2
7874365 East, Jr. et al. Jan 2011 B2
7878253 Stowe et al. Feb 2011 B2
7896091 Williamson et al. Mar 2011 B2
7897063 Perry et al. Mar 2011 B1
7900696 Nish et al. Mar 2011 B1
7900703 Clark et al. Mar 2011 B2
7909096 Clark et al. Mar 2011 B2
7909104 Bjorgum Mar 2011 B2
7909110 Sharma et al. Mar 2011 B2
7909115 Grove et al. Mar 2011 B2
7913765 Crow et al. Mar 2011 B2
7931093 Foster et al. Apr 2011 B2
7938191 Vaidya May 2011 B2
7946335 Bewlay et al. May 2011 B2
7946340 Surjaatmadja et al. May 2011 B2
7958940 Jameson Jun 2011 B2
7963331 Surjaatmadja et al. Jun 2011 B2
7963340 Gramstad et al. Jun 2011 B2
7963342 George Jun 2011 B2
7980300 Roberts et al. Jul 2011 B2
7987906 Troy Aug 2011 B1
7992763 Vecchio et al. Aug 2011 B2
8020619 Robertson et al. Sep 2011 B1
8020620 Daniels et al. Sep 2011 B2
8025104 Cooke, Jr. Sep 2011 B2
8028767 Radford et al. Oct 2011 B2
8033331 Themig Oct 2011 B2
8039422 Al-Zahrani Oct 2011 B1
8056628 Whitsitt et al. Nov 2011 B2
8056638 Clayton et al. Nov 2011 B2
8109340 Doane et al. Feb 2012 B2
8127856 Nish et al. Mar 2012 B1
8153052 Jackson et al. Apr 2012 B2
8163060 Imanishi et al. Apr 2012 B2
8211247 Marya et al. Jul 2012 B2
8211248 Marya Jul 2012 B2
8226740 Chaumonnot et al. Jul 2012 B2
8230731 Dyer et al. Jul 2012 B2
8231947 Vaidya et al. Jul 2012 B2
8276670 Patel Oct 2012 B2
8277974 Kumar et al. Oct 2012 B2
8327931 Agrawal et al. Dec 2012 B2
8403037 Agrawal et al. Mar 2013 B2
8425651 Xu et al. Apr 2013 B2
20010045285 Russell Nov 2001 A1
20010045288 Allamon et al. Nov 2001 A1
20020000319 Brunet Jan 2002 A1
20020007948 Bayne et al. Jan 2002 A1
20020014268 Vann Feb 2002 A1
20020066572 Muth Jun 2002 A1
20020104616 De et al. Aug 2002 A1
20020136904 Glass et al. Sep 2002 A1
20020162661 Krauss et al. Nov 2002 A1
20030037925 Walker et al. Feb 2003 A1
20030060374 Cooke, Jr. Mar 2003 A1
20030075326 Ebinger Apr 2003 A1
20030104147 Bretschneider et al. Jun 2003 A1
20030111728 Thai et al. Jun 2003 A1
20030127013 Zavitsanos et al. Jul 2003 A1
20030141060 Hailey et al. Jul 2003 A1
20030141061 Hailey et al. Jul 2003 A1
20030141079 Doane et al. Jul 2003 A1
20030150614 Brown et al. Aug 2003 A1
20030155114 Pedersen et al. Aug 2003 A1
20030155115 Pedersen et al. Aug 2003 A1
20030159828 Howard et al. Aug 2003 A1
20030164237 Butterfield Sep 2003 A1
20030183391 Hriscu et al. Oct 2003 A1
20040005483 Lin Jan 2004 A1
20040020832 Richards et al. Feb 2004 A1
20040045723 Slup et al. Mar 2004 A1
20040089449 Walton et al. May 2004 A1
20040154806 Bode et al. Aug 2004 A1
20040159428 Hammond et al. Aug 2004 A1
20040182583 Doane et al. Sep 2004 A1
20040256109 Johnson Dec 2004 A1
20040256157 Tessari et al. Dec 2004 A1
20040261993 Nguyen Dec 2004 A1
20050034876 Doane et al. Feb 2005 A1
20050051329 Blaisdell Mar 2005 A1
20050064247 Sane et al. Mar 2005 A1
20050069449 Jackson et al. Mar 2005 A1
20050102255 Bultman May 2005 A1
20050126334 Mirchandani Jun 2005 A1
20050161224 Starr et al. Jul 2005 A1
20050165149 Chanak et al. Jul 2005 A1
20050194143 Xu et al. Sep 2005 A1
20050205264 Starr et al. Sep 2005 A1
20050205266 Todd et al. Sep 2005 A1
20050241824 Burris, II et al. Nov 2005 A1
