This application relates to the use of selectively perforated carbon single and several layer graphene membranes for the purposes of intentional harvest, capture and retention of desired compounds from solution passing through the membrane, or a suitable arrangement of the membranes.
As fresh water resources are becoming increasingly scarce, many nations are seeking solutions that can convert water that is contaminated with salt, most notably seawater, into clean drinking water.
Existing techniques for water desalination fall into four broad categories, namely distillation, ionic processes, membrane processes, and crystallization. The most efficient and most utilized of these techniques are multistage flash distillation (MSF), multiple effect evaporation (MEE) and reverse osmosis (RO). Cost is a driving factor for all of these processes, v/here energy and capital costs are both significant. Both RO and MSF/MEE technologies are thoroughly developed. Currently, the best desalination solutions require between two and four times the theoretical minimum energy limit established by simple evaporation of water, which is in the range of 3 to 7 kjoules/kg. Distillation desalination methods include multistage flash evaporation, multiple effect distillation, vapor compression, solar humidification, and geothermal desalination. These methods share a common approach, which is the changing of the state of water to perform desalination. These approaches use heat-transfer and/or vacuum pressure to vaporize saline water solutions. The water vapor is then condensed and collected as fresh water. Ionic process desalination methods focus on chemical and electrical interactions with the ions within the solution. Examples of ionic process desalination methods include ion exchange, electro-dialysis, and capacitive deionization. Ion exchange introduces solid polymeric or mineral ion exchangers into the saline solution. The ion exchangers bind to the desired ions in solution so that they can be easily filtered out. Electro-dialysis is the process of using cation and anion selective membranes and voltage potential to create alternating channels of fresh water and brine solution. Capacitive deionization is the use of voltage potential to pull charged ions from solution, trapping the ions while allowing water molecules to pass. Membrane desalination processes remove ions from solution using filtration and pressure. Reverse osmosis (RO) is a widely used desalination technology that applies pressure to a saline solution to overcome the osmotic pressure of the ion solution. The pressure pushes water molecules through a porous membrane into a fresh water compartment while ions are trapped, creating high concentration brine solution. Pressure is the driving cost factor for these approaches, as it is needed to overcome osmotic pressure to capture the fresh water. Crystallization desalination is based on the phenomenon that crystals form preferentially without included ions. By creating crystallized water, either as ice or as a methyl hydrate, pure water can be isolated from dissolved ions. In the case of simple freezing, water is cooled below its freezing point, thereby creating ice. The ice is then melted to form pure water. The methyl hydrate crystallization processed uses methane gas percolated though a saltwater solution to form methane hydrate, which occurs at a lower temperature than at which water freezes. The methyl hydrate rises, facilitating separation, and is then warmed for decomposition into methane and desalinated water. The desalinated water is collected, and the methane is recycled.
Evaporation and condensation for desalination is generally considered to be energy efficient, but requires a source of concentrated heat. When performed in large scale, evaporation and condensation for desalination are generally co-located with power plants, and tend to be restricted in geographic distribution and size.
Capacitive deionization is not widely used, possibly because the capacitive electrodes tend to foul with removed salts and to require frequent service. The requisite voltage tends to depend upon the spacing of the plates and the rate of flow, and the voltage can be a hazard.
Reverse osmosis (RO) filters are widely used for water purification. The RO filter uses a porous or semipermeable membrane typically made from cellulose acetate or polyimide thin-film composite, typically with an overall thickness of 1 mm. These materials are hydrophilic. The membrane is often spiral-wound into a tube-like form for convenient handling and membrane support. The membrane exhibits a random-size aperture distribution, in which the maximum-size aperture is small enough to allow passage of water molecules and to disallow or block the passage of ions such as salts dissolved in the water. Notwithstanding the one-millimeter thickness of a typical RO membrane, the inherent random structure of the RO membrane defines long and circuitous or tortuous paths for the water that flows through the membrane, and these paths may be much more than one millimeter in length. The length and random configuration of the paths require substantial pressure to strip the water molecules at the surface from the ions and then to move the water molecules through the membrane against the osmotic pressure. Thus, the RO filter tends to be energy inefficient.
