This invention relates to a selectorized dumbbell having a selector that adjusts how many weight plates from a stack of left weight plates and from a stack of right weight plates are selectively coupled to each end of a lifting handle of the dumbbell.
The PowerBlock® is a well known selectorized dumbbell manufactured and sold by Power Block, Inc. of Owatonna, Minn. In such a dumbbell, various weights are provided that form a set of nested left weight plates and a set of nested right weight plates. The two sets of nested weight plates are laterally separated from one another by a space or gap. A handle can be inserted or dropped down into the gap to allow the handle to pick up a desired number of weight plates from each stack. The amount of the exercise mass provided by the selectorized dumbbell depends upon how many weight plates from each stack are coupled to each end of the handle by a selector.
In a traditional style of PowerBlock® selectorized dumbbell, each weight comprises a left weight plate that is joined to a corresponding right weight plate by a pair of side rails. The side rails are connected at each end to one side of each weight plate. One side rail is connected to the front sides of the left and right weight plates. The other side rail is connected to the rear side of the left and right side plates.
The selector in the traditional style PowerBlock® selectorized dumbbell comprises a U-shaped pin that is selectively positioned beneath the side rails of any desired weight. When the selector is so positioned and the handle is lifted, the handle will carry with it the weight selected by the position of the pin along with all weights above the selected weight. The amount of the weight carried by the handle is adjusted by vertically repositioning the pin so as to insert the pin beneath a higher or lower side rail.
The use of an insertable pin is an effective selector for a selectorized dumbbell. However, the pin must be on hand to be effective. If it is lost, then no weights can be coupled to the handle until the pin is found or a replacement pin is purchased. While the pin is usually tethered to the handle to minimize the chances that the pin will be lost, the tether itself can get in the way of the user and can be bothersome to some users.
Accordingly, there is a need in the art for a selectorized dumbbell having a selector that is easy to use, that functions with a traditional style of PowerBlock® selectorized dumbbell as described above, and that is not capable of being lost or getting in the way of the user.
One aspect of this invention relates to a selectorized dumbbell which comprises an array of nested weights comprising a stack of nested left weight plates and a stack of nested right weight plates. A handle is provided having a left end and a right end with the handle ends extending substantially perpendicularly relative to a hand grip of the handle and with the handle ends also being disposed substantially parallel to the weight plates. A selector is provided for coupling selected numbers of left weight plates to the left end of the handle and selected numbers of right weight plates to the right end of the handle. The selector comprises a plurality of connecting pins carried on each of the left and right ends of the handle. The connecting pins on each handle end are vertically spaced apart from one another in a vertically spread apart pin array and are horizontally movable between a weight coupling position in which the connecting pins are extended outwardly relative to the handle ends and a weight uncoupling position in which the connecting pins are retracted inwardly relative to the handle ends.
Another aspect of this invention relates to a selectorized dumbbell which comprises a plurality of individual weights that can be nested together to provide a left stack of nested left weight plates and a right stack of nested right weight plates that are separated by a gap. A handle is provided having a hand grip extending along an axis with the handle further having opposite left and right ends joined to opposite ends of the hand grip with the left and right ends of the handle extending perpendicularly to the hand grip. The handle may be dropped down into the gap between the stacks of nested left and right weight plates with the left end of the handle being adjacent an innermost left weight plate in the left stack of weight plates and the right end of the handle being adjacent an innermost right weight plate in the right stack of weight plates. Each weight comprises a left weight plate and a right weight plate that are spaced apart but joined to one another by a front rail extending between front sides of the weight plates and a rear rail extending between rear sides of the weight plates. The weight plates and front and rear rails of each weight are separate and distinct from the weight plates and front and rear rails of the other weights and from the handle. The front and rear rails of any given weight are located at a substantially identical vertical elevation relative to one another with the front and rear rails of different weights being located at different vertical elevations relative to one another such that the front and rear rails of all the weights overlie one another in vertically spread apart front and rear rail arrays with a vertical space being provided underneath each rail in the rail arrays. The front and rear rails of each weight differ also differ in length from the front and rear rails of the other weights such that the weight plates of different weights are spaced apart at progressively greater distances. The different elevations and different lengths of the front and rear rails on different weights allow the left and right weight plates to be nested with respect to one another in their respective left and right stacks. A selector is provided that connects a desired number of weights to the handle. The selector comprises a front pin array and an identical rear pin array in each of the left and right ends of the handle. Each pin array has a plurality of connecting pins equal in number to the number of rails in the front and rear rail arrays. The pins are vertically spaced apart in each of the handle ends in a manner that matches the spacing of the vertical spaces in the rail array but with the pins being vertically offset relative to the vertical spaces such that the pins in the pin arrays are projectable out from the handle ends into the spaces under the rails in the rail arrays. The pins in each of the front and rear pin arrays are horizontally movable relative to the handle ends from a retracted position in which the pins are located inwardly relative to the handle ends to be clear of the spaces under the rails in the rail arrays to an extended position in which the pins are extended outwardly relative to the handle ends into the spaces under the rails in the rail arrays.
