The invention relates generally to expandable devices that can be inserted into a bone. More specifically, the invention relates to selectively-expandable bone scaffolds.
Small-tissue-insertion and -deployment tools allow access to the targeted tissue site through some minimally invasive procedures. When deployed within the targeted tissue site, such tools can assume enlarged, durable shapes. This allows cortical bone to be displaced in a desired manner and/or cavities to be created in cancellous bone without over-expansion, puncture, and/or abrasion of the structure. The tool can be left within the bone to provide additional support for the bone after expansion of the tool.
These known expandable tools can, for example, compact cancellous bone to fix a fracture, or to improve other osteoporotic and non-osteoporotic conditions of human and animal bones. These known devices, however, either lack sufficient directional control or fail to provide consistent compaction or distraction of the bone structure due to gaps in the structure of the tool.
Thus, a need exists for improvements in selectively-expandable structures that are disposable in bones.
An apparatus includes a scaffold configured to be disposed in a tissue (e.g., a bone, a vertebral bone, an intervertebral disc, etc.). The scaffold is configured to move from a first configuration to a second configuration. The scaffold in the second configuration is expanded from the first configuration. A selectively-expandable actuator is configured to be removably disposed within the scaffold. The selectively-expandable actuator is configured to move at least a portion of the scaffold to the second configuration when the selectively-expandable actuator is moved to an expanded configuration. A shape of the selectively-expandable actuator is substantially the same as a shape of the scaffold when the selectively-expandable actuator is in the expanded configuration and the scaffold is in the second configuration. The selectively-expandable actuator is configured to be removed from the scaffold when the selectively-expandable actuator is in a collapsed configuration. The scaffold is configured to remain substantially in the second configuration after the scaffold has been expanded by the actuator.
a and 2b are perspective views of a bone scaffold according to an embodiment of the invention.
a and 5b are side views of a medical device according to the invention in a second configuration with an actuator disposed within a scaffold.
An apparatus includes a scaffold configured to be disposed in a tissue (e.g., a bone, a vertebral bone, an intervertebral disc, etc.). The scaffold is configured to move from a first configuration to a second configuration. The scaffold in the second configuration is expanded from the first configuration. A selectively-expandable actuator is configured to be removably disposed within the scaffold. The selectively-expandable actuator is configured to move at least a portion of the scaffold to the second configuration when the selectively-expandable actuator is moved to an expanded configuration. A shape of the selectively-expandable actuator is substantially the same as a shape of the scaffold when the selectively-expandable actuator is in the expanded configuration and the scaffold is in the second configuration. The selectively-expandable actuator is configured to be removed from the scaffold when the selectively-expandable actuator is in a collapsed configuration. The scaffold is configured to remain substantially in the second configuration after the scaffold has been expanded by the actuator.
The scaffold is configured to plastically deform when moved to the expanded configuration. Once the scaffold is deformed, its position is maintained within the body where positioned (i.e., a bone). Plastic deformation refers to a permanent change in shape and/or size of a material without fracture, produced by a stress sustained for a period of time beyond the elastic limit of the material.
The term “scaffold” is used herein to mean a deployable device that is configured to be disposed within a bone, such as a vertebra. The scaffold can optionally move a portion of the bodily structure in which it is disposed (e.g., cancellous bone within a vertebra). Regardless of whether the scaffold changed the position of the bodily structure upon deployment, the scaffold can maintain, or assist in maintaining, the shape and/or position of the bodily structure.
The scaffold is configured to remain substantially in its second configuration after the selectively-expandable actuator has been removed. The term “substantially” in this context refers to the fact that the scaffold may possibly undergo some insignificant amount of compression (e.g., change in shape and/or position) while remaining in the bone.
The term “selectively-expandable actuator” is used herein to mean an actuator that can be expanded and collapsed periodically for a period of time and/or randomly. Additionally, the actuator can be expanded intermittently and/or through varying degrees of expansion and collapsing. For example, the actuator need not be completely expanded or completely collapsed.
A selectively-expandable actuator 30 is configured to be removably disposed within the scaffold 20. The selectively-expandable actuator 30 is configured to move at least a portion of the scaffold 20 to the second configuration when the selectively-expandable actuator 30 is moved to its expanded configuration.
A shape of the selectively-expandable actuator 30 is substantially the same as a shape of the scaffold 20 when the selectively-expandable actuator 30 is in the expanded configuration and the scaffold 20 is in the second configuration. Additionally, the selectively-expandable actuator 30 and the scaffold 20 can be concentrically and/or coaxially aligned.
After the selectively-expandable actuator 30 has moved the scaffold 20 to the second configuration, the selectively-expandable actuator 30 can be returned to its collapsed configuration and removed from the scaffold 20. The scaffold 20 is configured to remain substantially in the second configuration within the bone after the selectively-expandable actuator 30 has been removed. The selectively-expandable actuator 30 need only be collapsed a sufficient degree to be removed from the scaffold 20. In other words, the collapsed configuration is any configuration that allows the selectively-expandable actuator 30 to be inserted into and/or removed from the scaffold 20.
