The invention relates generally to the field of inkjet printers, and in particular to a mechanical device that enables selective engagement of one or more of a plurality of operational modes of the printer, where each mode is driven by the same motor.
An inkjet printing system typically includes one or more printheads and their corresponding ink supplies. Each printhead includes an ink inlet that is connected to its ink supply and an array of drop ejectors, each ejector consisting of an ink chamber, an ejecting actuator and an orifice through which droplets of ink are ejected. The ejecting actuator may be one of various types, including a heater that vaporizes some of the ink in the chamber in order to propel a droplet out of the orifice, or a piezoelectric device which changes the wall geometry of the chamber in order to generate a pressure wave that ejects a droplet. The droplets are typically directed toward paper or other print medium (sometimes generically referred to as paper herein) in order to produce an image according to image data that is converted into electronic firing pulses for the drop ejectors as the print medium is moved relative to the printhead.
Motion of the print medium relative to the printhead may consist of keeping the printhead stationary and advancing the print medium past the printhead while the drops are ejected. This architecture is appropriate if the nozzle array on the printhead can address the entire region of interest across the width of the print medium. Such printheads are sometimes called pagewidth printheads. A second type of printer architecture is the carriage printer, where the printhead nozzle array is somewhat smaller than the extent of the region of interest for printing on the print medium and the printhead is mounted on a carriage. In a carriage printer, the print medium is advanced a given distance along a print medium advance direction and then stopped. While the print medium is stopped, the printhead carriage is moved in a direction that is substantially perpendicular to the print medium advance direction as the drops are ejected from the nozzles. After the carriage has printed a swath of the image while traversing the print medium, the print medium is advanced, the carriage direction of motion is reversed, and the image is formed swath by swath. In order to accomplish the motions necessary for printing in a carriage printer, there are typically at least two motors—the motor for print medium advance, and the motor for carriage motion. The examples described in the present invention relate to a carriage printer architecture.
As carriage printer technology matures, there is a need to offer more functions and at lower cost. While previous printers may have dedicated a separate motor (in addition to the motor for paper advance and the motor for carriage motion) to drive an additional function, offering the function without the need for an additional motor is desirable.
It is known in the prior art to use the power of the paper advance motor to operate the various functions of the maintenance station in an inkjet printer. U.S. Pat. Nos. 6,846,060 and 7,225,697, for example, describe power transmission mechanisms that are selectively engaged or disengaged depending on whether or not the carriage is parked at the maintenance station. If the carriage is parked at the maintenance station, a feature on the carriage enables the power transmission mechanism to be engaged. By this means, the maintenance station functions including wiping and capping may be powered by the paper advance motor. When the carriage moves away from the maintenance station, the feature on the carriage no longer enables the power transmission to be engaged for maintenance operations, so that the paper advance motor is used for moving paper through the printer.
For some modes of printing, it is necessary to operate different paper advancing rollers at different times or in different directions. In such a case, a mechanism such as those in '060 and '697 which only allows engagement when the carriage and printhead are parked at the maintenance station is not sufficient.
There is a need, therefore, for a selector mechanism that can operate in different selection positions even after the carriage has moved away, and that can selectively engage one or more of a plurality of functions, driven selectively by a single motor.
According to one feature of the present invention, a printer includes a selector pin and a cam member. The cam member includes a plurality of paths with each path corresponding to a printer function. The cam member and the selector pin are configured to provide relative movement of the selector pin through the plurality of paths with the location of the selector pin in one of the plurality of paths enabling the corresponding printer function.
According to another feature of the present invention, a method of driving multiple printer functions using the same motor includes providing a motor; providing a selector pin; providing a cam member assembly including a cam member including a plurality of paths, each path corresponding to a printer function; and relatively moving the cam member and the selector pin through the plurality of paths to selectively permit the motor to drive the corresponding printer function.
In the detailed description of the preferred embodiments of the invention presented below, reference is made to the accompanying drawings, in which:
The present description will be directed in particular to elements forming part of, or cooperating more directly with, apparatus in accordance with the present invention. It is to be understood that elements not specifically shown or described may take various forms well known to those skilled in the art.