This invention will be described more completely in the following Detailed Description, when taken in conjunction with the following drawings, in which like reference numerals refer to like elements throughout.
One embodiment of a selectorized dumbbell according to this invention is illustrated generally as 2 in
Dumbbell 2 incorporates a plurality of nested weights 4. Each weight 4 comprises a left weight plate 6l, a right weight plate 6r, and a pair of side rails 8 that hold weight plates 6 in a spaced apart orientation. Side rails 8 are welded to the front and rear sides of the pair of weight plates 6 that form one weight 4 at the same vertical height along the sides. For example,
Weights 4 are nested in the sense that the left and right weight plates 6l and 6r, respectively, in each weight 4 are progressively spaced apart slightly further from one another. Thus, all of the left weight plates 6l are nested against one another in a lateral stack of nested left weight plates 6l and all of the right weight plates 6r are nested against one another in a lateral stack of nested right weight plates 6r. Obviously, to make this happen, side rails 8 used in each weight 4 in a set of weights 4 have progressively longer lengths. Side rails 8 used in the innermost weight will be the shortest with side rails 8 then becoming progressively longer as required to space weight plates 6 in the other weights 4 progressively further apart. This is shown in
Referring now to
Left and right ends 16l and 16r of handle 14 are joined together by an array of four cross tubes 18 that extend between and unite handle ends 16. A central hand grip 20 is contained within the array of cross tubes 18 and also extends between and unites handle ends 16 together. The user can insert his or her hand into handle 14 by dropping his or her hand down between the top two cross tubes 18 and can then grip hand grip 20 of handle 14 with that hand. The user can then raise or lower handle 14 by lifting or dropping hand grip 20. Hand grip 20, cross tubes 18, and handle ends 16 move together as a single unit. Hand grip 20 and cross tubes 18 extend along axes that are perpendicular to the planes in which handle ends 16 extend.
The major difference between handle 14 of this invention and that disclosed in the 034 patent lies in the nature of handle ends 16 and in a selector 22 that determines how many weights 4 are coupled to handle 14 for adjusting the exercise mass provided by dumbbell 2. In handle 14 of dumbbell 2 of this invention, selector 22 is permanently carried on handle ends 16 so that selector 22 can never be lost or misplaced apart from handle 14. As long as the user has handle 14, the user has selector 22 as well. Since it is not likely that handle 14 will ever be lost or kept apart from nested weights 4, it is then not likely that the user will ever be kept from using dumbbell 2 due to a lost selector 22. This is one advantage of the present invention. In using the term selector herein, the word selector is intended to refer to the entire mechanism that adjusts the exercise mass even though that mechanism in this instance comprises multiple components that are located on different portions of handle 14.
In handle 14 of this invention, selector 22 comprises a plurality of connecting pins 24 that are carried or housed within each end 16 of handle 14. On any given handle end 16, pins 24 are disposed in a front vertical array 26f and in a substantially identical rear vertical array 26r. Identical front and rear pin arrays 26f and 26r are contained within each end of handle 14, namely the front and rear pin arrays 26f and 26r contained in left end 16l of handle 14 are the same as the front and rear pin arrays 26f and 26r contained in right end 16r of handle 14. Thus, the description of the front and rear pin arrays 26f and 26r in that end of handle 14 whose interior is exposed and is visible in
Referring now to
Like the connecting pins shown in the 845 patent that has been incorporated by reference herein, each connecting pin 24 herein has an enlarged arrow shaped head 32 at one end thereof. Head 32 of pin 24 is points to the inside of handle end 16 when pin 24 is received within a horizontal, circular guide bore 34 in handle end 16. For convenience in assembly, each handle end 16 is formed in substantially identical halves that abut one another along a parting line 36 and that are joined together by a plurality of fasteners 38 after front and rear pin arrays 26f and 26r have been assembled inside thereof. The interior of handle end 16 has been shown in
Each side of head 32 has an outwardly extending, horizontal guide tab 40 that moves within an adjacent horizontal guide slot 42 in handle end 16. A spring 44 surrounds pin 24 and bears between the back of head 32 of pin 24 and an annular abutment 46 formed by a stepped down shoulder in guide bore 34. Spring 44 normally biases pin 24 inwardly relative to handle end 16 until the inner end of tab 40 engages against an inner end 47 of guide slot 42. This holds pin 24 in an innermost and retracted weight disengaging position.
