SELF ADAPTIVE CEMENT SYSTEMS

Information

  • Patent Application
  • 20110067868
  • Publication Number
    20110067868
  • Date Filed
    September 28, 2010
    14 years ago
  • Date Published
    March 24, 2011
    13 years ago
Abstract
A self-healing cement system includes cement, water and at least one additive that swells in contact with water from reservoir or from formation in the case of a structural failure in the set cement to provide a physical barrier in the zone of failure. Examples of such material include particles of super-absorbent polymer. These additives have the effect of making the cement self-healing in the event of physical failure or damage such as micro-annuli. The self healing property is produced by the contact of the water itself, the potential repair mechanism is thus activated if and when needed in case of start of loss of zonal isolation. Several super-absorbent polymers have been identified such as polyacrylamide, modified crosslinked poly(meth)acrylate and non-soluble acrylic polymers.
Description
TECHNICAL FIELD

Embodiments relate to adaptive cement systems. In particular, cement systems which are “self-healing”, i.e. system which can adapt to compensate for changes or faults in the physical structure of the cement, or which adapt their structure after the setting phase of the cement in the cementing of oil, gas, water or geothermal wells, or the like.


BACKGROUND

The statements in this section merely provide background information related to the present disclosure and may not constitute prior art. During the construction of underground wells, it is common, during and after drilling, to place a liner or casing, secured by cement pumped into the annulus around the outside of the liner. The cement serves to support the liner and to provide isolation of the various fluid-producing zones through which the well passes. This later function is important since it prevents fluids from different layers contaminating each other. For example, the cement prevents formation fluids from entering the water table and polluting drinking water, or prevents water from passing into the well instead of oil or gas. In order to fulfill this function, it is necessary that the cement be present as an impermeable continuous sheath. However, for various reasons, over time this sheath can deteriorate and become permeable. The deterioration can be due to physical stresses caused by tectonic movements of temperature effects, chemical degradation of the cement, or various other reasons.


There have been a number of proposals to deal with the problems of deterioration of the cement sheath over time. One approach is to design the cement sheath to take into account physical stresses that might be encountered during its lifetime. Such an approach is described in U.S. Pat. No. 6,296,057. Another approach is to include in the cement composition materials that improve the physical properties of the set cement. U.S. Pat. No. 6,458,198 describes the addition of amorphous metal fibers to the cement slurry to improve its strength and resistance to impact damage. EP 1129047 and WO 00/37387 describe the addition of flexible materials (rubber or polymers) to the cement to confer a degree of flexibility on the cement sheath. WO 01/70646 and PCT/EP03/01578 describe cement compositions that are formulated so as to be less sensitive to the effects of temperature on the cement when setting. These references are incorporated herein by reference thereto.


A number of proposals have been made for designs of self-healing concretes for use in the construction industry. These are described in U.S. Pat. No. 5,575,841, U.S. Pat. No. 5,660,624, U.S. Pat. No. 5,989,334, U.S. Pat. No. 6,261,360 and U.S. Pat. No. 6,527,849, and in “Three designs for the internal release of sealants, adhesives, and waterproofing chemicals into concrete to reduce permeability”, Dry, C. M., Cement and Concrete Research 30 (2000) 1969-1977. None of these are immediately applicable to well cementing operations because of the need for the cement to be pumpable during placement and because of the pressure and temperature range. These references are incorporated herein by reference thereto.


It is an objective to provide well cementing systems that can be placed by pumping in the normal manner, and which contain materials that allow the cement sheath to adapt its structure in response to environmental conditions.


SUMMARY

More precisely, embodiments focus upon providing well cementing systems that include at least one additive that reacts and/or swells when the set cement is in contact with an aqueous fluid, such as formation waters. This behavior has the effect of making the cement self-healing in the event of physical failure or damage.


Self-healing in the context of the present disclosure is to be understood as the capacity of the cement matrix to repair itself when a crack, void or default appears after setting. Within the present context, self-healing or self-repairing will be used indifferently.


Those skilled in the art will recognize that a pumpable cement slurry has a viscosity preferably below about 1000 mPa-s at a shear rate of 100 s−1, throughout the temperature range the slurry will experience during placement in the well.