In the following description of preferred embodiments, directional terminology such as front, rear, left, right, top, bottom, etc. is used with reference to the orientation of the figure being described or to the orientation of a component when it is located in its normal operating position in the example being described. Because components of the embodiments of the present invention can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting.
In
Referring back to
On the other side of cam assembly 110, the selector pin assembly 140 is mounted. Selector pin assembly 140, which optionally may be made as an integrally formed part (for example, by injection molding), includes selector pin 142 extending radially outwardly from friction mount sleeve 144, and arm(s) 146 also extending outwardly from friction mount sleeve 144. Cam member 111 cantilevers over friction mount sleeve 144, such that selector pin 142 is captured within the open area of cam member 111, and extends through it, as seen more clearly in
Also shown in
Next the operation of the selector assembly 110 will be explained. Spring 130 tends to push cam assembly 110 toward selector pin assembly 140, so that selector pin 142 is normally located in one of the three slots 122, 123 or 124. However, if carriage 200 is moved sufficiently toward the right side 306 of printer chassis 300 in this example, a feature (not shown) on carriage 200 hits pushing feature 117, causing cam assembly 110 to move toward the right and compress spring 130. As this happens, the selector pin 142 will move relative to the cam member 111 along the cam path 112, 113 or 114 to stop position 115 from the slot (122, 123 or 124 respectively) that it had been in. If the pin had been in slot middle slot 122, no rotation of selector pin assembly 140 occurs during this operation. However, if the pin had been in either slot 123 or 124, the interaction of pin 142 and the outside cam surfaces of cam member 111 will cause selector pin assembly 140 (including arm 146) to rotate relative to the feed roller shaft 319. If the carriage 200 is moved to the left in this example, spring 130 pushes cam assembly 110 toward selector pin assembly 140 so that selector pin 142 moves along one of the cam paths 112, 113 or 114, the particular path depending upon whether the feed roller 312 is rotated as carriage 200 moves to the left. If feed roller 312 is not rotated, then selector pin 142 moves parallel to the axis of the feed roller shaft 319 along path 112 into slot 122. If the media advance motor turns feed roller 312 in forward rotation direction 313, friction mount sleeve 144 will cause selector pin assembly 140 to rotate in direction 313, while cam assembly 110 does not rotate, so that selector pin 142 moves along cam path 114 to slot 124. If the media advance motor turns feed roller 312 in reverse, friction mount sleeve 144 will cause selector pin assembly 140 to rotate in reverse, while cam assembly 110 does not rotate, so that selector pin 142 moves along cam path 113 to slot 123. Selector pin 142 is held in whichever slot it was moved to until carriage 200 is moved back at some later time and pushes the pushing feature 117 so that the selector pin is moved to its location at the stop position 115, and can then be moved to a different slot if desired. Different slots may be reached from the intermediate location by the selector pin 142 following different cam paths. While in the present example, the intermediate location is defined by stop position 115 beyond which selector pin 142 can not move, in other embodiments the intermediate location does not need to occur at a stop position.
As selector pin assembly 140 is rotated and held in different positions corresponding to slots 122, 123 or 124, arm 146 rotates correspondingly. There are a variety of possible gear engagement/disengagement possibilities that the selector pin assembly 100 of the present invention may enable. In one embodiment of this invention, arm 146 is configured to interact with different gears or gear assemblies, selectively enabling or disabling power transmission from the media feed motor, depending upon its rotational position around feed roller shaft 319. For example, in one rotational position, a surface of arm 146 may prevent a pivoting gear assembly from rotating into engagement with another gear assembly, while in another rotational position of arm 146, that pivoting gear assembly is free to rotate into engagement with a first gear or a second gear, depending upon the direction of rotation of feed roller shaft 319. In another embodiment, in one rotational position an arm may push a gear out of engagement with another gear, while in another rotational position, an arm 146 (the same arm, or a different arm, or a different surface of the same arm) may push a gear into engagement with another gear, regardless of direction of rotation of the feed roller shaft. In still another embodiment, a gear that is driven by the media advance motor may be mounted on arm 146 and rotated into or out of engagement with other gears.
