SELECTIVELY SEALING FUEL CELL POROUS PLATE

Abstract
A method of manufacturing a porous structure for a fuel cell is disclosed. The method includes providing the porous structure, and processing the porous structure to selectively produce a non-porous region on the porous structure. In one example, the non-porous region is provided at the perimeter of the porous structure, an edge of an internal manifold and/or a surface or recess that supports a seal or gasket. The non-porous region has a porosity that is less than the porosity of the porous structure. The non-porous region prevents undesired leakage of fluid from the porous structure and prevents migration of adhesive associated with the seals.
Description
BACKGROUND

This disclosure relates to sealing components of a fuel cell stack assembly, which includes an anode, a cathode and an electrode assembly.


A fuel cell typically includes dozens or more cells arranged to provide the cell stack assembly. Each cell includes an anode, a cathode and an electrode assembly. In one type of fuel cell, the anode and the cathode are provided by porous plates having flow fields that respectively supply fuel and reactant to the electrode assembly. Porous plates can be used to transport water, which can also be utilized as coolant. For some fuel cells it is desirable to use internal manifolds, which are located inside an outer perimeter of the porous plates. The internal manifolds carry a fluid flow, such as fuel, reactant and/or coolant. The flow through the internal manifolds must be contained in some manner to prevent overboard leakage from the cell stack assembly.


Traditional fuel cell stack assembly designs use interfacial seals between the components of the cell stack assembly. The interfacial seals are arranged between the lateral sides of the anode, the cathode and the electrode assembly to prevent the fuel and reactant from escaping their respective flow fields thereby bypassing the electrode assembly and intermixing undesirably with one another. One type of interfacial seal is provided by a gasket having adhesive that is applied to the face of the porous plate. The adhesive can migrate into the porous plate and enter the flow field, for example, which can contaminate coolant within the cell stack assembly.


SUMMARY

This disclosure relates to a method of manufacturing a porous structure, such as a water transport plate, for a fuel cell. The method includes providing the porous structure, and processing the porous structure to selectively produce a non-porous region on the porous structure and seal a portion of the plate. In one example, the non-porous region is provided at the perimeter of the porous structure, an edge of an internal manifold and/or a surface or recess that supports a seal or gasket. The non-porous region has a porosity that is less than the porosity of the porous structure. The non-porous region prevents undesired leakage of fluid from the porous structure and prevents migration of adhesive associated with the seals, which can contaminate the porous structure.


These and other features of the disclosure can be best understood from the following specification and drawings, the following of which is a brief description.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic perspective view of an exemplary fuel cell.



FIG. 2 is a partial elevational view of a porous structure prior to processing, in accordance with an embodiment.



FIG. 3 is a partial cross-sectional view taken along line 3-3 in FIG. 2 during processing to produce a non-porous, densified region.



FIG. 4 is a partial elevational view of the porous structure shown in FIG. 2 during processing subsequent to densification.



FIG. 5 is a partial cross-sectional view taken along line 5-5 of FIG. 4 subsequent to machining and with a seal installed.



FIG. 6 is a partial cross-sectional view of two porous structures with non-porous, densified regions.





DETAILED DESCRIPTION

A highly schematic view of a fuel cell 10 is shown in FIG. 1, in accordance with an embodiment of this disclosure. The fuel cell 10 includes multiple cells 11 that provide a cell stack assembly 12. Each cell 11 includes an electrode assembly 16 arranged between an anode 14 and a cathode 18, respectively provided by an anode plate 34 and a cathode plate 36. In one example, the electrode assembly 16 includes a proton exchange membrane and gas diffusion layers. Each anode plate 34 includes a fuel flow field 24, provided by channels in the anode plate 34 that are in fluid communication with a fuel source 20. The fuel source 20 is hydrogen, in one example. The cathode plate 36 provides a reactant flow field 26, provided by channels in the cathode plate 36 that are in fluid communication with an oxidant or reactant source 22. In one example, the oxidant is provided by air supplied by a pump 40.


Each cell 11 typically includes a coolant flow field 30 that may be provided by a separate structure, such as coolant plate 38, or integrated into one of the components of the cell 11. For integrated structures, the cathode plate 36 includes a water flow field 28 that transports product water, which can also be used as a coolant. When using a separate structure, the coolant flow field 30 may include a coolant loop 32 for circulating coolant within the cell stack assembly 12 to maintain the fuel cell 10 at or below a desired operating temperature. In other embodiments, a hybrid of both separate and integrated coolant structures can be used in a fuel cell.


In the example fuel cell 10, the anode plate 34 and cathode plate 36 are porous structures that permit water to be transported through the plates as well as fuel and reactant. The porous structure, indicated at 42 in FIGS. 2-5, must be sealed to prevent undesired leakage of gases from the anode and cathode plates 34, 36. In some fuel cell configurations, external manifolds are arranged about the perimeter of the plates and sealed to the plates using a gasket material. In other fuel cell configurations, it is desirable to use an internal manifold 43, which is contained within a perimeter 44 of the porous structure 42.