The additive is a material which reacts/expands in contact with water—for instance from the underground formation which enters a fault in the cement matrix. Examples of such materials include super-absorbent polymers. Super-absorbent polymers are crosslinked networks of flexible polymer chains. The most efficient water absorbers are polymer networks that carry dissociated, ionic functional groups. When super-absorbent polymers absorb liquids, an elastic gel forms. The gel is a soft, deformable solid composed of water and the expanded polymer chains.


The polymer particles can be of almost any shape and size: spherical, fiber-like, ovoid, mesh systems, ribbons, etc., which allows their easy incorporation in cement slurries of comprising solid materials in discrete particle size bands. In practice, polymer particles ranging from about 10 to about 1500μ can be used.


The absorbent materials may be dry blended with the cement and any other solid components before transport to the well-site, mixing with water and placement in the well. The sizes and quantities will be selected to allow even dispersion through the cement matrix.


It has been found that though the super-absorbent polymers such as polyacrylamide and modified crosslinked polymethacrylate swell when incorporated in a cement slurry, they seem to release at least part of the absorbed water during the cement hydration and hence, have a reserve of absorbability that allow them to swell again if they are later exposed to water due to a crack of the matrix for instance. Since they are highly reactive with water, the concentration of super-absorbent added to the blend must remain relatively small, compositions with more than 3.2% of super-absorbent (by weight of cement) may typically have a viscosity too high for pumping the slurry in favorable conditions. In fact the maximum SAP concentration depends on the slurry density and also on the nature of the Super Absorbent Polymer.


It has been found that the addition of salts such as sodium chloride or calcium chloride for instance favors the rheology of the systems thereby enabling increasing the concentration of super-absorbent polymers. Cement slurries of lower density have also a greater acceptability of higher concentrations of super-absorbent polymers, even without salt.


In a further aspect, at least part of the super-absorbent polymers are encapsulated so that they are—for instance in the form of a resin or other material that releases the polymer in response to exposure to a downhole parameter (for instance such as temperature, a specific mineral system, pressure, shear etc). In yet another aspect, the rupture of the encapsulating means is actually induced by the failure of the cement matrix, in a way similar to the mechanism described by Dry for instance in U.S. Pat. No. 5,575,841, U.S. Pat. No. 5,660,624, U.S. Pat. No. 5,989,334, U.S. Pat. No. 6,261,360 and U.S. Pat. No. 6,527,849. These references are incorporated herein by reference thereto.







DETAILED DESCRIPTION

A screening has been carried out for identifying super-absorbent polymers suitable for self-healing cementing applications. The main issues were to check the ability to dry blend the polymers with cement and to optimize the rheology and thickening time.


Testing Procedure

Tests have been carrying out by incorporating powders of various types of polymers as solid additives in cement slurries. Properties of the slurry as well as properties of the set cement have been studied.


The slurries were optimized with the mere objective of obtaining stability. Focus was to get acceptable plastic viscosity (PV) and yield stress (TY) at mixing time and after 20 minutes of conditioning. Free water and sedimentation tests were also carried out. Mixing and test procedure was according to API Spec 10.


The same equipment and bob was used for all rheology measurements, whatever the tested design. Many tests were performed at one slurry density (15.8 lbm/gal) and one temperature (BHCT equal to 60° C.). Some examples were studied at 12 lbm/gal and at 14 lbm/gal. For lowest density, the temperature is equal 25° C. and 85° C. The design is based on tap water and black Dyckerhoff North cement. Unless otherwise mentioned, all designs include an antifoam agent based on polypropylene glycol at 0.03 gallon per US gallons per sack of 94 lbs of cement (in other words, 1 gps=88.78 cc/kg), polynapthalene sulfonate as dispersing agent at 0.04 gps and the superabsorbent polymer at concentration ranging from 0.1% BWOC (by weight of cement) to 0.9% BWOC. for 15.8 lbm/gal. Decreasing the density allows to increase the concentration in Super Absorbent Polymer. For instance for a given SAP the maximum concentration at 15.8 lbm/gal is 1% bwoc without salt in the mixing water and can reach 3% bwoc at 12 lbm/gal.