20050241825 Burris, II et al. Nov 2005 A1
20050257936 Lehr Nov 2005 A1
20050279501 Surjaatmadja et al. Dec 2005 A1
20060012087 Matsuda et al. Jan 2006 A1
20060045787 Jandeska, Jr. et al. Mar 2006 A1
20060057479 Niimi et al. Mar 2006 A1
20060081378 Howard et al. Apr 2006 A1
20060102871 Wang et al. May 2006 A1
20060108114 Johnson May 2006 A1
20060108126 Horn et al. May 2006 A1
20060116696 Odermatt et al. Jun 2006 A1
20060124310 Lopez de Cardenas Jun 2006 A1
20060124312 Rytlewski et al. Jun 2006 A1
20060131011 Lynde et al. Jun 2006 A1
20060131081 Mirchandani et al. Jun 2006 A1
20060144515 Tada et al. Jul 2006 A1
20060150770 Freim, III et al. Jul 2006 A1
20060151178 Howard et al. Jul 2006 A1
20060162927 Walker et al. Jul 2006 A1
20060169453 Savery et al. Aug 2006 A1
20060207763 Hofman Sep 2006 A1
20060213670 Bishop et al. Sep 2006 A1
20060231253 Vilela et al. Oct 2006 A1
20060283592 Sierra et al. Dec 2006 A1
20070017674 Blaisdell Jan 2007 A1
20070017675 Hammami et al. Jan 2007 A1
20070029082 Giroux et al. Feb 2007 A1
20070039741 Hailey Feb 2007 A1
20070044966 Davies et al. Mar 2007 A1
20070051521 Fike et al. Mar 2007 A1
20070053785 Hetz et al. Mar 2007 A1
20070054101 Sigalas et al. Mar 2007 A1
20070057415 Katagiri et al. Mar 2007 A1
20070062644 Nakamura et al. Mar 2007 A1
20070074601 Hong et al. Apr 2007 A1
20070074873 McKeachnie et al. Apr 2007 A1
20070102199 Smith et al. May 2007 A1
20070107899 Werner et al. May 2007 A1
20070107908 Vaidya et al. May 2007 A1
20070108060 Park May 2007 A1
20070119600 Slup et al. May 2007 A1
20070131912 Simone et al. Jun 2007 A1
20070151009 Conrad, III et al. Jul 2007 A1
20070151769 Slutz et al. Jul 2007 A1
20070169935 Akbar et al. Jul 2007 A1
20070181224 Marya et al. Aug 2007 A1
20070185655 Le Bemadjiel Aug 2007 A1
20070187095 Walker et al. Aug 2007 A1
20070221373 Murray Sep 2007 A1
20070221384 Murray Sep 2007 A1
20070261862 Murray Nov 2007 A1
20070272411 Lopez De Cardenas et al. Nov 2007 A1
20070272413 Rytlewski et al. Nov 2007 A1
20070277979 Todd et al. Dec 2007 A1
20070284109 East et al. Dec 2007 A1
20070299510 Venkatraman et al. Dec 2007 A1
20080020923 Debe et al. Jan 2008 A1
20080047707 Boney et al. Feb 2008 A1
20080060810 Nguyen et al. Mar 2008 A9
20080066923 Xu Mar 2008 A1
20080066924 Xu Mar 2008 A1
20080072705 Chaumonnot et al. Mar 2008 A1
20080078553 George Apr 2008 A1
20080099209 Loretz et al. May 2008 A1
20080115932 Cooke May 2008 A1
20080121390 O'Malley et al. May 2008 A1
20080135249 Fripp et al. Jun 2008 A1
20080149325 Crawford Jun 2008 A1
20080149345 Marya et al. Jun 2008 A1
20080169105 Williamson et al. Jul 2008 A1
20080179060 Surjaatmadja et al. Jul 2008 A1
20080179104 Zhang et al. Jul 2008 A1
20080202764 Clayton et al. Aug 2008 A1
20080202814 Lyons et al. Aug 2008 A1
20080210473 Zhang et al. Sep 2008 A1
20080216383 Pierick et al. Sep 2008 A1
20080223586 Barnett Sep 2008 A1
20080223587 Cherewyk Sep 2008 A1
20080236829 Lynde Oct 2008 A1
20080248205 Blanchet et al. Oct 2008 A1
20080277109 Vaidya Nov 2008 A1
20080277980 Koda et al. Nov 2008 A1
20080282924 Saenger et al. Nov 2008 A1
20080296024 Huang et al. Dec 2008 A1
