The subject invention relates generally to fiber mat products and more specifically to fiber mats including an adhesive material that adhesively bonds the fiber mat to one or more other mats.
Fiber mats generally include one or more fibers that may be bonded or adhered to other fiber mats, films, or sheets to provide a fiber mat product having one or more desired physical properties. For example, in some instances a fiber mat may be bonded to another fiber mat to provide a fiber mat product having a desired permeability. In other instances, the fiber mats may be bonded to provide a desired tensile strength, thickness, permeability, etc. In one specific example, a fiber mat product may be used in a battery separator to separate positive and negative electrodes.
The amount and/or type of adhesive used to bond or adhere the various fiber mats and/or layers of the fiber mat product may affect one or more physical properties of the fiber mat product. For example, if too little adhesive material is used to adhere the fiber mats and/or layers, the various fiber mats and/or layers may fail to properly adhere or stick together. On the other hand, if too much adhesive material is used, the extra adhesive may negatively impact one or more physical properties of the fiber mat product. For example, the extra adhesive may increase the thickness of the fiber mat product, close off or clog the pores of the fiber mat product, decrease the tensile strength of the fiber mat product, react with one or more elements, etc. In addition, using adhesive may result in a fiber mat product having an uneven distribution of adhesive material throughout the fiber mat product due to imprecise control in the application of the adhesive material, migration of the adhesive material after application, etc. The uneven distribution may affect the overall performance of the fiber mat product and/or the uniformity between similar fiber mat products.
The present invention provides fiber mats that are capable of adhering or bonding to other mats, films, or sheets without the need to apply an adhesive material during lamination or bonding of the mats, films, and/or sheets. According to one embodiment of the invention, a mat product may include a fibrous mat having a plurality of glass, polymer, and/or other fibers and a plurality of bi-component fibers intermixed with the glass, polymer, and/or other fibers. Each of the plurality of the bi-component fibers may include a core material and an outer material surrounding the core material. The core material may have a high melting point temperature. The outer material may have a low melting point temperature relative to the core material that may soften when exposed to heat to thereby enable the bi-component fiber to bond with one or more other fibers and/or surfaces adjacent to the bi-component fibers. The core material may provide support for the bi-component fiber when the outer material is softened. The mat product may also be bonded with a polymeric film sheet coextensive with the fibrous mat. The plurality of fibers may be bound together using a binder comprising a polymeric resins that may provide strength to the fiber mat. Bonding between the polymeric film sheet and the fibrous mat may occur as a result of the outer material bonding with a surface of the polymeric film sheet. The final mat product may be a battery separator mat configured to separate the positive and negative electrodes of a battery.
According to another embodiment, an adhesive fiber mat may include a plurality of fibers (e.g., glass and/or polymeric fibers), a length, a width, and a bonding face defined by the length and the width. The plurality of fibers may include a plurality of bonding fibers having a melting point temperature between about 90 degrees Celsius and 200 degrees Celsius so that the plurality of bonding fibers soften when exposed to heat to thereby enable one or more of the plurality of bonding fibers to bond with a material adjacent to the bonding face. Additionally or alternatively, the plurality of fibers may include a binder comprising a bonding resin having a low melting point temperature relative to the plurality of fibers so that the bonding resin softens when exposed to heat to thereby enable the bonding resin to bond with a material (e.g., polymeric film) adjacent to the bonding face. The bonding resin may include a polyolefin dispersion or a polyolefin dispersion with an acrylic based binder.
Each fiber of the plurality of bonding fibers may be a bi-component fiber that may include a core material and an outer material surrounding the core material. The core material may have a melting point temperature greater than 130 degrees Celsius and the outer material may have a melting point temperature between about 90 degrees Celsius and 200 degrees Celsius. The outer material may soften and/or melt when exposed to heat to enable the bi-component fiber to bond with a material, surface, or fiber adjacent to the bonding face and the core material may provide support for the bi-component fiber when the outer material is softened and/or melted. The core material may include one or more of the following materials: aliphatic polyester, co-polyester, co-polypropylene, ethyl vinyl acetate, high density polyethylene, polylactic acid, etc. In addition, the outer material may include one or more of the following materials: aliphatic polyethylene terephthalate, polylactic acid, polyester, polyethylene, polypropylene, polyethylene terephthalate, polyethylene vinyl acetate, etc. The bi-component fibers may be between about 2 mm and 20 mm in length. In addition, the low melting point temperature of the outer material may be between 90 degrees Celsius and 200 degrees.