Three types of superabsorbent polymers were tested: S1, a polyacrylamide available form Lamberti, Italy. Three grades were tested, namely S1G-Lamseal® G, with particles ranging form 500μ to 1500μ (density 1.25 g/cm3), S1GS—Lamseal® GS, with particles of about 200μ (density 1.48 g/cm3), and S1GM, Lamseal® GM, with particles of about 700μ (density 1.47 g/cm3). S2, a modified polyacrylate available from Itochu, Japan, under the name Aqualic® CS-6HM, selected for its salt resistance, in particular its capacity to keep super absorbent capacity in high valent metal ions solutions. The average particle size is 100μ and the density 1.46 g/cm3. S3, a non soluble acrylic polymers, Norsocryl C200 from Atofina with particles of about 250μ in average (density 1.6 g/cm3).


In the examples, bwoc or BWOC stands for by weight of cement and bwow or BWOW for by weight of water.


Experimental Results
Example 1
Addition Procedure

The first step was to define the best addition process. As shown in table 1 below, dry blending induces lower effects on rheology and free water and leads to an easy mixing













TABLE 1





Design
Reference
A1
A2
A3



















S1G (% bwoc)

0.1
0.1
0.1


Note

prehydrated (static)
dry blended
prehydrated under






agitation at 2000 RPM






during 15 minutes.







Mixing rheology











Ty (lbf/100 ft2)
2.3
2.8
1.4
3.2


PV (cP)
25.5
18.9
27.2
32.4







BHCT rheology at 60° C.











Ty (lbf/100 ft2)
24.6
21.2
27.3
52.8


PV (cP)
20.9
18.4
26.6
33.3


10′/1′gel
25/16
14/9
19/11
15/13


Free Water mL
1
7
trace
2.5


Sedimentation ppg
1.14
1
0.4
0.7









Example 2
Influence of the Particle Sizes

For the S1 particles, the finer the particles, the higher the rheology and free water.















TABLE 2







Design
Reference
S1 G
S1 GM
S1GS






















S1 (% bwoc)

0.1
0.1
0.1







Mixing rheology













Ty (lbf/100 ft2)
2.3
1.4
2.7
6.7



PV (cP)
25.5
27.2
29
41







BHCT rheology at 60° C.













Ty (lbf/100 ft2)
24.6
27.3
24.4
38.7



PV (cP)
20.9
26.6
35.6
40.9



10′/1′gel
25/16
19/11
15/12
12/9



Free Water mL
1
trace
2
4



Sedimentation ppg
1.14
0.4
1
0.9










Example 3

This test shows that cement slurry with super-absorbent polymers S1 are compatible with conventional fluid loss control additive (flac). This shows that the composition of some embodiments may still be optimized by the addition of conventional additives such as dispersing agent, fluid loss control agent, set retarder, set accelerator and anti-foaming agent.













TABLE 3







Design
X3.1
X3.2




















S1G (% bwoc)
0.1
0.1



Flac

0.4







Mixing rheology











Ty (lbf/100 ft2)
1.4
7.9



PV (cP)
27.2
104.7







BHCT rheology at 60° C.











Ty (lbf/100 ft2)
27.3
13.7



PV (cP)
26.6
125



10′/1′gel
19/11
13/7



Free Water mL
trace
trace










Example 4

Results with the polymethacrylate based superabsorbent polymer S2 show less sensitivity to the addition mode.














TABLE 4.1





Design
Reference
X4.1
X4.2
X4.3
X4.4




















S2 (% bwoc)

0.05
0.1
0.1
0.15




dry blended
dry blended
prehydrated
dry blended







Mixing rheology












Ty (lbf/100 ft2)
2.3
4.8
5.6
6.4
5.3


PV (cP)
25.5
31.9
35.9
37.9
64.8







BHCT rheology at 60° C.