The scaffold 20 can be inserted into a body percutaneously and is inserted through the bone when the scaffold 20 is in the first configuration. After the scaffold 20 is moved to the second configuration, the scaffold 20 remains within the bone.
The scaffold 20 is plastically deformed when moved into the second configuration. In other words, the mechanical properties of the scaffold 20 change such that the scaffold 20 can not return to its initial configuration. The geometry of the scaffold 20 is permanently altered.
When the scaffold 20 is expanded (i.e., moved to its second configuration) in a vertebra, the scaffold 20 is configured to expand a volume in the cancellous bone of the vertebra. The volume can be created, for example, by compacting the cancellous bone and/or moving, and subsequently extracting, the cancellous bone or other biological material. The medical device 10 is able to compact bone by providing a force across the scaffold 20 while the scaffold is actuated. The scaffold 20 is moved apart by the expandable actuator 30.
In some embodiments, the selectively-expandable actuator 30 includes a balloon. The balloon can be either symmetrical or asymmetrical about a longitudinal axis of the balloon. The balloon is configured to be expanded, for example, by a liquid and/or a gas.
The medical device 10 includes a shaft 50, which is coupled to the scaffold 20. The shaft 50 is configured to be moved in the direction away from the scaffold 20 indicated by arrows X-X in
The scaffold 20 can be removably coupled to the shaft 50. Prior to deployment of the scaffold 20, the shaft 50 can be used as a filler tube. Filler material can be injected through the interstices of the scaffold 20 for placement within the vertebra (e.g., adjacent to the cancellous bone). The working channel 55 of the shaft 50 can also be used as a passageway for the use of additional working tools.
Shaft 60 that is configured to be removably inserted within passageway 55 defined by shaft 50. To remove the selectively-expandable actuator 30 from within the scaffold 20, shaft 60 can be withdrawn from the medical device 10 in the direction illustrated by arrow Z.
a and 2b are perspective views of a medical device 10′ including a bone scaffold 20′ according to an embodiment of the invention. As illustrated in
The scaffold 20′ is removably coupled to a shaft 50′ which can be used as, for example, a cannula. Once the scaffold 20′ is expanded, the shaft 50′, is removed from the scaffold 20′, leaving the scaffold 20′ in the bone.
a and 5b are side views of medical device 10′ in the second configuration with the selectively-expandable actuator 30′ disposed within the scaffold 20′. As the selectively-expandable actuator 30′ expands the scaffold 20′, a volume is defined within the cancellous bone disposed about medical device 10′. In some embodiments, the cancellous bone is compacted by the actuator 30′ and the scaffold 20′.
The shaft 50′ can be removably coupled to the scaffold 20′ by known connectors. For example, the shaft 50′ can be coupled to the scaffold 20′ using a threaded connector, a break-away connector, a lock-and-key connection, etc. Any suitable connection device is appropriate, provided the shaft 50′ can be removed from the scaffold 20′ once the scaffold 20′ is positioned and expanded in the bone.
As illustrated in
In an alternative arrangement (not shown) multiple scaffolds 20′″ can be oriented concentrically (i.e., one inside the other) with respect to one another. Additionally, the concentrically-oriented scaffolds 20′″ can be rotated with respect to one another such that the slits 17 for one scaffold 20′″ are out of phase (i.e., not completely overlapping) with the slits 17 for the other scaffold 20′″. In such a configuration, when the scaffolds 20′″ are expanded, the size of the gaps 27 collectively are reduced and the strength of the scaffold combination (i.e., the inner scaffold 20′″ and the outer scaffold 20′″) is increased. The scaffolds 20′″ can be welded in place to maintain their relative position.
When the scaffolds 20′″ are oriented concentrically and then expanded, portions of the inner scaffold 20′″ expand outwardly, while portions of the outer scaffold 20′″ collapse inwardly. The adjacent portions of each scaffold 20′″ substantially inhibit the remaining scaffold 20′″ from collapsing under external pressure. Such scaffolds 20′″ can be formed, for example, from shape-memory material that is inserted in a collapsed configuration and expanded after insertion into a vertebral body.
An actuator 130 is removably coupled to the scaffold 200. The actuator 130 is configured to move the scaffold 200 from the first configuration to the second configuration. A sleeve 300 is disposed around the scaffold 200. The sleeve 300 is configured to bias the first portion 210 of the scaffold 200 towards the second portion 220 of the scaffold 200. In some embodiments, the sleeve is substantially elastic. When outward pressure of the actuator 130 is sufficient, the outward pressure can overcome the elasticity of the sleeve 300. The properties of the sleeve 300 may be varied such that the firs portion 210 of the scaffold 200 expands at a different rate than the second portion 220 of the scaffold 200 when actuated. In other words, the scaffold 200 can be expanded in an anisotropic manner.
Medical device 500, according to an embodiment of the invention is illustrated in
As illustrated in
The scaffold 520 can be either elastically or plastically deformed. Additionally, the selectively-expandable actuator 530 can be either uniformly expandable or non-uniformly expandable such that the shape of the scaffold 520 in its second configuration may vary along its length.