The adhesive fiber mat may further include a plurality of glass fibers. The plurality of glass fibers may form a separate layer substantially coextensive with and adjacent to the adhesive fiber mat or the plurality of glass fibers may be intermixed/entangled with the plurality of fibers.
According to another embodiment, a bi-component fiber may include a core material and an outer material surrounding the core material. The core material may have a high melting point temperature and the outer material may have a low melting point temperature relative to each other. The outer material may soften and/or melt when exposed to heat to enable the bi-component fiber to bond with one or more adjacent materials by adhesion between the outer material and the one or more adjacent materials. The core material may not substantially soften and/or melt when exposed to heat to provide support for the bi-component fiber when the outer material is softened and/or melted.
According to another embodiment, a method for producing a self-adhesive fiber mat may include dispersing glass fibers in a liquid solution. The method may also include dispersing bonding fibers in the liquid solution so that the liquid solution includes dispersed glass fibers and dispersed bonding fibers. The bonding fibers may have a low melting point temperature relative to the glass fibers so that the bonding fibers soften and/or melt when exposed to heat to enable the bonding fibers to adhesively bond to one or more adjacent fibers. The method may further include distributing the liquid solution over a porous surface and removing at least a portion of the liquid from the liquid solution so that the dispersed glass fibers and dispersed bonding fibers form a layer of intermixed glass and bonding fibers. The method may additionally include applying a binder to the layer of intermixed glass and bonding fibers to at least temporarily bond the intermixed glass and bonding fibers. The method may additionally include drying the layer to form the self-adhesive fiber mat.
According to another embodiment, a method for producing a multi-layered self-adhesive fiber mat may include dispersing glass and/or polymer fibers in a first liquid solution. The method may also include dispersing bonding fibers in a second liquid solution. The bonding fibers may have a low melting point temperature relative to the glass and/or polymer fibers so that the bonding fibers soften and/or melt when exposed to heat to thereby enable the bonding fibers to bond with one or more adjacent materials. The method may further include distributing the first liquid solution over a porous surface and removing at least a portion of the liquid from the first liquid solution to form a first layer of glass and/or polymer fibers. The method may additionally include distributing the second liquid solution over the first layer of glass and/or polymer fibers and removing at least a portion of the liquid from the second liquid solution to form a second layer of bonding fibers atop the first layer. The method may additionally include applying a binder to the first layer and second layer to at least temporarily bond the first layer with the second layer. The method may additionally include drying the first layer and second layer to form the multi-layered self-adhesive fiber mat.
According to another embodiment, a method for producing a self-adhesive fiber mat may include dispersing glass fibers in a liquid solution. The method may also include distributing the liquid solution over a porous surface. The method may further include removing at least a portion of the liquid from the liquid solution so that the dispersed glass fibers form a layer of glass fibers. The method may additionally include applying a binder to the layer of glass fibers. The binder may include a bonding resin having a low melting point temperature relative to the glass fibers so that the bonding resin softens when exposed to heat to thereby enable the bonding resin to adhesively bond to one or more adjacent fibers. The method may additionally include drying the layer to form the self-adhesive fiber mat.
The present invention provides self-adhesive fiber mats that may be adhered or bonded to other mats, films, or sheets without applying an adhesive material during bonding of the mats, films, and/or sheets. The term self-adhesive as used herein refers to the fact that adhesive materials (e.g., glues, etc.) need not be applied during bonding or lamination of the self-adhesive fiber mat with another mat, film, and/or sheet. Generally all that is needed to bond or adhere the self-adhesive fiber mat with one or more materials is heat and/or pressure.