Ty (lbf/100 ft2)
24.6
20.2
23.3
20.7
19.9


PV (cP)
20.9
24.3
22.4
30.3
57


10′/1′gel
25/16
17/9
15/9
12/7
12/10


Free Water mL
1

2.8
4.5
5.5


Sedimentation ppg
1.14
0.6
0.6
0.9
1









Polymer S2 can also be added in higher quantity, at least up to 0.45% BWOC as shown in the following table 4.2:














TABLE 4.2





Design
Reference
1
2
3
4




















antifoam (gps)
0.03
0.03
0.03
0.03
0.03


Dispersing agent (gps)
0.04
0.04
0.04
0.04
0.04


S2 (% bwoc)
0
0.9 (exces)
0.2
0.45
0.45


S2 (% bwow)
0
2
0.44
1
1


Remarque

dry blended
dry blended
dry blended
prehydrated







Mixing rheology












Ty (lbf/100 ft2)
2.3
Too
8.3
19.7
24.9


PV (cP)
25.5
viscous
52.2
142.8
228.7


Comment




Difficult mixing







BHCT rheology at 60° C.












Ty (lbf/100 ft2)
24.6
Too viscous
14.3
25.8
11.6


PV (cP)
20.9

40.3
172.5
178.4


10′/1′gel
25/16

14/9
25/7
18/9


Free water mL
1
0
7
6
4.5


Sedim ppg
1.14
0.1
1.2
0.2
0.2









Example 5

This example shows that the setting properties and the rheological properties can be optimized, a key requirement for well cementing applications. In all cases, the super-absorbent polymer was dry blended with the cement.












TABLE 5.1





Design
8
9
10


















S2 (% bwoc)
0.1
0.1
0.1


Antifoam (gps)
0.03
0.03
0.03


Lignosulfonate (gps)
0.05

0.025


Fluid loss control agent (gps)
0.4
0.4
0.4


Polynaphtalene(gps)
0.045
0.045
0.045











Mixing
Ty (lbf/100 ft2)
10.4
11
10.6


rheology
PV (cP)
121.9
134
125.8


BHCT
Ty (lbf/100 ft2)
15.5
16.7
16


rheology
PV (cP)
132
132.4
129


at 60° C.
10′/1′gel
24/10
9/5
12/7



Free water mL
0
0
0



Sedimentation ppg
0.2
0.2
0.4



Thickening test 100 Bc
13 h 30 min
3 h 03 min
8 h 49 min



(hh:min)




















TABLE 5.2





Design
29
30
31
32



















Antifoam (gps)
0.03
0.03
0.03
0.03


Lignosulfonate (gps)
0.025
0.025
0.025
0.025


Fluid loss control agent (gps)
0.4
0.4

0.2


Polynaphtalene(gps)
0.045
0.6
0.045
0.045







Mixing rheology











Ty (lbf/100 ft2)
46.8
41.9
23
32


PV (cP)
303
293
92
154







BHCT rheology at 60° C.











Ty (lbf/100 ft2)
32
35
6.6
19


PV (cP)
226
248
66
145


10′1′gel
12/7
11/6
11/7
9/4


Free water mL
Trace
Trace
10
2.5









In the table 5.2, the designed slurries have a density of 15.8 lbm/gal, and the concentration of super-absorbent S2 is 0.3% bwoc (corresponding to 0.7% bwow).














TABLE 5.3







Design
33
34
35





















Antifoam (gps)
0.03
0.03
0.03



Lignosulfonate (gps)
0.025
0.025




NaCl (by weight of water)


37



Fluid loss control agent (gps)
0.2
0.15




Polynaphtalene(gps)
0.045
0.045
0.9







Mixing rheology












Ty (lbf/100 ft2)
46.8
45
4.4



PV(cP)
223
208
61







BHCT rheology at 60° C.












Ty (lbf/100 ft2)
27
50
14



PV(cP)
217
240
51



10′/1′gel
10/5
10/7
20/9



Free water mL
1.5
1




API Fluid loss (ml)

170










In the table 5.3, the designed slurries have a density of 15.8 lbm/gal, and the concentration of super-absorbent S2 is 0.4% bwoc (corresponding to 0.9% bwow).