20080314581 Brown Dec 2008 A1
20080314588 Langlais et al. Dec 2008 A1
20090044946 Schasteen et al. Feb 2009 A1
20090044949 King et al. Feb 2009 A1
20090050334 Marya et al. Feb 2009 A1
20090056934 Xu Mar 2009 A1
20090084553 Rytlewski et al. Apr 2009 A1
20090084556 Richards et al. Apr 2009 A1
20090107684 Cooke, Jr. Apr 2009 A1
20090114381 Stroobants May 2009 A1
20090114382 Grove et al. May 2009 A1
20090145666 Radford et al. Jun 2009 A1
20090151949 Marya et al. Jun 2009 A1
20090159289 Avant et al. Jun 2009 A1
20090178808 Williamson et al. Jul 2009 A1
20090194273 Surjaatmadja et al. Aug 2009 A1
20090205841 Kluge et al. Aug 2009 A1
20090226704 Kauppinen et al. Sep 2009 A1
20090242202 Rispler et al. Oct 2009 A1
20090242208 Bolding Oct 2009 A1
20090242214 Foster et al. Oct 2009 A1
20090255667 Clem et al. Oct 2009 A1
20090255684 Bolding Oct 2009 A1
20090255686 Richard et al. Oct 2009 A1
20090260817 Gambier et al. Oct 2009 A1
20090266548 Olsen et al. Oct 2009 A1
20090272544 Giroux et al. Nov 2009 A1
20090283270 Langeslag Nov 2009 A1
20090293672 Mirchandani et al. Dec 2009 A1
20090301730 Gweily Dec 2009 A1
20090308588 Howell et al. Dec 2009 A1
20090317556 Macary Dec 2009 A1
20100003536 Smith et al. Jan 2010 A1
20100012385 Drivdahl et al. Jan 2010 A1
20100025255 Su et al. Feb 2010 A1
20100032151 Duphorne Feb 2010 A1
20100044041 Smith et al. Feb 2010 A1
20100051278 Mytopher et al. Mar 2010 A1
20100055491 Vecchio et al. Mar 2010 A1
20100055492 Barsoum et al. Mar 2010 A1
20100089583 Xu et al. Apr 2010 A1
20100089587 Stout Apr 2010 A1
20100101803 Clayton et al. Apr 2010 A1
20100122817 Surjaatmadja et al. May 2010 A1
20100139930 Patel et al. Jun 2010 A1
20100200230 East, Jr. et al. Aug 2010 A1
20100236793 Bjorgum Sep 2010 A1
20100236794 Duan et al. Sep 2010 A1
20100243254 Murphy et al. Sep 2010 A1
20100252273 Duphorne Oct 2010 A1
20100252280 Swor et al. Oct 2010 A1
20100270031 Patel Oct 2010 A1
20100276136 Evans et al. Nov 2010 A1
20100282338 Gerrard et al. Nov 2010 A1
20100282469 Richard et al. Nov 2010 A1
20100294510 Holmes Nov 2010 A1
20110005773 Dusterhoft et al. Jan 2011 A1
20110036592 Fay Feb 2011 A1
20110048743 Stafford et al. Mar 2011 A1
20110056692 Lopez de Cardenas et al. Mar 2011 A1
20110056702 Sharma et al. Mar 2011 A1
20110067872 Agrawal Mar 2011 A1
20110067889 Marya et al. Mar 2011 A1
20110067890 Themig Mar 2011 A1
20110094406 Marya et al. Apr 2011 A1
20110100643 Themig et al. May 2011 A1
20110127044 Radford et al. Jun 2011 A1
20110132621 Agrawal et al. Jun 2011 A1
20110135953 Xu et al. Jun 2011 A1
20110139465 Tibbles et al. Jun 2011 A1
20110147014 Chen et al. Jun 2011 A1
20110186306 Marya et al. Aug 2011 A1
20110214881 Newton et al. Sep 2011 A1
20110247833 Todd et al. Oct 2011 A1
20110253387 Ervin Oct 2011 A1
20110256356 Tomantschger et al. Oct 2011 A1
20110259610 Shkurti et al. Oct 2011 A1
20110277987 Frazier Nov 2011 A1
20110277989 Frazier Nov 2011 A1
20110284232 Huang Nov 2011 A1
20110284240 Chen et al. Nov 2011 A1
20110284243 Frazier Nov 2011 A1
20120067426 Soni et al. Mar 2012 A1
20120103135 Xu et al. May 2012 A1
20120107590 Xu et al. May 2012 A1