The self-adhesive fiber mat may include a plurality of fibers. The plurality of fibers may include bonding fibers that facilitate in bonding the fibers together and/or in bonding the self-adhesive fiber mat to another mat, film, or sheet. The plurality of fibers may also include one or more other fibers, such as polymer fibers, glass fibers, etc. The self-adhesive fiber mat may also include a binder having a bonding resin that facilitates in bonding the fibers together and that facilitates in bonding the self-adhesive fiber mat with another mat, film, or sheet. The bonding fibers and/or bonding resin may be made of a material with a low melting point temperature relative to the polymeric fibers, the glass fibers, and/or the fibers of the self-adhesive fiber mat and/or another mat, film, or sheet to which the self-adhesive fiber mat may be bonded. The low melting point temperature bonding fibers and/or bonding resin may soften and/or melt when exposed to heat. The self-adhesive fiber mat may then be pressed against another mat, film, or sheet so that the softened or melted bonding fibers and/or bonding resin press against fibers and/or a surface of the mat, film, or sheet. The fibers and/or surface of the mat, film, or sheet may compress into the softened and/or melted bonding fibers and/or bonding resin and the bonding fibers and/or bonding resin may act as a glue to stick, adhere, and/or otherwise bond the self-adhesive fiber mat with the fibers and/or surface of the other mat, film, or sheet. Specifically, the softened or melted bonding fibers and/or bonding resin may mesh with, flow into, soak, saturate, and/or form around the fibers and/or surface of the other mat, film, or sheet. The self-adhesive fiber mat may then be cooled so that the bonding fibers and/or bonding resin harden and/or reform affixed to the fibers and/or surface of the other mat, film, or sheet.
In addition to bonding with the fibers and/or surface of another mat, film, or sheet, the bonding fibers and/or bonding resin may also adhere to or bond with one or more fibers included or used in the self-adhesive fiber mat such as polymer fibers, glass fibers, etc. In this manner, the bonding fibers and/or bonding resin may not only adhere or bond the self-adhesive fiber mat with another mat, film, or sheet, but the bonding fibers and/or bonding resin may also bond or adhere the fibers that comprise the self-adhesive fiber mat together. In other words, the bonding fibers and/or bonding resin may act as a glue to bond both the fibers of the self-adhesive fiber mat together as well as bond the self-adhesive fiber mat with another adjacent mat, film, or sheet. In one embodiment, the self-adhesive fiber mat may be disposed between two mats, films, or sheets so that the self-adhesive fiber mat bonds the two mats, films, or sheets together.
The bonding fibers may be intermixed or intertwined with the other fibers included in the self-adhesive fiber mat (e.g., the polymer fibers, glass fibers, etc.), which may also help bond the fibers together. The bonding fibers may include single component fibers made of a low melting point temperature material and/or may include bi-component fibers that may have a core material made of a high melting point temperature material and an outer material or sheath material made of a low melting point temperature material. The outer material may soften and/or melt when exposed to a high temperature to allow the bonding fibers to bond or adhere with one or more fibers and/or surfaces. The core material, which may not soften and/or melt when exposed to the high temperature, may provide support for the bonding fibers when the outer material is softened and/or melted. For example, the core material may stabilize the low melting point temperature outer material to keep the softened and/or melted outer material from migrating throughout the self-adhesive fiber mat and/or pooling when in the softened and/or melted state.
The bonding resin may be heat and/or pressure sensitive so that the bonding resin flows (e.g., softens and/or melts) under heat and/or pressure and thereby saturates, soaks, presses into, and/or forms with one or more fibers or surfaces of another mat. The bonding resin may include a sticky polymer such as a polyolefin dispersion and/or blend of polyolefin dispersion with an acrylic based binder. In one embodiment, the self-adhesive fiber mat and/or fiber mat product may contain between 1% and 50% bonding resin (or bonding fibers). In an exemplary embodiment, the bonding resin does not melt, but softens enough that it becomes sticky or tacky so that fibers and/or surfaces pressed into or against the resin adhere thereto.