While various embodiments of the invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the invention should not be limited by any of the above-described embodiments, but should be defined only in accordance with the following claims and their equivalents.
While the invention has been particularly shown and described with reference to embodiments thereof, it will be understood by those skilled in art that various changes in form and details may be made therein without departing from the spirit and scope of the invention.
For example, although the selectively-expandable actuators 30, 30′, 130, 530 are described as including a single balloon, in alternative embodiments multiple independent actuators may be provided between within the scaffold. For example, the actuator(s) may include multiple chambers that are independently actuated to permit an isotropic deployment of the scaffold.
Although the scaffold is described without reference to specific materials, the scaffold can be made of any material sufficient to be inserted into body tissue and modify the volume of the tissue. For example, the scaffold can be made of Nitinol or stainless steel.
While the selectively-expandable actuator 30 is described above as being coupled to a separate shaft 60, in alternative embodiments the actuator 30 can be coupled to the same shaft 50 as the scaffold 20. In such a configuration, when the shaft 50 is uncoupled and removed from the scaffold 20, the actuator 30 would also be removed.
Additionally, although the selectively-expandable actuator 30 is primarily described as a balloon-type actuator, selectively-expandable actuator 30 can be any type of mechanical actuator configured to expand the scaffold 20 from within the scaffold 20. For example, the actuator can be a laterally expandable device including laterally extending projections that are configured to engage the scaffold 20 to move it to its expanded configuration. In other embodiments, the mechanical actuator can cause the expandable scaffold to be biased to have a substantially greater resistance to retrograde axial motion than to anterograde motion.
Although the scaffold 20 is described as being substantially cylindrical in the first configuration, in alternative embodiments, any shape sufficient to be modified to an expanded configuration to change the volume of tissue around the scaffold can be used. For example, the scaffold can be triangular, hexagonal, octagonal, etc.
Although removal of the actuator after expanding the scaffold is disclosed, in alternative embodiments, the actuator can remain in place within the scaffold, detach from the shaft to which it is attached and remain in the scaffold within the vertebra. In some embodiments, bone filler material may be inserted into the void created within the vertebra adjacent the scaffold.
Although described separately with respect to the various embodiments above, features of the disclosed embodiments may be interchangeably associated.
Number | Name | Date | Kind |
---|---|---|---|
4083369 | Sinnreich | Apr 1978 | A |
4313434 | Segal | Feb 1982 | A |
4327736 | Inoue | May 1982 | A |
4733665 | Palmaz | Mar 1988 | A |
4739762 | Palmaz | Apr 1988 | A |
4776337 | Palmaz | Oct 1988 | A |
4793348 | Palmaz | Dec 1988 | A |
4969888 | Scholten et al. | Nov 1990 | A |
5102417 | Palmaz | Apr 1992 | A |
5108404 | Scholten et al. | Apr 1992 | A |
5211259 | Kishi | May 1993 | A |
5254091 | Aliahmad | Oct 1993 | A |
5316023 | Palmaz et al. | May 1994 | A |
5360443 | Barone et al. | Nov 1994 | A |
5382261 | Palmaz | Jan 1995 | A |
5439447 | Miraki | Aug 1995 | A |
5522880 | Barone et al. | Jun 1996 | A |
5549679 | Kuslich | Aug 1996 | A |
5571170 | Palmaz et al. | Nov 1996 | A |
5571171 | Barone et al. | Nov 1996 | A |
5578072 | Barone et al. | Nov 1996 | A |
5656036 | Palmaz | Aug 1997 | A |
5683452 | Barone et al. | Nov 1997 | A |
5683453 | Palmaz | Nov 1997 | A |
6127597 | Beyar et al. | Oct 2000 | A |
6190404 | Palmaz et al. | Feb 2001 | B1 |
6241734 | Scribner et al. | Jun 2001 | B1 |
6261289 | Levy | Jul 2001 | B1 |
6379383 | Palmaz et al. | Apr 2002 | B1 |
6423083 | Reiley et al. | Jul 2002 | B2 |
6537310 | Palmaz et al. | Mar 2003 | B1 |
RE38146 | Palmaz et al. | Jun 2003 | E |
6582467 | Teitelbaum et al. | Jun 2003 | B1 |
6716216 | Boucher et al. | Apr 2004 | B1 |
6733513 | Boyle et al. | May 2004 | B2 |
6736843 | Fariabi | May 2004 | B1 |
6820676 | Palmaz et al. | Nov 2004 | B2 |
7507241 | Levy et al. | Mar 2009 | B2 |
20030028246 | Palmaz et al. | Feb 2003 | A1 |
20030088249 | Furderer | May 2003 | A1 |
20030212426 | Olson et al. | Nov 2003 | A1 |
20040133280 | Trieu | Jul 2004 | A1 |
20040167625 | Beyar et al. | Aug 2004 | A1 |
20050143827 | Globerman et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
8038618 | Feb 1996 | JP |
9856301 | Dec 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20060264945 A1 | Nov 2006 | US |