Example 6

This example shows that the addition of a salt allows an increase of the concentration of superabsorbent polymer while keeping acceptable rheology properties. In table 6.1, tests have been carried out with sodium chloride as added salt. In table 6.2, the added salt is calcium chloride. In both tables, the cements have a density of 15.8 ppg.













TABLE 6.1





Design
1
36
37
38



















S2 (% bwoc)
0.9
0.9
0.9
0.9


Antifoam (gps)
0.03
0.03
0.05
0.05


NaCl (by weight of water)
0
37
18.5
37


Polynaphtalene(gps)
0.04
0.9
0.9
1.5







Mixing rheology











Ty (lbf/100 ft2)
Too viscous
13.4
27.1
61.8


PV (cP)

119
207
352







BHCT rheology at 60° C.











Ty (lbf/100 ft2)

30.7
31.5
59


PV (cP)

107
1059
433


10′/1′gel

28/19

433


Free water mL

Trace


















TABLE 6.2





Design
70
81

















Antifoam (gps)
0.05
0.05


Flac (gps)
0.5



Lignosulfonate (gps)
0.05



Polynaphtalene (gps)

0.9


Sulfonated melamine -formaldehyde (gps)
0.12



Sodium chloride (% BWOW)

37


Calcium chloride (% BWOC)
2



S2 (% BWOC)
0.45
0.9







Mixing rheology









Ty (lbf/100 ft2)
29
30


PV (cP)
244
173







BHCT tests at 60° C.


Rheology









Ty (lbf/100 ft2)
34
22


PV (cP)
211
110


10′gel/1′stiring
17/9
23/10


Free water (mL)
0
0


Fluid loss (mL API)
78
18


Thickening time
5 h 17 min










Example 7

This example shows that if the slurry density is lower, higher concentration of super-absorbent polymers can be used, even without the addition of a salt.


















Design
X7.1
X7.2
X7.3





















Density (lbm/gal)
14
12
12



BHCT (deg C.)
60
25
85



Antifoam (gps)
0.03
0.02
0.02



Flac (gps)
0.4





Lignosulfonate (gps)
0.025





Polynaphtalene (gps)
0.045
0.03
0.03



S2 (% bwoc)
0.9
3
3



S2 (% bwow)
1.4
2.4
2.4







Mixing rheology












Ty (lbf/100 ft2)
21.18
19.2
19.63



PV (cP)
156.9
90.3
86.39







Rheology at BHCT












Ty (lbf/100 ft2)
49.31
27.5
4.92



PV (cP)
180.5
169.7
82.78



10′gel/1′stiring
32/22
28/12
11/6



Fluid loss (mL API)

149
240










Example 8

Cement samples comprising super-absorbent polymers were taken from the sedimentation column and additional water was added at the surface of broken pieces to simulate contact with formation water after a crack. Tests were performed at room temperature and at 60° C. In all cases, swelling was observed showing that the super-absorbent polymer particles remain effectively available to absorb additional water (even though the cement matrix always comprises residual water).


Example 9

This test was performed with super-absorbent S3. Good rheology is obtained.












TABLE 9





Design
5
13
19


















Density (lbm/gal)
15.8
15.8
15.8


BHCT (deg C.)
60
60
60


Antifoam (gps)
0.05
0.03
0.05


Flac (gps)
0.5
0.4



Lignosulfonate (gps)
0.05
0.025



Polynaphtalene (gps)

0.05
0.9


Sulfonated melamine formaldehyde (gps)
0.12




Sodium chloride (% BWOW)