The use of bonding fibers and/or bonding resins may allow for increased control over the adhesion between the self-adhesive fiber mat and one or more other mats, films, or sheets and/or may improve one or more physical properties of the resulting fiber mat product when compared with the use of adhesives or glues. For example, the bonding fibers and/or bonding resins may provide for more uniform adhesion between the self-adhesive fiber mat and another mat, film, or sheet adhered thereto when compared with the use of adhesive materials. In addition, the boding fibers and/or bonding resins may provide an improved porosity, tensile strength, uniform thickness, etc. of the resulting fiber mat product when compared with fiber mats that apply an adhesive material during lamination or bonding.
The adhesive strength of the self-adhesive fiber mat, or in other words the adhesion between the self-adhesive fiber mat and one or more other mats may be controlled through the type of bonding fibers used (e.g., bi-component, single component), the type of material used for the low melting point temperature material, the thickness of the low melting point temperature material (e.g., the bonding fiber diameter, the outer diameter of the outer material compared with the diameter of the core material, etc.), the length of the bonding fiber, the amount and/or percentage of bonding fibers used, the thickness of the self-adhesive fiber mat, the amount of heat used in the bonding process, the exposure of the bonding fibers to the heat, the pressure applied to the self-adhesive fiber mat and other mat, the rate of cooling of the self-adhesive fiber mat, the distribution and/or arrangement of the bonding fibers within the self-adhesive fiber mat, etc. Similarly, the adhesive strength may be controlled through the type and/or composition of the bonding resin, the amount of bonding resin used, the amount of heat and/or duration of exposure to heat, the pressure applied, the rate of cooling, etc.
The binder having the bonding resin may be used in place of or in addition to the bonding fibers. For example, in one embodiment, the self-adhesive fiber mat may use a binder comprising bonding resin while not using bonding fibers. The binder may include a material separate from the bonding resin that temporarily or permanently bonds the fibers of the self-adhesive fiber mat together, or the bonding resin may both temporarily bond the fibers prior to a lamination or bonding process and permanently bond the fibers after the lamination or bonding process. Upon application of pressure and/or heat, the bonding resin may soften and/or melt and soak or saturated into a mat, film, or sheet placed adjacent to the self-adhesive fiber mat. The self-adhesive fiber mat may then be cooled so that the bonding resin hardens and bonds or adheres the self-adhesive fiber mat with the mat, film, or sheet. In another embodiment, the self-adhesive fiber mat may use both a binder comprising bonding resin and bonding fibers. Such embodiment provides two sources of bonding or adhesion for the self adhesive fiber mat. In yet another embodiment, the self-adhesive fiber mat may use bonding fibers without using a binder or may use a binder that does not include a bonding resin.
In a specific embodiment, the self-adhesive fiber mat may be bonded to a polymeric battery separator film without the use of additional adhesive glues to form a battery separator mat (e.g., battery separator mat for a lead acid battery). The resulting multilayered mat product (battery separator) may then be placed between positive and negative electrodes in an electrolyte to prevent physical contact between the electrodes. Because the multilayered mat product (battery separator) is free of adhesive glues and/or because the adhesion between the self-adhesive mat and polymeric separator film may be highly controlled, the multilayered mat product may have better pore structure compared to a similar battery separator that includes an adhesive glue. This may minimize the overall electrical resistance of the multilayered mat product (battery separator). The bonding fibers, glass and/or polymer fibers, and/or bonding resin can be chosen to produce a self-adhesive fiber mat having a desired thickness, tortuousity, and/or wettability to minimize the electrical resistance of the multilayered mat product (battery separator). For example, the bonding fibers and/or bonding resin can be selected so that the electrolyte solution completely wets the surface of the polymeric fiber mat product. These and other advantages of the self-adhesive fiber mat will become more apparent with reference to the figures.