20120118583 Johnson et al. May 2012 A1
20120130470 Agnew et al. May 2012 A1
20120168152 Casciaro Jul 2012 A1
20120211239 Kritzler et al. Aug 2012 A1
20120292053 Xu et al. Nov 2012 A1
20120318513 Mazyar et al. Dec 2012 A1
20130025409 Xu Jan 2013 A1
20130032357 Mazyar et al. Feb 2013 A1
20130048304 Agrawal et al. Feb 2013 A1
20130052472 Xu Feb 2013 A1
20130081814 Gaudette et al. Apr 2013 A1
20130105159 Alvarez May 2013 A1
20130126190 Mazyar et al. May 2013 A1
20130133897 Baihly et al. May 2013 A1
20130146144 Joseph et al. Jun 2013 A1
20130146302 Gaudette et al. Jun 2013 A1
20130186626 Aitken, et al. Jul 2013 A1
20130327540 Hamid, et al. Dec 2013 A1
20140116711 Tang May 2014 A1
Foreign Referenced Citations (23)
Number Date Country
1076968 Oct 1993 CN
1255879 Jun 2000 CN
101050417 Oct 2007 CN
101351523 Jan 2009 CN
101457321 Jun 2010 CN
1857570 Nov 2007 EP
912956 Dec 1962 GB
61067770 Apr 1986 JP
7-54008 Feb 1995 JP
08232029 Sep 1996 JP
08-232029 Oct 1996 JP
08232029 Oct 1996 JP
2010502840 Jan 2010 JP
95-0014350 Nov 1995 KR
9947726 Sep 1999 WO
2008079777 Jul 2008 WO
WO2008079485 Jul 2008 WO
2009079745 Jul 2009 WO
2011071902 Jun 2011 WO
2011071910 Jun 2011 WO
2011071910 Jun 2011 WO
2012174101 Dec 2012 WO
2013078031 May 2013 WO
Non-Patent Literature Citations (102)
Entry
International Search Report and Written Opinion; Mail Date Jul. 28, 2011; International Application No. PCT/US2010/057763; International Filing date Nov. 23, 2010; Korean Intellectual Property Office; International Search Report 7 pages; Written Opinion 3 pages.
Canadian Pat. App. No. 2783241 filed on Dec. 7, 2010 titled Nanomatrix Powder Metal Compact.
Canadian Pat. App. No. 2783346 filed on Dec. 7, 2010, published on Jun. 16, 2011 for “Engineered Powder Compact Composite Material”.
Flow Control Systems, [online]; [retrieved on May 20, 2010]; retrieved from the Internet http://www.bakerhughes.com/products-and-services/completions-and-productions/well-completions/packers-and-flow-control/flow-control-systems.
International Search Report and Written Opinion of the International Searching Authority, or the Declaration for PCT/US2011/058105 mailed from the Korean Intellectual Property Office on May 1, 2012.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration mailed on Feb. 23, 2012 (Dated Feb. 22, 2012) for PCT/US2011/043036.
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2011/058099 (filed on Oct. 27, 2011), mailed on May 11, 2012.
Optisleeve Sliding Sleeve, [online]; [retrieved on Jun. 25, 2010]; retrieved from the Internet weatherford.com/weatherford/groups/ .../weatherfordcorp/WFT033159.pdf.
“Sliding Sleeve”, Omega Completion Technology Ltd, Sep. 29, 2009, retrieved on: www.omega-completion.com.
Welch, William R. et al., “Nonelastomeric Sliding Sleeve Maintains Long Term Integrity in HP/HT Application: Case Histories” [Abstract Only], SPE Eastern Regional Meeting, Oct. 23-25, 1996, Columbus. Ohio.
Ambat, et al.; “Electroless Nickel-Plating on AZ91D Magnesium Alloy: Effect of Substrate Microstructure and Plating Parameters”; Surface and Coatings Technology; 179; pp. 124-134; (2004).
