Seals are used ubiquitously in the downhole drilling and completions industry. Commonly seals are disposed on the outer surface of a radially inwardly disposed tubular. However, so-called inverted seals have gained favor for use in gravel pack operations as they enable the use of a slick outer diameter (OD) crossover tool. These slick OD crossover tools have several advantages over prior crossover tools, which include shoulders and seal elements bonded thereon that can become stuck on other components during run-in and pull out of the tool and adjacent tools. However, the inverted seals often become damaged during gravel pack operations and are unreliable during production after the crossover tool has been removed. Accordingly, the industry always well receives advances in seal technology in general and inverted seal technology specifically.
A seal assembly includes a first tubular having a sealing surface, and a seal element run with the first tubular and displaced from the surface. The seal element initially having a radial dimension that forms a radially innermost or outermost sealing dimension of the first tubular for enabling the first tubular to be sealed with a second tubular radially disposed with the first tubular. A mechanism is triggerable by axial movement for reconfiguring the radial dimension of the seal element. The sealing surface of the first tubular operatively forming the radially innermost or outermost sealing dimension of the first tubular when the radial dimension of the seal element has been reconfigured for enabling the sealing surface of the first tubular to receive a second seal element. The seal element is axially compressed and released to change the radial dimension of the seal element.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
Referring now to the embodiment of
The assembly 10 is arranged with a mechanism for enabling the seal element 12 to selectively disengage from its sealed engagement with one or both of the tubulars 14 and 16. Various embodiments of mechanisms will be described below with respect to
As noted above, one potential embodiment for use of the assembly 10 and others described herein is for sealing against a crossover tool with inverted seals during a gravel pack operation. After the operations are completed at each desired zone and the crossover tool is no longer needed, the crossover tool can be pulled out of the hole and the inverted seals disengaged or deactivated as schematically described above. After deactivation or disengagement, the inverted seals no longer form the radial sealing dimension, i.e., the innermost diameter, of the outer tubular string. Thus, the inverted seals are changed in radial dimension, e.g., moved radially, so that a typical isolation assembly can be run-in with production tubing and sealed into seal bores or the like in the outer tubular string. This avoids the disadvantages of inverted seals, which are often damaged during gravel pack operations and inherently unreliable thereafter. Of course, other seal elements, including non-inverted seals could be similarly deactivated in any desired system, although multi and single zone completions are prime candidates for the currently described assemblies.
One embodiment is shown in
In the assembly 20, for example, the seal element 22 is held by a housing that comprises a set of rings 28a and 28b. Both of the rings 28a and 28b are secured or locked to the tubular 24. For example, in the embodiment of
The connector 32 is located in a slot 34 of a sleeve 36 for enabling the sleeve 36 to move axially with respect to the tubular 24. The seal element 22 is radially deformed (either compressed or swaged outward, depending on the relative radial orientation of the tubulars 24 and 26) into place by the sleeve 36. When radially deformed, the seal element 22 forms a sealed engagement between the tubulars 24 and 26. Upon axial movement of the sleeve 36, a narrowed portion 38 of the sleeve 36 is aligned with the seal element 22, enabling the seal element 22 to at least partially return to an orientation in which it is not deformed. That is, the seal element 22 could spring radially outward or inward toward its rest or neutral configuration. As shown in
The sleeve 36 has, for example, a profile 40 for engaging with a complementarily profiled shifting tool in order to move the sleeve 36, although it is to be recognized that any other method of shifting the sleeve 36 could be utilized. In embodiments in which an isolation string is run-in after deactivation of the seals, such a shifting tool could be included at the leading end of the isolation string, and one or more of the assemblies 20 deactivated by, for example, setting weight down on the sleeve 36 to engage the shifting tool with the profile 40, pulling up on the isolation string to shift the sleeve 36, running the isolation string to another sleeve, etc.
It is to be appreciated that modifications to any of the assemblies described herein are possible. For example, in an embodiment similar to that of the assembly 20 the seal element is movable and the sleeve is stationary. That is, for example, with reference to the numbered components of the assembly 20, the sleeve 36 could be secured, locked to, or formed with the tubular 24 and the seal element 22 slideable therein in order to align the seal element 22 with the narrowed portion 38 of the sleeve 36.
In some embodiments, such as shown in
Axial movement, e.g., of a tool, device, the seal element, etc. could be used for triggering mechanisms in various other embodiments. For example, seal elements could be included on or bonded to a barrel slip assembly, with axial movement between the interlocking jaws of the barrel slips resulting in a change in the radial positioning of the seal elements. For example, a barrel slip assembly is disclosed in U.S. Pat. No. 7,367,397 (Clemens et al.), which patent is hereby incorporated in its entirety. By placing, for example, seal elements at the inner surface of the “slip body 188” of Clemens et al., the seal elements could be selectively disengaged or disabled by moving the “annular wedge assemblies 196, 198” together and apart.
In other embodiments, axial movement enables an axially pre-compressed or axially pre-stretched or tensioned seal element to return to its rest position. For example, similar to a compression-set packer, the seal element could be compressed between two components, e.g., by a hydraulic pressure, set down weight, etc. In another such embodiment, shown in
Another such embodiment utilizing compression/tension of the seal element is shown in
An assembly 62 is another embodiment shown in
In one embodiment the support member 70 is a frangible or breakable material, e.g., tempered glass, that is hit, punched, rammed, or otherwise struck or met by a force in order to shatter or break the support member. For example, a piston, pin, rod, finger, spike, etc. could be driven into the support member 68 using means such as hydraulics, pneumatics, string weight, etc. Similarly, a large compressive force could be increasingly applied over a relatively large surface area to crack or shatter the member 68.