The bonding fibers may be made of single component fibers having the low melting point temperature or may be made of bi-component fibers having a core material surrounded by an outer material. The core material may have a high melting point temperature relative to the outer material so that the core material does not substantially soften and/or melt when the bonding fibers are exposed to heat (e.g., the core material may have a melting point temperature greater than 130 degrees Celsius). The outer material may have a low melting point temperature relative to the core material, which may be between the range of about 90 degrees Celsius and 200 degrees Celsius. The outer material may soften and/or melt when exposed to heat to allow the bonding fibers to bond with one or more adjacent materials as previously described. The core material may provide support for the bonding fibers when exposed to heat, such as by preventing the softened and/or melted outer material from migrating throughout the self-adhesive fiber mat 100 and/or pooling within the mat as previously described.
The self-adhesive fiber mat 100 may additionally or alternatively include a binder that temporarily or permanently bonds or adheres the bonding fibers and/or other fibers of the self-adhesive fiber mat 100. The binder may include a bonding resin that softens and/or melts when exposed to heat and/or pressure and that also enables the self-adhesive fiber to bond with a material that is placed adjacent to a surface of the self-adhesive fiber mat 100. The binder having the bonding resin may be used in place of or in addition to the bonding fibers. For example, the binder may temporarily bond the fibers of the self-adhesive fiber mat 100 together until the self-adhesive fiber mat is exposed to heat, after which the bonding fibers and/or bonding resin soften and/or melt and adhere or bond the fibers of the self-adhesive fiber mat together in addition to bonding or adhering the self-adhesive fiber mat with an additional mat, film, or sheet. The binder may allow the self-adhesive fiber mat 100 to be placed in tension without tearing or otherwise coming apart during a lamination and/or bonding process. In one embodiment, the binder comprises a 5% polymer binder. The binder may also include 5-50% bonding resin.
In one embodiment, the self-adhesive fiber mat 100 does not include bonding fibers, but instead includes a single layer of one or more types of fibers temporarily or permanently bonded together with the binder comprising bonding resin described herein. The bonding resin may soften and/or melt upon the application or heat and/or pressure and flow, saturate, and/or soak into a mat, film, or sheet placed adjacent to the first face 102 of the self-adhesive fiber mat 100. Likewise, the self-adhesive fiber mat 100 comprising the bonding resin may be sandwich between and bonded to two other mats, films, or sheets. In another embodiment, the self-adhesive fiber mat 100 includes bonding fibers, but does not include a binder or includes a binder without the bonding resin.
In embodiments that employ bi-component fibers, the bi-component bonding fibers may include a core material having a high melting point temperature and an outer material having a low melting point temperature as previously described. In embodiments that employ bonding resins, the bonding resin may be pressure and/or heat sensitive as previously described. The polymeric film sheet 204 may be a polymeric battery separator film. The polymeric film sheet 204 may be coextensive with the self-adhesive fiber mat 202. Bonding between the self-adhesive fiber mat 202 and the polymeric film sheet 204 may occur as a result of the outer material of the bonding fibers and/or the boding resin bonding with a surface and/or fibers of the polymeric film sheet 204. For example, the softened and/or melted outer material and/or bonding resin may be compressed into the fibers and/or surface of the polymeric film sheet 204 and cooled so that the outer material and/or bonding resin hardens and the bonding fibers and/or bonding resin reform with the fibers and/or surface of the polymeric film sheet compressed into the outer material and/or bonding resin.
The core material 302 may be made from one or more of the following materials: aliphatic polyester (e.g., Bionelle®), co-polyester, co-polypropylene, ethyl vinyl acetate, high density polyethylene, polylactic acid, etc. The outer material 304 may be made from one or more of the following materials: aliphatic polyethylene terephthalate (e.g., Biomax®), polylactic acid, polyester, polyethylene, polypropylene, polyethylene terephthalate, polyethylene vinyl acetate, etc. Some specific bi-component core material/outer material combinations may include: Bionelle®/Biomax® Aliphatic Polyethylene Terephthalate; Bionelle®/PolyLactic Acid (PLA); Co-polyester/Polyester; Co-polypropylene/Polypropylene; Ethyl Vinyl Acetate/Polypropylene; High Density Polyethylene (HDPE)/Polyester; High Density Polyethylene (HDPE)/Polypropylene; PolyLactic Acid (PLA)/PolyLactic Acid (PLA); Polyethylene/Polypropylene; Polypropylene/Polyethylene Terephthalate; Polypropylene/Polyethylene Vinyl Acetate; etc. where the material on the left of the slash represents the core material 302 and the material on the right of the slash represents the outer material 304.