Chang, et al.; “Electrodeposition of Aluminum on Magnesium Alloy in Aluminum Chloride (A1C13)-1-ethy1-3-methylimidazolium chloride (EMIC) Ionic Liquid and Its Corrosion Behavior”; Electrochemistry Communications; 9; pp. 1602-1606; (2007).
Chun-Lin, Li. “Design of Abrasive Water Jet Perforation and Hydraulic Fracturing Tool,” Oil Field Equipment, Mar. 2011.
Forsyth, et al.; “An Ionic Liquid Surface Treatment for Corrosion Protection of Magnesium Alloy AZ31”; Electrochem. Solid-State Lett./ 9(11); Abstract only; 1 page.
Forsyth, et al.; “Exploring Corrosion Protection of Mg Via Ionic Liquid Pretreatment”; Surface & Coatings Technology; 201; pp. 4496-4504; (2007).
Hsiao et al.; “Effect of Heat Treatment on Anodization and Electrochemical Behavior of AZ91D Magnesium Alloy”; J. Mater. Res.; 20(10); pp. 2763-2771;(2005).
Hsiao, et al.; “Anodization of AZ91D Magnesium Alloy in Silicate-Containing Electrolytes”; Surface & Coatings Technology; 199; pp. 127-134; (2005).
Hsiao, et al.; “Baking Treatment Effect on Materials Characteristics and Electrochemical Behavior of anodic Film Formed on AZ91D Magnesium Alloy”; Corrosion Science; 49; pp. 781-793; (2007).
Hsiao, et al.; “Characterization of Anodic Films Formed on AZ91D Magnesium Alloy”; Surface & Coatings Technology; 190; pp. 299-308; (2005).
Huo et al.; “Corrosion of AZ91D Magnesium Alloy with a Chemical Conversion Coating and Electroless Nickel Layer”; Corrosion Science: 46; pp. 1467-1477; (2004).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority; PCT/US2010/059257; Korean Intellectual Property Office; Mailed Jul. 27, 2011.
Liu, et al.; “Electroless Nickel Plating on AZ91 Mg Alloy Substrate”; Surface & Coatings Technology; 200; pp. 5087-5093; (2006).
Lunder et al.; “The Role of Mg17Al12 Phase in the Corrosion of Mg Alloy AZ91”; Corrosion; 45(9); pp. 741-748; (1989).
Pardo, et al.; “Corrosion Behaviour of Magnesium/Aluminium Alloys in 3.5 wt% NaC1”; Corrosion Science; 50; pp. 823-834; (2008).
Shi et al.; “Influence of the Beta Phase on the Corrosion Performance of Anodised Coatings on Magnesium-Aluminium Alloys”; Corrosion Science; 47; pp. 2760-2777; (2005).
Song, et al.; “Corrosion Mechanisms of Magnesium Alloys”; Advanced Engineering Materials; 1(1); pp. 11-33; (1999).
Song, Guangling; “Recent Progress in Corrosion and Protection of Magnesium Alloys”; Advanced Engineering Materials; 7(7); pp. 563-586; (2005).
Song, et al.; “Influence of Microstructure on the Corrosion of Diecast AZ91D”; Corrosion Science; 41; pp. 249-273; (1999).
Song, et al.; “Corrosion Behaviour of AZ21, AZ501 and AZ91 in Sodium Chloride”; Corrosion Science; 40(10); pp. 1769-1791; (1998).
Song, et al.; “Understanding Magnesium Corrosion”; Advanced Engineering Materials; 5; No. 12; pp. 837-858; (2003).
Zhang, et al; “Study on the Environmentally Friendly Anodizing of AZ91D Magnesium Alloy”; Surface and Coatings Technology: 161; pp. 36-43; (2002).
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority; PCT/US2011/047000; Korean Intellectual Property Office; Mailed Dec. 26, 2011; 8 pages.
H. Watarai, Trend of research and development for magnesium alloys—reducing the weight of structural materials in motor vehicles, (2006) Science and technology trends, Quaterly review No. 18, 84-97.
M. Bououdina, Z. X. Guo, Comparative study of mechanical alloying of (Mg+Al) and (Mg+Al+Ni) mixtures for hydrogen storage, J. Alloys, Compds, 2002, 336, 222-231.
M.Liu, P.J. Uggowitzer, A.V. Nagasekhar, P. Schmutz, M. Easton, G.L. Song, A. Atrens, Calculated phase diagrams and the corrosion of die-cast Mg—Al alloys, Corrosion Science, 2009, 51, 606-619.