The porous structure 42 includes multiple features provided by a perimeter 44, opposing faces 46, edges 48 that define internal passages and recesses 50 that are configured to receive seals or gaskets. At least one of the faces 46 includes channels 52 that provide flow fields in communication with the manifolds 43.


It is desirable to contain the fluids, comprising gases and water, within the porous structure 42. To this end, one or more of the surfaces of the porous structure 42 are selectively processed to produce non-porous regions that prevent the leakage of gases and/or water. In one example, one or more of the surfaces of the porous structure 42 are treated by depositing carbon on the surfaces using a chemical vapor deposition (CVD) process to densify the exposed surfaces. In one example, the porous structure 42 is placed in a chamber with a carbon-rich environment, which can be provided by methane gas. The temperature and flow rate of the methane gas is configured to evolve carbon from the gas, which is deposited onto the exposed surfaces. The porous structure 42 can be unmasked, as illustrated by the process depicted in FIGS. 2-5 or masked to selective densify the porous structure 42, as depicted in FIG. 6.


Referring to FIGS. 2-5, the porous structure 42 is processed to produce one or more non-porous regions 58, such as by a CVD process. The non-porous region 58 has a porosity that is less that the porous structure 42. In one example, the non-porous region 58 is solid. The exposed surfaces, which in the example include the perimeter 44, opposing faces 46, edge 48 and recess 50, are densified as shown in FIG. 3. Next, channels 52 for a flow field 54 are machined into a face 46 to expose the porous structure 42 on a machined surface 60, shown in FIG. 4, which enables the flow of fluid through the porous structure 42 as desired. Other features can be provided on the machined surface 60 as well. In the example, the perimeter 44, edge 48 and recess 50 remain non-porous, preventing fluid leaks at those sites. Thus, an internal manifold 43 can be used without fluid leaking from the cell stack assembly 12. A seal 56 is applied to the recess 50, which, since it has been densified, no longer permits migration of adhesive into the porous structure 42.


Referring to FIG. 6, porous structures 142 are arranged adjacent to one another and used to mask surfaces for which densification is desired. In the example, the porous structures 142 are assembled with the perimeters 44 exposed. The perimeters 44 are densified, for example, using a CVD process. In this manner, fluid is prevented from leaking out of the cell stack assembly 12 at the perimeter 44.


Although example embodiments have been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of the claims. For that reason, the following claims should be studied to determine their true scope and content.

Claims
  • 1. A method of manufacturing a porous structure for a fuel cell comprising: providing a porous structure; andprocessing the porous structure to selectively produce a non-porous region on the porous structure.
  • 2. The method according to claim 1, wherein the porous structure is one of an anode porous plate and a cathode porous plate.
  • 3. The method according to claim 2, wherein the porous structure includes a surface having channels that provide a flow field.
  • 4. The method according to claim 1, wherein the processing includes treating at least one surface of the porous structure to produce the non-porous region.
  • 5. The method according to claim 4, wherein the processing includes densifying the at least one surface.
  • 6. The method according to claim 5, wherein the processing includes exposing the at least one surface to a carbon-rich environment.
  • 7. The method according to claim 6, wherein the carbon-rich environment is provided in a chemical vapor deposition process.
  • 8. The method according to claim 4, wherein the at least one surface is a perimeter of the porous plate.
  • 9. The method according to claim 8, wherein the processing includes arranging multiple porous plates adjacent to one another and treating the perimeter of the multiple porous plates simultaneously.
  • 10. The method according to claim 8, wherein the porous structure includes an internal manifold, the perimeter arranged outside of the internal manifold.
  • 11. The method according to claim 4, wherein the processing includes forming multiple channels that provide a flow field, the forming step performed subsequent to the treating step.
  • 12. The method according to claim 4, wherein the processing includes applying a seal to the non-porous region, the applying step performed subsequent to the treating step.
  • 13. The method according to claim 5, wherein the porous structure includes a first porosity and the non-porous region includes a second porosity that is less than the first porosity.
  • 14. A fuel cell component comprising: a porous structure having a first porosity and providing multiple surfaces, a portion of at least one of the surfaces providing a non-porous region having a second porosity that is less than the first porosity.
  • 15. The fuel cell component according to claim 14, wherein the porous structure is one of an anode porous plate and a cathode porous plate.
  • 16. The fuel cell component according to claim 15, wherein the porous structure includes a surface having channels that provide a flow field.
  • 17. The fuel cell component according to claim 14, wherein a seal is arranged on the non-porous region.
  • 18. The fuel cell component according to claim 15, wherein the non-porous region is a perimeter of the one of an anode porous plate and a cathode porous plate.
  • 19. The fuel cell component according to claim 18, wherein the one of an anode porous plate and a cathode porous plate includes an internal manifold, the perimeter arranged outside of the internal manifold.
  • 20. A fuel cell comprising: a cell stack assembly including a cell having an anode and a cathode, at least one of the anode and cathode including a porous structure providing a flow field, the porous structure having a first porosity and providing multiple surfaces, a portion of at least one of the surfaces providing a non-porous region having a second porosity that is less than the first porosity.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US09/39584 4/6/2009 WO 00 9/22/2011