The bi-component fibers 300 may have varied lengths or may have roughly uniform lengths. In one embodiment, bi-component fibers 300 having lengths between about 2 mm and about 20 mm are used, although the fiber lengths are not limited to this range. In addition, depending on the fibers used, the Denier per Filament (dpf) value of the bi-component fibers 300 may vary. In one embodiment bi-component fibers 300 having dpf values between about 0.5 and about 8.0 are used, although the dpf values are likewise not limited to this range. The ratio of core material to outer material may vary depending on the adhesion desired and/or on the material, fiber, and/or surface that the bi-component fibers 300 will be adhered to. In one embodiment, the bi-component fiber comprises between about 2% and 40% outer material.
In one embodiment, the system 400 includes a single fiber dispersion device or station 402 and the bonding fibers and/or other fibers (e.g., glass fibers, polymer fibers, etc.) are dispersed in the same liquid solution. In another embodiment, the system 400 includes a first fiber dispersion device or station 412, in which one or more types of fibers (e.g., glass fibers, polymer fibers, etc.) are dispersed in a first liquid solution and the system 400 includes a second fiber dispersion device or station 402, in which bonding fibers are dispersed in a second liquid solution.
The system 400 may also include a fiber forming device or station 404 that is used to form a web or mat of fibers from the liquid solution (e.g., a wet laid fiber web) by removing the liquid from the solution. The fiber forming device or station 404 may include one or more hydroformers. The web of fibers may include intermixed, entangled, intertwined, and/or randomly oriented fibers (bonding fibers and/or other fibers). The fiber forming device or station 404 may include a porous moving belt onto which the liquid solution may be distributed. The fiber forming device or station 404 may also include a vacuum system 414 to facilitate in removal of the liquid from the liquid solution so that only the fibers remain. The liquid may be removed by applying a vacuum underneath the porous moving belt to draw the liquid through the porous moving belt to form a wet web of fibers. In one embodiment involving two fiber dispersion stations or devices, 402 & 412, one of the liquid solutions (e.g., the first liquid solution) may be distributed over the fiber forming device or station 404 and the liquid removed from the liquid solution to form a first layer of fibers (e.g., a layer of glass fibers). The other liquid solution (e.g., the second liquid solution) may then be poured or distributed over the first layer of fibers and the liquid removed from the liquid solution to form a second layer of fibers (e.g., bonding fibers) atop and/or adjacent to the first layer of fibers so that a bi-layer web or mat of fibers is formed. In another embodiment, the system 400 may include two hydroformers so that each liquid solution is provided to a different hydroformer. In such an embodiment, the weight ratio of bonding fibers to other fibers in the resulting self-adhesive fiber mat may be varied by controlling the flow rates to each of the hydroformers. While the system has been described as forming the second layer of fibers (e.g., the bonding fibers) atop the first layer of fibers (e.g., the layer of glass fibers), the process may be reversed so that the second layer of fibers is formed first and first layer of fibers is positioned atop the second layer of fibers.
The system 400 may further include a binder application device or station 406. The binder station or device 406 may coat and/or apply a binder to the web of fibers that may temporarily or permanently bond the fibers together. The binder may include a polymeric emulsion to bond the fibers together and/or to bond the fiber mat to a sheet or film. Additionally, the binder solution may contain surfactants or wetting agents to control the wettability, defoamer to control the foaming during the mixing of binder ingredients, etc. Further, the polymeric emulsion in the binder may include a bonding resin, such as a polyolefin dispersion or a blend of polyolefin with an acrylic based binder. The binder may be vacuumed or sucked through the web of fibers so that the binder is roughly uniform throughout the thickness of the web of fibers. The binder may temporarily bond the fibers to allow the self-adhesive fiber mat to be placed in tension during winding of the self-adhesive fiber mat and/or during lamination or bonding with another mat, after which the single or bi-component fibers and/or bonding resin may bond the various fibers, surfaces, and/or materials together.