S.L. Lee, C.W. Hsu, F.K. Hsu, C.Y. Chou, C.k. Lin, C.W. Weng, Effects of Ni addition on hydrogen storage properties of Mg17AL12alloy, Materials Chemistry and Physics, 2011, 126, 319-324.
T.J. Bastow, S. Celotto, Clustering and formation of nano-precipitates in dilute aluminum and magnesium alloys, Materials science and Engineering, 2003, C23, 757-762.
Constantine, Jesse. “Selective Production of Horizontal Openhole Completions Using ECP and Sliding Sleeve Technology.” SPE Rocky Mountain Regional Meeting, May 15-18, 1999, Gillette, Wyoming. [Abstract Only].
International Search Report and Written Opinion; International Application No. PCT/US2012/038622; International Filing Date: May 18, 2012; Date of Mailing Dec. 6, 2012; 12 pages.
Shumbera et al. “Improved Water Injector Performance in a Gulf of Mexico Deepwater Development Using an Openhole Frac Pack Completion and Downhole Filter System: Case History.” SPE Annual Technical Conference and Exhibition, Oct. 5-8, 2003, Denver, Colorado. [Abstract Only].
Vickery, Harold and Christian Bayne, “New One-Trip Multi-Zone Frac Pack System with Positive Positioning.” European Petroleum Conference, Oct. 29-31, 2002, Aberdeen, UK. [Abstract Only].
Baker Oil Tools. “Z-Seal Metal-to-Metal Expandable Sealing Device Uses Expanding Metal in Place of Elastomers,” Nov. 6, 2006.
Elsayed Ayman, Imai Hisashi, Umeda Junko and Kondoh Katsuyoshi, “Effect of Consolidation and Extrusion Temperatures on Tensile Properties of Hot Extruded ZK61 Magnesium Alloy Gas Atomized Powders via Spark Plasma Sintering” Transacation of JWRI, vol. 38, (2009) No. 2, pp. 31-35.
Bing Q. Han, Enrique J. Lavernia and Farghalli A. Mohamed, “Mechanical Properties of Nanostructured Materials”, Rev. Adv. Mater. Sci. 9(2005) 1-16.
Adam J. Maisano, “Cryomilling of Aluminum-Based and Magnesium-Based Metal Powders”, Thesis, Virginia Tech, Jan. 13, 2006.
E.J. Lavenia, B.Q. Han, J.M. Schoenung: “Cryomilled nanostructured materials: Processing and properties”, Materials Science and Engineering A, 493, (2008) 207-214.
H. Watanabe, T. Mukai, M. Mabuchi and K. Higashi, “Superplastic Deformation Mechanism in Powder Metallurgy Magnesium Alloys and Composites”, Acta mater. 49 (2001) pp. 2027-2037.
Forsyth, et al.; “An Ionic Liquid Surface Treatment for Corrosion Protection of Magnesium Alloy AZ31”; Electrochem. Solid-State Lett./ 9(11); Abstract only; Aug. 29, 2006; 1 page.
International Search Report and Written Opinion, International Application No. PCT/US2012/049434, Date of Mailing Feb. 1, 2013, Korean Intellectual Property Office, Written Opinion 4 pages, International Search Report 3 pages.
International Search Report and Written Opinion for PCT Application No. PCT/US2012/044866, dated Jan. 2, 2013, pp. 1-9.
International Search Report and Written Opinion, PCT/US2012/046231, Date of Mailing Jan. 29, 2013, Korean Intellectual Property Office, Written Opinion 6 pages, International Search Report 3 pages.
Xiaowu Nie, Patents of Methods to Prepare Intermetallic Matrix Composites: A Review, Recent Patents on Materials Science 2008, 1, 232-240, Department of Scientific Research, Hunan Railway College of Science and Technology, Zhuzhou, P.R. China.
Baker Hughes Incorporated,“Baker Oil Tools Introduces Revolutionary Sand Control Completion Technology” Investor Relations, Baker Oil Tools, Houston, TX, May 2, 2005, pp. 1-2.
Garfield, Garry, Mcelfresh, P., Williams C. And Baker Hughes Incorporated, “Maximizing Inflow Performance in Soft Sand Completions Using New One-trip Sand Control Liner Completion Technology”, SPE European Formation Damage Conference, May 25-27, 2005, SPE 94622.