Alternative water desalination or deionization is desired.
In relation to desalination and deionization there is also a need in industrial, commercial and pharmaceutical technologies for capturing and retaining compounds of high value from dissolved solutions containing them. The cost of producing, extracting and refining these compounds from an original source increases through a combination of scarcity, energy and transportation cost. Therefore high performance, selective, durable harvest membranes that accommodate a variety of compound dislodging and capture means are sought.
Existing harvest and capture devices consist of variants of thick, porous membranes, columns packed with absorbant (or adsorbant) spheres, and chormotographic or electrophoretic devices. The devices associated with these approaches suffer from restricted performance—measured as captured volume of the desired compound per unit time, per unit area. This is primarily because the input multi-component mixture flow is greatly impeded as it flows through the aforementioned arrangements. The primary reason for this poor performance is expressed in the flow equation of D'Arcy, that describes the flow of a fluid at low velocity through a porous media:
J=βΔp/d 1)
Where J is the flux through the membrane (m3/sec/m2), Δp is the pressure difference across the membrane (N/m2), β is a membrane friction parameter, and d is the membrane thickness (m). Existing membrane and sphere arrangements have thicknesses ranging from 50-100 microns (10−6 m) and tortuous paths associated with the parameter β in the range of 0.5 to as small as 0.05.
Based on the foregoing, there is a clear need in the art for improved membranes. Accordingly, the present disclosure provides for graphene membranes where the nominal thickness of single to few layer graphene is 0.3×10−9 m with β=1; which results in an overall theoretical advantage in efficiency of permeation of 330,000:1.
In addition to its dimensional advantage, graphene is also extremely strong with a Young's Modulus 1000 times larger than steel. It is also conductive so that it may possess a charge relative to the surrounding solution, and is magnetically neutral. These facts allow a range of unique methods to be applied to dislodging desired compounds from the graphene surface for subsequent capture and retention.
In light of the foregoing, it is a first aspect of the present invention to provide selectively perforated graphene membranes for compound harvest, capture and retention.
It is another aspect of the present invention to provide a method for collecting molecules from solution comprising providing at least one graphene membrane perforated with a plurality of apertures selected to allow passage of the solutions' solvent while simultaneously arresting desired molecules upon a surface of the at least one graphene membrane, and dislodging the accumulated desired molecules from the surface for capture and retention.
It is another aspect of the present invention set out above to include halting flow of the solution when accumulation of the desired molecules reaches a predetermined amount.
It is still another aspect of the method set out above to provide dislodging by locating two electromagnet coils spaced above and below the at least one graphene membrane, and applying controlled current to the electromagnetic coils to generate an electromagnetic attraction force on any one of the molecule constituents responsive to Ferromagnetic attraction so as to dislodge the molecules from the surface. After dislodging, the method may continue by flowing a free solution across the surface to harvest the desired dislodged molecules.
It is yet another aspect of the method set out above to provide dislodging by associating the at least one graphene membrane with at least one porous piezo-electric substrate, and applying a voltage to the at least one porous piezo-electric substrate to produce mechanical deflection causing vertical dislodging of one of the molecule constituents so as to dislodge the molecules from the surface. After dislodging, the method may continue by flowing a free solution across the surface to harvest the desired dislodged molecules.
It is a further aspect of the method set out above to provide connecting an electromagnetic wave generating circuit between an outer diameter and a proximal center reference of the at least one graphene membrane, and applying an electromagnetic wave to at least one graphene membrane to produce a combined lateral charge and vertical mechanical deflection causing vertical dislodging of one of the desired molecule constituents so as to dislodge the molecules from the surface. The method may continue by flowing a free solution across the surface to harvest the desired dislodged molecules.