Once the carriage 200 has enabled the changing of power transmission engagement in this invention, the carriage is free to move away from the selector assembly 100. This means that different operational modes of printing can be selectively enabled by selector assembly 100 of the present invention. Furthermore, in this embodiment, three separate power transmission engagements are possible (corresponding to selector pin being in either slot 122, 123 or 124), rather than just two. In other embodiments there can be even more individually selectable power transmission engagements, by designing a cam member 111 having more than three branches of cam paths. In fact, it is also possible to have a translational motion of the selector pin assembly 140 along feed roller shaft 319, so that arm 146 enables a different gear engagement when selector pin 142 is in the stop position 115 than when the selector pin is in slot 122. In such an embodiment, four different power transmission engagements could be enabled by the selector assembly 100 shown in
A variety of printer functions may be selectively enabled using selector assembly 100. In one embodiment of this invention, a pick function is enabled with selector pin 142 in slot 124, a printing function is enabled with selector pin 142 in slot 122, and a photo tray movement function is enabled with selector pin 142 in slot 123. In the pick function forward mode, power from the media advance motor is transmitted to all four of the rollers shown schematically in
The pick function has a second mode called the deskew mode, which is enabled with selector pin 142 in slot 122, but with the media advance motor rotating in reverse. The deskew mode may be useful for certain types of jobs, such as printing photos on 4″×6″ photo papers. The roller motion in deskew mode is indicated in
In the printing function mode, power from the media advance motor is transmitted to forwardly rotate the turn roller 322, the feed roller 312 and the discharge roller 324, but no power is transmitted to the pick roller 320. Thus in the printing mode, with the pick roller 320 disabled, printing media can continue to advance through the printer without the pick roller 320 advancing a next sheet until needed. If the deskew mode of paper advance is being used, then the next sheet cannot be advanced to feed roller 312 until the previous sheet has been discharged, because the deskew mode operates the feed roller 312 and the discharge roller 324 in reverse.
However, in the pick function forward mode (also called the “tailgating mode”) described above, one sheet can immediately follow the next, with no gap between the two sheets. Thus when deskew is not required, the faster printing throughput tailgating mode is used. The tailgating mode begins with the selector pin moved into slot 123 and the paper advance motor rotating all four rollers in the forward direction 313. Once the paper has been advanced to the turn roller 322, the carriage 200 can be moved to the right, pushing the cam assembly 110, thus moving the selector pin 142 to stop position 115. During carriage motion (e.g. during printing of a swath) the feed roller 312 is stopped. If the feed roller 312 remains stopped as the carriage moves back to the left, selector pin 142 will be released back to slot 122 into the printing position. When it is desired to pick the next sheet, the carriage 200 moves to the right, pushing the cam assembly 110 and releasing it while the feed roller 312 moves forward, so that selector pin 142 moves into slot 124 to enable the pick forward mode for picking the next sheet. Since in this tailgating sequence it is never required to move the feed roller 312 backwards, it is evident that the picking operation can be activated or deactivated at any point during printing. Thus a sheet can be picked immediately after the previous one, with no gaps between the two sheets. The timing of switching modes by actuating selector assembly 100 can be adjusted depending upon the length of the sheets of media.
A third function which can be optionally selected is photo tray movement, for example when selector pin 142 is positioned in slot 123. In one embodiment, in this position an arm 146 of selector pin assembly 140 causes a gear to engage with a rack (not shown) that can move a photo paper tray back and forth depending on the direction of motor rotation, as in
While the embodiments above described a particular group of functions that may be enabled by selector assembly 100, various other functions may be enabled in other embodiments. These may include other functions that require motion, such as the maintenance functions of capping, wiping or pumping.
Selector assembly 100 may be made in other ways than the coaxially mounted cam assembly 110, spring 130 and selector pin assembly 140. A second embodiment of a selector assembly is shown in
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5704606 | Kim | Jan 1998 | A |
6334725 | Miyauchi | Jan 2002 | B1 |
6846060 | Waller et al. | Jan 2005 | B2 |
7225697 | Schalk et al. | Jun 2007 | B2 |
20040196327 | Nishioka | Oct 2004 | A1 |
20040212654 | Waller | Oct 2004 | A1 |
Number | Date | Country |
---|---|---|
1 769 931 | Apr 2007 | EP |
Number | Date | Country | |
---|---|---|---|
20090174733 A1 | Jul 2009 | US |