Self-adjusting mechanical gastric band

Information

  • Patent Grant
  • 9028394
  • Patent Number
    9,028,394
  • Date Filed
    Thursday, April 29, 2010
    14 years ago
  • Date Issued
    Tuesday, May 12, 2015
    9 years ago
  • CPC
  • US Classifications
    Field of Search
    • US
    • 600 029-031
    • 600 037000
    • 623 014130
    • 606 153000
    • 606 157000
    • 606 191000
    • 606 192000
    • 606 201-203
    • 604 019000
    • 604 099010
    • 604 096010
    • CPC
    • A61F5/005
    • A61F5/0053
    • A61F5/0056
    • A61F5/0059
    • A61F5/0063
  • International Classifications
    • A61F2/00
    • A61F13/00
    • A61F5/00
    • Term Extension
      461
Abstract
A self-adjusting gastric band applies a substantially constant force to a patient's fundus in order to facilitate weight control. The self-adjusting gastric band is capable of automatically relaxing and contracting in response to changes in the patient's fundus or in response to a large bolus passing through the patient's fundus that is constricted by the gastric band. The self-adjusting gastric band is automatically adjustable without hydraulic fluid and without external physician intervention. The self-adjusting gastric band comprises a movable member and a biasing mechanism coupled to the movable member to facilitate applying the substantially constant force against the fundus as the fundus changes size, shape and/or position.
Description
FIELD

The present invention generally relates to medical systems and apparatus and uses thereof for treating obesity and/or obesity-related diseases, and more specifically, relates to a gastric band that is self-adjusting.


BACKGROUND

Adjustable gastric banding apparatus have provided an effective and substantially less invasive alternative to gastric bypass surgery and other conventional surgical weight loss procedures. Despite the positive outcomes of invasive weight loss procedures, such as gastric bypass surgery, it has been recognized that sustained weight loss can be achieved through a laparoscopically-placed gastric band, for example, the LAP-BAND® (Allergan, Inc., Irvine, Calif.) gastric band or the LAP-BAND AP® (Allergan, Inc., Irvine, Calif.) gastric band. Generally, gastric bands are placed about the fundus, or esophageal junction, of a patient's upper stomach forming a stoma that restricts food's passage into a lower portion of the stomach. When the stoma is of an appropriate size that is restricted by a gastric band, food held in the upper portion of the stomach may provide a feeling of satiety or fullness that discourages overeating. Unlike gastric bypass procedures, gastric band apparatus are reversible and require no permanent modification to the gastrointestinal tract. An example of a gastric banding system is disclosed in Roslin, et al., U.S. Patent Pub. No. 2006/0235448, the entire disclosure of which is incorporated herein by this specific reference.


Existing gastric bands periodically require adjustments to maintain an effective constriction about the fundus, to account for changes in the fundus tissue, reduction of fat or other factors causing movement and/or size change of the fundus. Some attempts have been made to allow for such adjustment of gastric bands. For example, hydraulic gastric bands utilize a fluid such as saline to fill an inflatable portion of the gastric band using a subcutaneous injection port. Adjustments to the amount of inflation may be made by injecting or extracting the fluid through the patient's skin into or out of the injection port, which then directs the fluid into or out of the inflatable portion of the gastric band. These types of adjustments may be undesirable because of the discomfort caused by the injections.


Further, adjustments by injections may not be immediately available when immediate adjustments may be desirable. For example, during normal operation of the gastric band, the band applies pressure to the outer surface of the fundus. But in some instances, the patient may swallow a bolus of food that is too large to pass through the constriction produced by the band. The result can be a painful experience which, if it persists, may require medical intervention to release the blockage.