37


Calcium chloride (% BWOC)
2




S3 (% bwoc)
3
0.9
2


S3 (% bwow)
7.7
2.2
4.5







Mixing rheology










Ty (lbf/100 ft2)
26
19
4


PV (cP)
262
195
54







BHCT Rheology










Ty (lbf/100 ft2)
13
19
4


PV (cP)
154
145
30


10′gel/1′stiring
7/5
14/4
15/6


Free water (mL)
0
0



Fluid loss (mL API)
48










Claims
  • 1. A method for maintaining zonal isolation in a subterranean well having a borehole comprising: (i) installing a tubular body inside the borehole of the well, or inside a previously installed tubular body;(ii) pumping aqueous cement slurry comprising a material having residual water-absorption properties after the setting of the cement;(iii) allowing the cement slurry to set and harden;(iv) in the event of cement-matrix or bonding failure, allowing the material to swell by being in contact with underground water, thereby restoring zonal isolation.
  • 2. The method of claim 1, wherein said material is a super-absorbent polymer.
  • 3. The method of claim 2, wherein the super-absorbent polymer is selected from the list consisting of polymethacrylate and polyacrylamide or a non-soluble acrylic polymers.
  • 4. The method of claim 2, wherein the super-absorbent polymer is added to the slurry dry-blended with the cement
  • 5. The method of claim 2, wherein the super-absorbent polymer is added at a concentration between 0.05% and 3.2% by weight of cement.
  • 6. The method of claim 1, wherein the cement slurry further comprises a salt.
  • 7. The method of claim 2, wherein the super-absorbent polymer is added under the form of particles ranging from 10 to 1500μ.
  • 8. The method of claim 1, whereby the material is provided in a capsule that releases the material in response to exposure of the cement to at least one downhole parameter.
  • 9. The method of claim 1, whereby the material is provided in a capsule that releases the material when the cement matrix cracks.
  • 10. The method of claim 1, wherein the cement slurry further comprises at least one additive selected from the list consisting of dispersing agent, fluid loss control agent, set retarder, set accelerator and anti-foaming agent.
  • 11. A method for cementing a subterranean well having a borehole, comprising: (i) installing a tubular body inside the borehole of the well, or inside a previously installed tubular body;(ii) pumping an aqueous cement slurry comprising a material having residual water-absorption properties after the setting of the cement; and(iii) allowing the cement slurry to set and harden inside the annular region.
  • 12. The method of claim 11, wherein the cementing process is primary cementing, and the cement slurry is either pumped down the interior of the tubular body and up through the annular region, or down the annular region and up the interior of the tubular body.
  • 13. The method of claim 11, wherein the cementing process is remedial cementing, performed in either a cased or open hole.
  • 14. The method of claim 11, wherein the cement comprises one or more members of the list comprising Portland cement, calcium aluminate cement, fly ash, blast furnace slag, lime-silica blends, geopolymers, Sorel cements and chemically bonded phosphate ceramics.
  • 15. The method of claim 11, wherein the cement slurry further comprises one or more members of the list comprising dispersing agents, fluid-loss-control agents, set retarders, set accelerators and antifoaming agents.
  • 16. The method of claim 11, wherein the tubular body comprises one or more members of the list comprising drillpipe, casing, liner and coiled tubing.
  • 17. A method of manufacturing a cement that will self-repair when comprising dry blending a super absorbent polymer with cement, adding water in sufficient quantity so as to form a pumpable cement slurry, pumping the cement slurry in a wellbore, allowing the cement slurry to set, wherein in case of failure of the set cement, said set cement is repairing itself by allowing the super-absorbent polymer to swell when contacted by underground water.
  • 18. The method of claim 17 is wherein the super-absorbent polymer is provided in a capsule that releases the material in response to exposure of the cement to at least one downhole parameter.
  • 19. The method of claim 17, wherein the super-absorbent polymer is added under the form of particles ranging from 10 to 1500μ.
  • 20. The method of claim 17, wherein the viscosity of the pumpable cement slurry is below about 1000 mPa-s at a shear rate of 100 s−1.
CROSS-REFERENCED APPLICATIONS

This application is a Continuation In Part application of U.S. patent application Ser. No. 10/557,106 filed in the United States Patent and Trademark Office on Dec. 11, 2006 from international application PCT/EP2004/005479 which was filed on May 12, 2004 claiming the benefit of the disclosure of U.S. provisional patent application Ser. No. 60/470,341 filed on May 14, 2003.

Provisional Applications (1)
Number Date Country
60470341 May 2003 US
Continuation in Parts (1)
Number Date Country
Parent 10557106 Dec 2006 US
Child 12892543 US