When pin 24 is in its retracted position, pin 24 is substantially wholly retracted into handle end 16 so that the outer tip of pin 24 does not significantly protrude outwardly through either front side 28f or rear side 28r of handle end 16 depending upon which pin array 26 one is talking about, i.e. either front pin array 26f or rear pin array 26r. Thus, if all pins 24 in both pin arrays 26f and 26r are in their retracted positions, handle 14 is not coupled to any of the nested weights 4. If the user were to pick up handle 14 with pins 24 disposed in their retracted positions, nothing would happen except that handle 14 would lift up out of gap 12. No weights 4 would rise with handle 14.
Selector 22 further includes a vertically movable, double lobed cam actuator 48 in each handle end 16. Cam actuator 48 has a front cam lobe 50f that bears progressively against heads 32 of pins 24 in front pin array 26f. Similarly, cam actuator 48 has a rear cam lobe 50r that bears progressively against heads 32 of pins 24 in rear pin array 26r. Cam actuator 48 is guided in its vertical movement by a pair of vertically extending guide tabs 52 on each side thereof. Tabs 52 are received in a pair of vertically extending guide slots 54 provided in handle end 16 adjacent each side of cam actuator 48. In this respect, tabs 52 and guide slots 54 are similar in structure and operation to tabs 40 and guide slots 42 for pins 24, but extending vertically rather than horizontally.
As cam actuator 48 is moved vertically within handle end 16, cam lobes 50 simultaneously contact the heads 32 of those pins 24 that are at the same vertical elevation in both pin arrays 26, i.e. any pair of pins 24 that are horizontally aligned with one another. This pushes outwardly on these pins 24 against the bias of springs 44 to cause shafts 30 of pins 24 to be extended outwardly through the front and rear sides 28f and 28r of handle end 16. In turn, this causes the outwardly protruded portions of this pair of pins 24 to be positioned in one of the spaces 9 beneath the ends of the front and rear side rails 8f and 8r of a particular weight 4 to thereby couple that weight 4, and inherently all weights 4 above it, to handle 14.
A vertically extending, rotatable shaft 56 has its top and bottom ends rotatably journalled in the top and bottom sides of handle end 16. Shaft 56 is threaded over most of its length and cam actuator 48 has a threaded connection to the threaded portion of shaft 56. An upper end 58 of shaft 56 is located on top of handle end 16 to be accessible to the user. Upper end 58 of shaft 56 has a tool receiving aperture 60, such as an Allen wrench type coupling, for allowing some type of torque applying tool (not shown) to be releasably received in aperture 60. When the torque applying tool is actuated, using either a motor as in a motorized drill or even by hand as in a hand operated Allen wrench, shaft 56 rotates within its journals in the top and bottom sides of handle end 6. This causes cam actuator 48 to travel down shaft 56 or up shaft 56 depending upon the direction of rotation of shaft 56. It is this vertical up and down motion of cam actuator 48 caused by the rotation of shaft 56 that causes cam lobes 50 on actuator 48 to progressively engage or disengage heads 32 of pins 24.
Let's assume that the user desires to couple only the first innermost weight 4 to handle 14. To do so, the user applies a suitable tool to tool receiving aperture 60 on shaft 56 and turns shaft 56 until cam actuator 48 moves downwardly to the position shown in
Note that in
The user can progressively add more weight to handle 14 by moving cam actuator 48 further downwardly to actuate pins 24 for the other weights 4. Let's suppose the user wants to pick up three weights 4 and not just one weight 4. If that were the case, the user would actuate shaft 56 until cam actuator 48 engages the pins 24 that are third from the top in the vertical arrays 26 of pins, i.e. the lowermost connecting pins 24 that are shown in
The user can pick up any desired number of weights, up to the maximum number of nested weights contained in the original set of nested weights, simply by positioning cam actuator 48 at the appropriate spot in the vertical pin arrays. If all eight weights are desired for use, the user moves cam actuator 48 down until the protruding portions of pins 24 are beneath the side rails 8 of the outermost weight as is the case when the very lowermost connecting pins in pin 24 arrays have been extended out of the front and rear sides of handle ends 6.
As noted previously, selector 22 disclosed herein is one in which all the basic components are carried in the ends of handle 14 of dumbbell 2. To speed the movement of cam actuator 48, a tool receiving aperture 60 is contained in upper end 58 of the rotatable adjustment shaft 56 to allow an electric drill or other power operated tool to be coupled to shaft 56 for quickly rotating shaft 56. However, shaft 56 could also have a knurled upper end 58 which would allow manual turning by hand. Thus, the problem of a lost or misplaced connecting pin is overcome since pin arrays 26 are captured and held within the ends 16 of handle 14 after the ends of handle 14 have been assembled with pin arrays 26 inside the ends.