Accordingly, it is desirable to develop a self-adjusting gastric band that will provide the needed pressure to the fundus to create the stoma and facilitate weight control, but that will also automatically self-adjust to account for changes in the fundus and/or to open up to allow a large bolus to pass through. It is further desirable to create an automatic, self-adjusting gastric band that does not require an electrical power source and/or external adjustments, to allow a large bolus to pass through, so that immediate relief from the discomfort created by a large bolus may be relieved. Moreover, it is desirable to develop a mechanically self-adjusting gastric band that does not require hydraulic adjustments through a subcutaneous injection port.


SUMMARY

Generally described herein are self-adjusting, mechanical gastric bands that apply a substantially constant force to a patient's fundus in order to facilitate weight control. Such self-adjusting gastric bands are capable of automatically relaxing and contracting in response changes in the patient's fundus or in response to a large bolus passing through the patient's fundus that is constricted by the gastric band. Furthermore, the self-adjusting gastric bands disclosed herein are automatically adjustable without hydraulic fluid.


Although certain embodiments of self-adjusting gastric bands are disclosed herein, it should be understood that the present invention contemplates any gastric band that is mechanically self-adjustable and that applies a substantially constant force to the fundus. The substantially constant force may have a target force in the range of approximately 0.05 to 1.0 lbf. However, the force variation from a first position and a second position in the gastric band may be less than approximately fifty percent. For example, for a band with a target force of 0.4 lbf, the variation in force between the two positions may be approximately 0.2 to 0.6 lbf, or 0.4+/−0.2 lbf.


In various embodiments, a self-adjusting gastric band may impose a range of constrictions on a fundus to accommodate changes in shape, size, and/or position of the fundus. For simplicity, a first constriction and a second constriction on the fundus in response to a first position and second position of the fundus may be referred to herein. However, it should be understood that various numbers of different constrictions are contemplated within the scope of the present invention, and that the range of constrictions may be a continuous range of constrictions.


In various embodiments, the range of constrictions may be described as ranges of inside diameters of the gastric band. The inside diameter of the band changes to provide a greater or lesser degree of constriction of the fundus. The inside diameter of the gastric band may change by an amount between approximately one-sixteenth of an inch and approximately one-half of an inch.


The self-adjusting gastric band comprises a movable member and a biasing mechanism coupled to the movable member to facilitate applying the substantially constant force against the fundus when the fundus is in the first position and the second position. The self-adjusting band applies the first constriction to the fundus when the fundus is in the first position. The band applies the second constriction to the fundus when the fundus is in the second position. The movable member self-adjusts as the fundus moves from the first position to the second position, and the biasing mechanism automatically moves the movable member with the substantially constant force as the fundus moves from the first position to the second position.


In an embodiment, the fundus moves from the first position to the second position as a large bolus enters the fundus. To allow the large bolus to pass through the fundus, the self-adjusting gastric band automatically moves from the first constriction to the second constriction, with the second constriction being looser than the first constriction. After the bolus passes through the fundus, the biasing mechanism automatically returns the movable member to the first constriction.


Further, in an embodiment, the movable member is a lobe comprising a rolling diaphragm coupled to a ring of the gastric band, and the biasing mechanism is a compression spring with substantially constant force in the range of operation. The near-constant force compression spring is disposed within a cup proximate the rolling diaphragm, and the spring abuts the ring to facilitate moving the rolling diaphragm to impose the first constriction and the second constriction on the fundus. The cup is slidably coupled to the ring and comprises a tab to prevent the near-constant force compression spring from expanding beyond a predetermined distance. A near-constant force compression spring may be achieved by choosing a spring with a low spring constant (K) and then pre-loading the spring to a desired target force by using a substantial portion of the range of deflection of the spring, leaving sufficient remaining deflection to accommodate a desired operation range of the gastric band.


In accordance with another embodiment, the movable member is a vertical cup slidably coupled to a roller that is coupled to a ring of the self-adjusting gastric band. The vertical cup is circumferentially disposed around the inside of a ring of the gastric band. The biasing mechanism is a torsional spring coupled to the roller. The torsional spring comprises ends that contact a back support of the ring to facilitate applying the substantially constant force to the vertical cup and the fundus. A moment arm of the torsional spring increases as the vertical cup slides toward the back support, and the increased moment arm facilitates maintaining the substantially constant force against the fundus.