Garfield G., Baker Hughes Incoporated, New One-Trip Sand-Control Completion System that Eliminates Formation Damage Resulting From conventional Perforating and Gravel-Packing Operations:, SPE Annual Technical Conference and Exhibition, Oct. 9-12, 2005, SPE96660.
International Search Report and Written Opinion, PCT/US2010/059263, dated Jul. 8, 2011.
Notification of Transmittal of The International Search Report and the Written Opinion of the International Searching Authority; PCT/US2010/059265; International Searching Authority KIPO; Mailed Jun. 16, 2011.
Notification of Transmittal of The International Search Report and the Written Opinion of the International Searching Authority; PCT/US2010/059268; International Searching Authority KIPO; Mailed Jun. 17, 2011.
International Search Report and Written Opinion for International application No. PCT/US2012/034973 filed on Apr. 25, 2012, mailed on Nov. 29, 2012.
Patent Cooperation Treaty International Search Report and Written Opinion for International Patent Application No. PCT/US2012/034978 filed on Apr. 25, 2012, mailed on Nov. 12, 2012.
C.S. Goh, J. Wei, L C Lee, and M. Gupta, “Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique”, Nanotechnology 17 (2006) 7-12.
Ch. Christoglou, N. Voudouris, G.N. Angelopoulos, M. Pant, W. Dahl, “Deposition of Aluminum on Magnesium by a CVD Process”, Surface and Coatings Technology 184 (2004) 149-155.
Chinese Office Action for related CN Application No. 201180052095.6, dated Jul. 21, 2014, pp. 1-32.
E. Paul Bercegeay et al., “A One-Trip Gravel Packing System”; Society of Petroleum Engineers, Offshore Technology Conference, SPE Paper No. 4771; Feb. 7-8, 1974.
Hjortstam et al. “Can we achieve ultra-low resistivity in carbon nanotube-based metal composites,” Applied Physics A (2004), vol. 78, Issue 8, pp. 1175-1179. [Abstract Only].
J. Dutta Majumdar, B. Ramesh Chandra, B.L. Mordike, R. Galun, I. Manna, “Laser Surface Engineering of a Magnesium Alloy with AI + AI203”, Surface and Coatings Technology 179 (2004) 297-305.
Shimizu et al., “Multi-walled carbon nanotube-reinforced magnesium alloy composites”, Scripta Materialia, vol. 58, Issue 4, pp. 267-270.
Song, G. and S. Song. “A Possible Biodegradable Magnesium Implant Material,” Advanced Engineering Materials, vol. 9, Issue 4, Apr. 2007, pp. 298-302. [Abstract Only].
Wikipedia, the free encyclopedia. Reactivity series. http://en.wikipedia.org/w/index.php? title=Reactivity—series&printable=yes downloaded on May 18, 2014, 8 pages.
Xiaotong Wang et al., “Contact-Damage-Resistant Ceramic/Single-Wall Carbon Nanotubes and Ceramic/Graphite Composites” Nature Materials, vol. 3, Aug. 2004, pp. 539-544.
Y. Zhang and Hongjie Dai, “Formation of metal nanowires on suspended single-walled carbon nanotubes” Applied Physics Letter, vol. 77, No. 19 (2000), pp. 3015-3017.
Y. Zhang, Nathan W. Franklin, Robert J. Chen, Hongjie Dai, “Metal Coating on Suspended Carbon Nanotubes and its Implication to Metal—Tube Interaction”, Chemical Physics Letters 331 (2000) 35-41.
Zeng et al. “Progress and Challenge for Magnesium Alloys as Biomaterials,” Advanced Engineering Materials, vol. 10, Issue 8, Aug. 2008, pp. B3-B14. [Abstract Only].
Adams, et al.; “Thermal stabilities of aromatic acids as geothermal tracers”, Geotherrnics, vol. 21, No. 3, 1992, pp. 323-339.
Ayman, et al.; “Effect of Consolidation and Extrusion Temperatures on Tensile Properties of Hot Extruded ZK61 Magnesium Alloy Gas Atomized Powders via Spark Plasma Sintering”, Transactions of JWRI, vol. 38 (2009), No. 2, pp. 1-5.
Canadian Office Action for Canadian Application No. 2,833,981, dated Sep. 23, 2014, pp. 1-2.
Carrejo, et al., “Improving Flow Assurance in Multi-Zone Fracturing Treatments in Hydrocarbon Reservoirs with High Strength Corrodible Tripping Balls”; Society of Petroleum Engineers; SPE Paper No. 151613; Apr. 16, 2012; 6 pages.