In addition, it is relatively easy to use and adjust the weight of dumbbell 2. All the user need do is to rotate shaft 56 and watch pins 24 progressively extend out and then retract until the user gets to the vertical locations of the pins 24 that extend out beneath the side rails 8 of the lowermost weight the user wants to couple to handle 14. When the user sees this happen, e.g. pins 24 slide out beneath the side rails of the fourth weight 4 and the user wants four weights to be coupled to handle 14 as shown in
Cam lobes 50 of cam actuator 48 can be sized to extend only the pins 24 at a given vertical elevation so that pins 24 are projected outwardly into a single space 9 beneath the side rails of a single weight 4. In this case, the four outwardly protruded pins 24 will bear the entire mass being carried by handle 14, whether one weight 4 is coupled to handle 14 or all eight weights 4 are coupled to handle 14. Alternatively, cam lobes 50 could be long enough to simultaneously engage the pins 24 of two vertically adjacent sets of pins 24 so that pins 24 are projected outwardly into two vertically adjacent spaces 9. In this case, a total of eight pins 24 will bear the mass coupled to handle 14, thereby giving an additional measure of safety and security.
Referring to
Referring to
As one proceeds vertically downwardly in handle end 16 from one pair of connecting pins 24 to the next, one can see that the collective length of each pair of pins 24 is always the same, namely the collective length spans across the width of handle end 16 between the front and rear sides of the handle end 16. However, the relative proportions of the lengths of the pins vary from one pair of pins to the next such that the abutting interface between heads 32 of pins 24 gets progressively horizontally shifted relative to the width of handle end 16. For example, looking at the pair of pins 24 immediately below the uppermost pair of pins 24, pin 24 that extends through the front side is now shorter than in pin 24 immediately above it while pin 24 that extends through the rear side is now longer than in pin 24 immediately above it. This locates the abutting interface between the heads 32 of these two pins 24 immediately to one side of the abutting interface for the heads 32 of the two pins 24 above them. This continues in like manner from one pair of pins to the next. Accordingly, the abutting heads 32 of each pair of pins 24 are positioned to be horizontally offset relative to the abutting heads 32 of the other pins 24 in a stair step manner. See
Each pair of pins 24 in pin arrays 26, namely pin 24 that extends through the front side of handle end 16 and pin 24 that is at the same vertical elevation and that extends through the rear side of handle end 16, is now actuated by its own individual downwardly pointing, arrow shaped, double lobed cam actuator 62. Cam actuator 62 for each pair of pins 24 is attached by a stem 64 to the underside of a vertically movable key 66 that is disposed in a row of such keys 66 on the top side of handle end 16. The row of such keys 66 is externally exposed on the top side of handle end 16 with stem 64 of each key passing down through an opening 68 on the top side of handle end 16 such that cam actuator 62 is located in the interior of handle end 16 adjacent the abutting interface between the heads 32 for that pair of connecting pins 24 which such cam actuator 62 is meant to actuate. Because these abutting interfaces are vertically offset relative to one another, stems 64 of the various keys 66 are progressively longer from one side of handle end 16 to the other side, as shown in
Except for the shortest stem 64 of key 66 shown to the extreme left in
Cam actuators 62 and keys 66 will actuate the pair of pins controlled thereby in a bi-stable manner like that disclosed and described in the 845 patent incorporated by reference herein. One difference is that each key 66 in
Each key 66 has a recess 80 in the top surface thereof which receives a finger or tab 82 on that key 66 immediately to the right thereof in the row of keys shown in
Handle end 16 may include guide tabs 90 that coact with grooves (not shown) on the back side of keys 66 to help vertically guide keys 66 up and down as they are depressed or released. Keys 66 are held in their lowered or actuated position by virtue of heads 32 of the connecting pins engaging the detents 78 in cam actuator 62 and being held in such detents 78 by the bias of springs 44. Keys 66 are held in their raised, non-operative position by virtue of the top of cam actuator 62 or the top of the slotted guide portion 70 in stem 64 coming into abutment with the underside of the wall that defines the top of handle end 16. See
In the embodiment of the selector shown in
The selector shown in
Keys 66 are preferably arranged in each of the handle ends so that the user pushes down on that key in each handle end that has the same relative position in the row of keys in order to extend the pins 24 out beneath the rails of a selected weight. For example, referring to
In addition, identifying indicia could be placed or molded into the tops of the keys to help instruct the user as to which keys 66 to depress. For example, if the weight of the dumbbell can be adjusted in 10 pound increments, the keys 66a could each be labeled with the number “10” to indicate 10 pounds, the next pair of keys 66 could be labeled with the number “20” to indicate 20 pounds, and so on. Alternatively, the keys could be color coded.
As a further alternative, the keys 66 could be disposed in a reversed relationship in the different handle ends such that the keys 66a for selecting the innermost weight would be on opposite sides of the row of keys 66. One key 66a would be on the far side as shown in
Various modifications of this invention will be apparent to those skilled in the art. For example, the cross-sectional configuration of pins 24 can be circular as shown in