It is another aspect of the invention to provide an apparatus for selectively harvesting molecules, comprising a vessel having an inlet and an outlet, the inlet receiving a solution and the outlet collecting the solution's solvent, at least one graphene membrane perforated with a plurality of apertures selected to allow passage of the solution's solvent while simultaneously arresting desired molecules upon a surface of the at least one graphene membrane, and a dislodging device associated with the at least one graphene membrane to dislodge the desired molecules from the surface.
It is another aspect of the invention to provide a detection device associated with the at least one graphene membrane to monitor accumulation of the desired molecules upon the surface.
It is yet another aspect of the invention to provide a cross-flow inlet and a cross-flow outlet associated with the vessel, the cross-flow inlet positioned to distribute a free solution over the at least one graphene membrane to harvest the desired dislodged molecules and wherein the cross-flow outlet accumulates the free solution and desired dislodged molecules.
In one embodiment of the invention, the dislodging device comprises a pair of electromagnetic coils having a gap therebetween, wherein the at least one graphene membrane is received in the gap, and a current source applying current to at least one of the electromagnetic coils to generate an electromagnetic attraction force to dislodge the desired molecules from the surface.
In another embodiment, the dislodging device comprises at least one porous piezo-electric substrate associated with the at least one graphene membrane, and a voltage source connected to the at least one porous piezo-electric substrate to generate a mechanical deflection and dislodge the desired molecules from the surface.
In still another embodiment, the dislodging device comprises an electromagnetic wave generating circuit connected between an outer edge of the at least one graphene membrane and a proximal center reference of the at least one graphene membrane, wherein generation of the electromagnetic wave generates a combined lateral charge and vertical mechanical deflection causing dislodging of the desired molecules from the surface.
This and other features and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings wherein:
Aperture 312 may be made by selective oxidation, by which is meant exposure to an oxidizing agent for a selected period of time. It is believed that the aperture 312 can also be formed by charged particle bombardment thereafter followed by the aforementioned selective oxidation. As described in the publication Nano Lett. 2008, Vol. 8, no. 7, pg 1965-1970, the most straightforward perforation strategy is to treat the graphene film with dilute oxygen in argon at elevated temperature. As described therein, through apertures or holes in the 20 to 180 nm range were etched in graphene using 350 mTorr of oxygen in 1 atmosphere (atm) argon at 500° C. for 2 hours. The paper reasonably suggests that the number of holes is related to defects in the graphene sheet and the size of the holes is related to the residence time. This is believed to be the preferred method for making the desired perforations in graphene structures. The structures may be graphene nanoplatelets and graphene nanoribbons. Thus, apertures in the desired range can be formed by shorter oxidation times. Another more involved method as described in Kim et al. “Fabrication and Characterization of Large Area, Semiconducting Nanoperforated Graphene Materials,” Nano Letters 2010 Vol. 10, No. 4, Mar. 1, 2010 pp 1125-1131, utilizes a self assembling polymer that creates a mask suitable for patterning using reactive ion etching. A P(S-blockMMA) block copolymer forms an array of PMMA columns that form vias for the RIE upon redeveloping. The pattern of holes is very dense. The number and size of holes is controlled by the molecular weight of the PMMA block and the weight fraction of the PMMA in the P(S-MMA). Either method has the potential to produce perforated graphene sheets.
As mentioned, the graphene sheet 310 of
It should be noted that, in the apparatus or arrangement of
As mentioned, the perforations 312 in graphene sheet 212 of
As with the case of the deionization arrangement 200 of
Also illustrated in
Those skilled in the art will understand that ions other than chlorine and sodium may be removed from water by selectively perforated graphene sheets.