Additionally, the self-adjusting gastric band comprises a retaining ring circumferentially disposed about the self-adjusting gastric band. The retaining ring comprising a release tab abutting a tab on the spring holder, which maintains the spring holder in a preloaded position against the back support. When the retaining ring rotates around the self-adjusting gastric band, the release tab slides past the spring holder tab to release the spring holder and the vertical cup. When released, the vertical cup exerts the substantially constant force on the fundus.


According to an embodiment, the self-adjusting gastric band comprises a latch mechanism that has a male portion and a female portion. The male portion comprises a cam screw and the female portion comprises a slidable cylinder. The cam screw comprises pins and the slidable cylinder comprises pin slots for receiving the pins when the cam screw is inserted into the slidable cylinder.


Further, the slidable cylinder comprises a tab that abuts a retaining ring release tab on the retaining ring. When the cam screw is inserted into the slidable cylinder and slides the slidable cylinder within the female portion, the cylinder tab pushes the retaining ring release tab to rotate the retaining ring. The retaining ring releases the vertical cup as the retaining ring rotates.


In accordance with another embodiment the movable member of the self-adjusting gastric band is a rotatable finger coupled to a pivot on a ring of the self-adjusting gastric band. The rotatable finger rotates counter-clockwise to apply the first constriction, and it rotates clockwise to apply the second constriction, for example, in response to the large bolus entering the fundus. The biasing mechanism is a leaf spring coupled to the ring, and the leaf spring biases the rotatable finger toward the fundus at the substantially constant force. A lever arm of the leaf spring increases as the rotatable finger rotates to the second constriction in order to maintain the substantially constant force.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A illustrates a perspective view of a self-adjusting gastric band with circular lobes according to an embodiment of the present invention.



FIG. 1B illustrates a top view of the self-adjusting gastric band of FIG. 1A.



FIG. 1C illustrates a top, cross-sectional view of the self-adjusting gastric band of FIG. 1A.



FIG. 1D illustrates a perspective, sectional view of the self-adjusting gastric band of FIG. 1A.



FIG. 1E illustrates a perspective view of an unlatched, self-adjusting gastric band, with a rolling diaphragm shown transparently to illustrate a spring cup according to an embodiment of the present invention.



FIG. 2 illustrates a perspective view of a self-adjusting gastric band with oval-shaped lobes according to an embodiment of the present invention.



FIG. 3A illustrates a perspective view of a hinged, self-adjusting gastric band with a latch mechanism and vertical portions for applying a constriction to the fundus according to an embodiment of the present invention.



FIG. 3B illustrates another perspective view of the self-adjusting gastric band of FIG. 3A.



FIG. 3C illustrates a perspective, cut-away view of a spring holder and torsional spring of the self-adjusting gastric band of FIG. 3A.



FIG. 3D illustrates a side, cut-away view of a vertical cup and torsional spring of the self-adjusting gastric band of FIG. 3A.



FIG. 4A illustrates a perspective view of a hinged, self-adjusting gastric band with a compression spring according to an embodiment of the present invention.



FIG. 4B illustrates a sectional view of a vertical cup and a compression spring of the self-adjusting gastric band of FIG. 4A.



FIG. 5A illustrates a perspective view of a representation of a self-adjusting gastric band with movable fingers and dual leaf springs according to an embodiment of the present invention.



FIG. 5B illustrates a top view of the representation of the self-adjusting gastric band of FIG. 5A.



FIG. 5C illustrates a partial view of the representation of the self-adjusting gastric band of FIG. 5A.



FIG. 5D illustrates another partial view of the representation of the self-adjusting gastric band of FIG. 5A.