In addition, the binder may facilitate in maintaining the tensile strength of the self-adhesive mat while the bonding fibers are in a softened and/or melted state. In one embodiment, the white water liquid solution into which the bonding fibers and/or other fibers are dispersed acts as a binder so that the fibers are bonded together after removing the liquid from the white water solution. In such an embodiment, the system 400 need not include the binder application device or station 406 because no additional binders and/or resins (bonding resin, binder, etc.) need be applied to the web of fibers to bond the fibers together. In another embodiment, the white water solution may be used as the binder in the binder application device or station 406. For example, the whitewater solution may include an adhesive material that bonds the fibers after the liquid is removed. In embodiments that use only a binder having bonding resins (i.e., embodiments that do not use bonding fibers), the binder application device or station 406 may apply and/or coat the binder to a web of fibers that does not include bonding fibers.
The system 400 may additionally include a dryer station or device 408 that may dry the web of fibers to substantially remove any remaining liquid. The binder may bond the fibers together as the remaining liquid is removed (permanent bonding through the application of heat and/or pressure may occur later, such as during a lamination process illustrated in
Depending on the process used (e.g., one or two fiber dispersion stations, application of the binder, etc.), the resulting self-adhesive fiber mat may comprise a single layer having single component bonding fibers, bi-component bonding fibers, other fibers (e.g., glass fibers, polymer fibers, etc.), or any combination thereof (e.g., a combination of single component, bi-component, and glass fibers). Alternatively, the resulting self-adhesive fiber mat may comprise a multilayered fiber mat having separate layers or mixed layers that may include single component bonding fibers, bi-component bonding fibers, other fibers (e.g., glass fibers, polymer fibers, etc.), or any combination thereof. Yet alternatively, the resulting self-adhesive fiber mat may comprise a single or multilayered fiber mat having one or more layers that may include one or more types of fibers (e.g., bonding fibers, glass fibers, polymer fibers, etc.) and a binder including the bonding resin.
The system 400 may additionally include a winder device or station 410 that winds the self-adhesive fiber mat into a roll. One or more belts may connect each of the stations or devices of the system 400 so that the liquid solution and/or web of fibers continually and/or automatically move from one station or device to another until the self-adhesive mat is wound as a roll by the winder.
At block 725, the second liquid solution may be distributed over the first layer and/or distributed over another porous surface, such as another hydroformer or another fiber forming station. At block 730, a portion of the liquid from the second liquid solution may be removed to form a second layer of bonding fibers. The second layer of bonding fibers may be formed atop the first layer or may be formed separate from the first layer and applied or positioned atop the first layer subsequent to forming the second layer. At block 735, a binder may be applied to the first and second layers to at least temporarily bond the first layer with the second layers. In one embodiment, a binder is not applied. In another embodiment, the first and/or second liquid solutions contain a binder material. At block 740, the first and second layers may be dried to form the multi-layered self-adhesive fiber mat.
In describing the invention, certain embodiments have been used to illustrate the invention and the practices thereof. However, the invention is not limited to these specific embodiments as other embodiments and modifications within the spirit of the invention will readily occur to those skilled in the art on reading this specification. Thus, the invention is not intended to be limited to the specific embodiments disclosed, but is to be limited only by the claims appended hereto.
As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a process” includes a plurality of such processes and reference to “the device” includes reference to one or more devices and equivalents thereof known to those skilled in the art, and so forth.
Also, the words “comprise,” “comprising,” “include,” “including,” and “includes” when used in this specification and in the following claims are intended to specify the presence of stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, acts, or groups.