Referring now to
The vessel 802 receives through the primary inlet 804 a multi-component solution or mixture which contains a plurality of both desired and unwanted components which in some embodiments may be dissolved into solution. Those skilled in the art will appreciate that the solution may be aqueous, or water based, or organic in nature, either of which is sufficient to dissolve the components into solution. The vessel 802 is constructed of a wall 808 which substantially extends from the inlet 804 to the outlet 806. In some embodiments, the wall may be divided into sections 810 which are modularly assembled and separable so as to allow for internal access to the vessel 802. Each section, whether modularly configured or not, is provided with a corresponding alphabetic suffix (A, B, etc), along with each component associated with a particular section. It will further be appreciated that the sections when assembled are secured and sealed to one another so as to prevent contaminating components from entering the vessel and to prevent solution from inadvertently exiting the vessel. The multi-component solution or mixture is directed from a material source 816 wherein the material may be pre-filtered or not.
Each section 810 is provided with a cross-flow entry port 820 and a cross-flow exit port 822. In most embodiments, the ports 820 and 822 will be diametrically opposed to one another; however, it will be appreciated that in other embodiments the ports may be arranged in a manner conducive to harvesting the retained materials from the muti-component solution as will be described. Further associated with each section 810 is a pump 824 associated with a cross-flow entry port 820. Each exit port 822 has associated therewith a valve 826. A collection vessel 832 is associated with each section 810 to receive the desired components in a manner that will be described. Although the vessel 802 is shown as having three sections 810A, 810B and 810C, it will be appreciated that other embodiments may provide for a single wall vessel which may have any number (1, 2, 4 or more) of cross-flow entry ports and cross-flow exit ports as required based upon the molecules and or constituents to be captured from the multi-component solution.
Associated with each section 810, if provided, or associated with corresponding ports 820 and 822 is a perforated graphene membrane 836. Each perforated graphene membrane 836 in the embodiments to be described is configured to provide the attributes and characteristics of the filter membrane 212/graphene sheet 310 described previously. Each graphene membrane 836 is provided with a plurality of holes 838 which are sized to allow passage of certain components while preventing passage of other components. In the embodiment shown it will appreciated that three graphene membranes 836 are provided. The graphene membrane 836 with the largest diameter hole diameter is positioned at the top portion of the vessel 802 or in closest proximity to the inlet valve 818. The membrane 836 is secured, and in some embodiments detachably affixed to suitable support structures maintained within the vessel 802. In particular, a membrane support 842 extends from an internal surface 844 of the wall 808 so as to hold the graphene membrane in place. As previously described, in some embodiments a backing material or a backing sheet, which may be made of polytetrafluoroethane, selectively perforated polycarbonate, or the like, may be used to undergird, support or otherwise facilitate positioning and support each membrane 836 in the vessel 802. As previously mentioned, when more than one graphene membrane 836 is positioned in the vessel 802 then the membrane closest to the inlet valve 818 has the largest diameter hole diameter and is positioned in closest proximity thereto. The graphene layers are then positioned in a vertical sequence in the Z direction of decreasing perforation diameter. In other words, if multiple graphene membrane are provided in the vessel, each graphene membrane positioned underneath another graphene membrane will have smaller diameter holes or apertures than the graphene membrane immediately above. As the solution flows from the inlet valve 818 and through the graphene membranes 836 toward the outlet valve 828, the multi-compartment solution falls past each of the successive graphene membranes that have decreasing hole diameter so that the molecular compounds of successively smaller diameter accumulate on an upper surface 840 of each membrane. In this manner, several molecules or constituents of the multi-component a solution may be harvested and captured.
A control system 850 is connected to the various pumps 824, inlet valves 818, and outlet valves 826 so as to control the flow of solution through the vessel and when appropriate control of cross-flow solutions that are distributed across the graphene membranes so as to collect the accumulated molecules. Skilled artisans will appreciate that the control system 850 provides the necessary hardware and software for receiving information from the various components of the manifold and to control their operation. Each component of the manifold 800 that is connected to, monitored by and controlled by the control system is designated by a capital letter A-F. By way of example, all the pumps 824 are linked with the control system by capital letter B.