In another embodiment, the support member 70 is made from controlled electrolytic metallic materials or some other material that can be degraded, dissolved, disintegrated, corroded, weakened, etc. (collectively, “degraded”) by exposure to a predetermined fluid. Examples of suitable materials and their methods of manufacture are given in U.S. Patent Publication No. 2011/0135953 (Xu, et al.), which Patent Publication is hereby incorporated by reference in its entirety. Suitable materials are also available from Baker Hughes Incorporated under the name IN-TALLIC®. Other materials include magnesium, aluminum, etc. that are removable by exposure to acid, etc. The support member 70 could be at least partially hollow, perforated, weakened, etc. to aid in its removal.
Of course, any combination of elements from the above described embodiments, or substitutes, equivalents, analogs, etc. thereof or therefor are also within the scope of the current invention. In this way, triggering of some mechanism can be used to reconfigure the radial dimension of the seal element for selectively disabling or deactivating its seal sealing capability. Further, the tubular including the seal element can include a seal bore or other surface, e.g., the surface 18 in
Set forth below are some embodiments of the foregoing disclosure:
A seal assembly comprising: a first tubular having a sealing surface; a seal element run with the first tubular and displaced from the surface, the seal element initially having a radial dimension that forms a radially innermost or outermost sealing dimension of the first tubular for enabling the first tubular to be sealed with a second tubular radially disposed with the first tubular; and a mechanism triggerable by axial movement for reconfiguring the radial dimension of the seal element, the sealing surface of the first tubular operatively forming the radially innermost or outermost sealing dimension of the first tubular when the radial dimension of the seal element has been reconfigured for enabling the sealing surface of the first tubular to receive a second seal element, wherein the seal element is axially compressed and released to change the radial dimension of the seal element.
The assembly of embodiment 1, wherein the mechanism includes a piston that enables axial compression and release of the seal element.
The assembly of embodiment 2, wherein the piston is triggerable by pressurizing one of two chambers located on opposite sides of the piston.
The assembly according to embodiment 3, wherein the piston is arranged in one of the two chambers.
The assembly according to embodiment 4, wherein the piston carries at least one seal element that engages a wall defining, at least in part, the one of the two chambers.
The assembly according to embodiment 4, wherein the one of the two chambers includes a pressurized fluid biasing the piston to axially compress the seal element.
The assembly according to embodiment 4, wherein the piston is shifted in the one of the two chambers upon exposure to a pressurized fluid in the other of the two chambers, the pressurized fluid in the other of the two chambers being at a pressure greater than the pressurized fluid in the one of the two chambers.
The assembly according to embodiment 4 further comprising: a shear element operatively connecting the first tubular and the piston, the shear element maintaining a compressive force on the seal element through the piston.
The assembly according to embodiment 8, wherein the piston is shifted in the one of the two chambers upon exposure to a pressurized fluid in the other of the two chambers, the pressurized fluid in the other of the two chambers being at a pressure sufficient to cause a fracturing of the shear element.
The assembly of embodiment 1, wherein the seal element is disposed on a deformable body that is axially compressed and released for changing the radial dimension of the seal element.
While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
This divisional application claims priority to U.S. patent application Ser. No. 13/308,760, which was filed on Dec. 1, 2011. The contents of U.S. patent application Ser. No. 13/308,760 are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4396066 | Akkerman et al. | Aug 1983 | A |
4403922 | Roeder | Sep 1983 | A |
4457369 | Henderson | Jul 1984 | A |
5433269 | Hendrickson | Jul 1995 | A |
5584488 | Lembcke | Dec 1996 | A |
5775429 | Arizmendi et al. | Jul 1998 | A |
6056061 | Ross et al. | May 2000 | A |
6302217 | Kilgore | Oct 2001 | B1 |
6565093 | Crow et al. | May 2003 | B2 |
6843480 | Nelson et al. | Jan 2005 | B2 |
7198110 | Kilgore et al. | Apr 2007 | B2 |
7448445 | Doane et al. | Nov 2008 | B2 |
7490669 | Walker et al. | Feb 2009 | B2 |
20030217844 | Moyes | Nov 2003 | A1 |
20050077053 | Walker et al. | Apr 2005 | A1 |
20070084605 | Walker | Apr 2007 | A1 |
20080066923 | Xu | Mar 2008 | A1 |
20100078893 | Turnquist et al. | Apr 2010 | A1 |
20100147537 | Docherty | Jun 2010 | A1 |
20100239415 | Turnquist et al. | Sep 2010 | A1 |
20100288511 | Corre | Nov 2010 | A1 |
20110147013 | Kilgore | Jun 2011 | A1 |
20130140041 | Allen et al. | Jun 2013 | A1 |
20130240203 | Frazier | Sep 2013 | A1 |
20170081939 | Bishop et al. | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
2346928 | Nov 1999 | CN |
2419904 | May 2006 | GB |
2005088064 | Sep 2005 | WO |
Entry |
---|
International Search Report and Written Opinion issued in related PCT Application No. PCT/US2012/062356, dated Mar. 14, 2013, 10 pages. |
Office Action dated Feb. 6, 2016 in related Chinese Patent Application No. 201280058965.5, 13 pages. |
Ogier et al., “The World's Deepest Frac-Pack Completions Using a Single-Trip Multi-Zone System: A Gulf of Mexico case Study in the Lower Tertiary Formation”; Socieity of Petroleum Engineers, SPE Paper No. 147313; Oct. 30, 2011; 12 pages. |
Weatherford, [online]; [retrieved on Jan. 11, 2012]; retrieved from the internet http://www.weatherford.com/weatherford/groups/web/documents/weatherfordcorp/WFT071942.pdf, “Model WFX Crossover Tool,” 2 pages. |
Number | Date | Country | |
---|---|---|---|
20160201800 A1 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13308760 | Dec 2011 | US |
Child | 15074079 | US |