Curtin, et al., “CNT-reinforced ceramics and metals,” Materials Today, 2004, vol.-7, pp. 44-49.
Feng, et al., “Electroless Plating of Carbon Nanotubes with Silver” Journal of Materials Science, 39, (2004) pp. 3241-3243.
Flahaut, et al., “Carbon Nanotube-Metal-Oxide Nanocomposites: Microstructure, Electrical Conductivity and Mechanical Properties” Acta amter 48 (2000), pp. 3803-3812.
Galanty, et al. “Consolidation of metal powders during the extrusion process,” Journal of Materials Processing Technology (2002), pp. 491-496.
Hermawan, et al., “Iron-manganese: new class of metallic degradable biomaterials prepared by powder metallurgy”, Powder Metallurgy, vol. 51, No. 1, (2008), pp. 38-45.
International Search Report and Written Opinion; International Application No. PCT/US2012/049434; International Filing Date: Aug. 3, 2012; Date of Mailing: Feb. 1, 2013; 7 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/053339; International Filing Date: Aug. 31, 2012; Date of Mailing: Feb. 15, 2013; 11 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/053342; International Filing Date: Aug. 31, 2012; Date of Mailing: Feb. 19, 2013; 9 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/053350; International Filing Date: Aug. 31, 2012; Date of Mailing: Feb. 25, 2013; 10 pages.
International Search Report and Written Opinion; International Application No. PCT/US2014/049347; International Filing Date: Aug. 1, 2014; Date of Mailing: Nov. 24, 2014; 11 pages.
International Search Report and Written Opinion; International Application No. PCT/US2014/054720; International Filing Date: Sep. 9, 2014; Date of Mailing: Dec. 17, 2014; 10 pages.
Li, et al.' “Investigation of aluminium-based nancompsoites with ultra-high strength”, Materials Science and Engineering A, 527, pp. 305-316, (2009).
Mathis, “Sand Management: A Review of Approaches and Concerns”, Society of Petroleum Engineers, SPE Paper No. 82240, SPE European Formation Damage Conference, The Hague, The Netherlands, May 13-14, 2003.
Rose, et al.; “The application of the polyaromatic sulfonates as tracers in geothermal reservoirs”, Geothermics 30 (2001) pp. 617-640.
Seyni, et al., “On the interest of using degradable fillers in co-ground composite materials”, Powder Technology 190, (2009) pp. 176-184.
Shaw, “Benefits and Application of a Surface-Controlled Sliding Sleeve for Fracturing Operations”; Society of Petroleum Engineers, Spe Paper No. 147546; Oct. 30, 2011; 8 pages.
Shigematsu, et al., “Surface Treatment of AZ91D Magnesium Alloy by Aluminum diffusion Coating”, Journal of Materials Science Letters 19, 2000, pp. 473-475.
Singh, et al., “Extended Homogeneity Range of Intermetallic Phases in Mechanically Alloyed Mg-AI Alloys”, Elsevier Sciences Ltd., Intemetallics 11, 2003, pp. 373-376.
Stanley, et al.; “An Introduction to Ground-Water Tracers”, Department of Hydrology and Water Resources, University of Arizona, Mar. 1985, pp. 1-219.
Sun, et al.; “Colloidal Processing of Carbon Nanotube/Alumina Composites” Chem. Mater. 2002, 14, pp. 5169-5172.
Walters, et al.; “A Study of Jets from Unsintered-Powder Metal Lined Nonprecision Small-Caliber Shaped Charges”, Army Research Laboratory, Aberdeen Proving Ground, MD 21005-5066; Feb. 2001.
Xu, et al., “Nanostructured Material-Based Completion Tools Enhance Well Productivity”; International Petroleum Technology Conference; Conference Paper IPTC 16538; International Petroleum Technology Conference 2013; 4 pages.
Zemel, “Tracers in the Oil Field”, University of Texas at Austin, Center for Petroleum and Geosystems, Jan. 1995, Chapters 1, 2, 3, 7.
Zhan, et al., “Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites” Nature Materials, vol. 2, Jan. 2003, pp. 38-42.
Zhang, et al.; “High Strength Nanostructured Materials and Their Oil Field Applications”; Society of Petroleum Engineers; Conference Paper SPE 157092; SPE International Oilfield Nanotechnology Conference, 2012; 6 pages.
Related Publications (1)
Number Date Country
20130043041 A1 Feb 2013 US