Associated with each graphene membrane 836 and the control system 850, and if appropriate, each section 810 of the vessel 802 is a detection device 852. The detection device 852 is associated with each membrane and monitors the accumulation of molecules on the graphene membrane 836 that do not pass through the membrane. The detection device 852 may be an optical device by which a transmission spectrum amplitude is measured and compared to a reference value. This information is provided to the control system 850. Another type of detection device 852 is an electrical device by which either the resistance or impedance of the membrane changes in accordance with an accumulated amount of material. In other words, as a predetermined level of molecules accumulate on the membrane, its resistance value changes accordingly and the control system 850 detects when a predetermined threshold is reached so as to stop the flow of material by closing the inlet valve 818 and allow for the accumulated molecules to be harvested. And still another detection device 852 may comprise a mechanical device by which the natural frequency and damping modes of the graphene membrane change in response to an accumulated amount of matter. Accordingly, once the detection device 852 detects by any of the means described above that a predetermined threshold amount of molecules have accumulated on any one of the graphene membranes or by any combination of the graphene membranes, the control system 850 shuts the inlet valve 818 and allows the remaining molecules to fully settle and accumulate for harvest. At the appropriate time, the control system 850 begins dislodging of the compounds from the surface of the appropriate graphene membrane 836 so that the molecules may be captured and retained as will be discussed.
As shown in
Referring now to
Referring now to
Referring now to
Fes=βE(a1 sin(ωit+φi)). The wave propagates inwardly toward the ground reference in accordance to the relative voltage difference between the ground and outer diameter of the graphene membrane. As the material accumulated on the graphene membrane is electrostatically repelled vertically in response to the electrostatic force, the material's concentration in the free solution is sensed by a conductivity meter 916. The meter 916 is connected to the control system 850 through an analog-to-digital converter 918 to moderate the applied wave time series to maximize material dislodgement. Once a predetermined threshold value of conductivity is detected by the meter 916, the control system 850 continues with the cross-flow flushing of the free solution and associated material as described in the previous embodiments.
As discussed above, when multiple graphene membranes are utilized, the aperture size for each membrane goes from a larger to a smaller diameter. For example, molecules that are blocked by the first graphene membrane and designated as R1, while slightly smaller molecules are blocked by graphene membrane 836B and are identified as R2. Finally, molecules that are even smaller are identified as R3 and are blocked by graphene membrane 836C. Molecules that are not blocked by any of the membranes pass through, and are identified as the permeate collected in collection vessel 832.
The control system 850 coordinates operation of the valves 818 and 826, the pumps 824, and the dislodging mechanisms 854 in an efficient manner so as to minimize power applied and to collect the desired molecules. It will further be appreciated that the control system 850 and the associated dislodging mechanisms may be configured to drive the accumulated material on the surface 840 across the membrane 836 to the outer circumference of the membrane and the housing 820 to facilitate capture thereof.
The advantages of the present invention are readily apparent. In particular, the apparatus 800 can effectively harvest specifically sized molecules and effectively remove them from a surface of a graphene membrane. This is useful where molecules cake and otherwise accumulate in a manner where they cannot be easily dislodged by a simple cross-flow of solution. The vessel and related methodology permits removal of the molecules without having to remove the membranes from the vessel. The unique conductive property of graphene allows application of the aforementioned electrical dislodging and harvesting means, in a manner not afforded to existing polymer, and hence insulating, membranes in current practice.
Thus, it can be seen that the objects of the invention have been satisfied by the structure and its method for use presented above. While in accordance with the Patent Statutes, only the best mode and preferred embodiment has been presented and described in detail, it is to be understood that the invention is not limited thereto or thereby. Accordingly, for an appreciation of the true scope and breadth of the invention, reference should be made to the following claims.
This application claims priority of U.S. provisional application Ser. No. 61/635,378 filed Apr. 19, 2012 and entitled Selectively Perforated Graphene membranes For Compound Harvest, Capture And Retention, and is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61635378 | Apr 2012 | US |