FIG. 6 illustrates a perspective view of another representation of a self-adjusting gastric band with leaf springs coupled to movable fingers according to an embodiment of the present invention.



FIG. 7A illustrates a perspective view of a self-adjusting mechanical gastric band according to an embodiment of the present invention.



FIG. 7B illustrates a partial cut-away view of a canted spring in the self-adjusting mechanical gastric band of FIG. 7A.



FIG. 7C illustrates a perspective wire frame view of the self-adjusting mechanical gastric band of FIG. 7A.



FIG. 7D illustrates a perspective view of a canted spring according to an embodiment of the present invention.



FIG. 7E illustrates a perspective view of a canted spring in two states of deflection according to an embodiment of the present invention.



FIG. 7F illustrates a perspective view of a canted spring with rollers according to an embodiment of the present invention.



FIG. 7G illustrates a perspective view of a canted spring with wheel carts according to an embodiment of the present invention.



FIG. 8 illustrates a perspective view of a hinged self-adjusting gastric band according to an embodiment of the present invention.





DETAILED DESCRIPTION

The present invention generally provides mechanically self-adjusting gastric banding systems, for example, for treatment of obesity and obesity related conditions, as well as systems for automatically controlling adjustment of gastric bands in response to changes in the patient's fundus or in response to a patient swallowing a large bolus.


Adjustable gastric bands are effective in helping a patient lose weight when the band is properly tightened around the patient's fundus, or esophageal junction. During normal operation, the band applies pressure to the outer surface of the fundus. But, in some instances, the size and/or shape of the fundus may change, or the patient may swallow a bolus which is too large to pass through the constriction produced by the band—for example, when the patient swallows a large piece of steak. The result can be a painful experience which, if it persists, may require medical intervention to release the blockage. In either case, adjustment of the gastric band may be necessary.


In accordance with various embodiments of the present invention, the mechanically self-adjusting gastric band provides a substantially constant force to the fundus to encourage weight loss. This substantially constant force is maintained even when the size and/or shape of the fundus changes, or when a large bolus of food is swallowed. It should be noted that the force is referred to herein as substantially constant, but it should be understood that embodiments disclosed herein function when the force is constant, and not just substantially constant.


The biasing mechanisms in the self-adjusting gastric band cause a movable member to move with the changing size of the fundus while maintaining the substantially constant force against the fundus. For example, the self-adjusting gastric band may temporarily and automatically open up to allow a large bolus to pass through the fundus. After the bolus passes through, the biasing mechanisms and movable members of the band return the band to its original constriction about the fundus. In various embodiments, the band is automatically self-adjusting and does not require manual and/or external adjustments in order to maintain the substantially constant pressure against the fundus.


As noted previously, certain embodiments of a mechanically self-adjusting gastric band will be disclosed herein. However, other configurations that allow for automatic, mechanical, self-adjusting gastric bands that apply a substantially constant force to the fundus are contemplated within the scope of the present invention. Thus the embodiments described below are only representative of the invention, and are not limiting.


With reference to FIGS. 1A-1E, a self-adjusting gastric band 105 comprises a plurality of movable members, or lobes 115 that apply a substantially constant pressure to a patient's fundus as the fundus changes in size, shape, and/or position. The gastric band 105 is configured to wrap around the patient's fundus such that the lobes 115 are circumferentially spaced about the fundus.


A latch mechanism 110 secures the band 105 in place around the fundus. The components of the latch mechanism 110 are located at the ends of a flexible, rigid ring 107 that forms the outside of the band 105 when it is wrapped around the fundus. In an embodiment, the outside diameter of the ring 107 is approximately two inches and the inside diameter is approximately one inch. The ring 107 provides structure and support to the band 105, and may be constructed of molded silicone rubber with a shore A durometer in the range of approximately 50-60. FIG. 1E illustrates the band 105 with the ring open prior to being implanted around the fundus in accordance with an embodiment. In an embodiment, hinges may be located between the lobes 115 to allow the ring 107 to open and/or close around the fundus. For example, living hinges may be located between the lobes 115.


With reference to FIGS. 1C-1D, in an embodiment, the lobes 115 move in and out to accommodate changes in size, shape, and/or location of the fundus, for example, to allow a large bolus of food to pass through the fundus. The lobes 115 apply a substantially constant pressure to the fundus via biasing mechanisms, such as compression springs 120, located in the lobes 115.


The compression springs may be made of stainless steel, titanium, or any other material that provides a sufficient force with a low enough k-value to facilitate applying a substantially constant force to the fundus with the lobes 115. In an embodiment, the compression springs 120 undergo a large deflection when they are loaded into the lobes 115. In this manner, small changes in the compression of the springs 120 have little or substantially no effect on the force exerted by the springs 120, resulting in a substantially constant force applied by the springs 120 and the lobes 115 in response to deflections due to fundus changes. In various embodiments, the force applied by the springs 120 is in the range of approximately 0.05 to 1.0 lbf, and in an embodiment, the force applied is approximately 0.25 lbf.


One end of the compression spring 120 abuts the ring 107, and the ring 107 thus acts as a support for the spring. The end of the spring opposite the ring 107 sits in a cup 130 that is rigid. The cup 130 may be made of molded plastic, polysulfone, titanium, stainless steel, or any other material that provides sufficient support for the spring 120. The cup 130 provides a rigid and smooth surface against which the spring 120 may act, in order to evenly distribute the substantially constant force on the fundus.


The cup 130 includes a cylindrical portion that passes through a cylindrical portion in the ring 107. The cylindrical portion of the ring 107 is sealed by a plug 134. The cylindrical portion of the cup 130 includes a tab 132 that abuts the cylindrical portion of the ring 107 when the spring has extended to its maximum extension, to prevent the lobe from extending too far to the center of the band 105 and into the fundus.


The lobe 115 is sealed from the patient's body and from contaminants with a flexible rolling diaphragm 125. As the spring 120 moves the cup 130 toward and away from the fundus, the diaphragm 125 flexes and moves with the cup. The diaphragm 125 is attached to the ring 107 via an interference fit between a diaphragm lip 126 and an interference portion 127 in the ring 107. FIG. 1E illustrates several lobes 115 with the rolling diaphragms 125 in place, whereas one lobe 115 has the diaphragm 125 removed to show the cup 130 underneath.


In various embodiments, more lobes 115 may be used to more equally distribute the substantially constant force about the fundus. For example, with reference to FIG. 2, a gastric band 205 includes seven oval-shaped lobes 215 to more equally distribute the force. Gastric band 205 also has a ring 207 and a latch mechanism 210.


With reference to FIGS. 3A-3D, another embodiment of a mechanically, self-adjustable gastric band 305 is disclosed. The band 305 is a handcuff-type design, with a hinge 308 rotatably coupling portions of the ring 307 to each other. Although only two portions of the ring 307 are illustrated, any number of portions and hinges 308 may be utilized to facilitate securing the band 305 to the fundus 300. A latch mechanism comprises a male portion 310 and a female portion 311 that secures the band 305 around a patient's fundus 300 (shown in broken lines as a cylinder for illustration purposes only).


The band 305 includes movable members that are vertically shaped cups 325 circumferentially disposed around the inside of the ring 307. The cups 325 automatically move into and out of the band to adapt to changes in the fundus 300 in order to apply a substantially constant force to the fundus 300. The cups 325 and/or other portions of the band 305 may be made of a low coefficient of friction material to reduce friction as the parts move with respect to each other. For example, various components may be made of silicone.


The cups 325 are biased against a back support 327 in the ring 307 with a torsional spring 320. The torsional spring 320 is coupled to the ring 307 via a roller 330 that passes through the center cylindrical portion of the spring 320. The roller 330 is rotationally and/or fixedly attached to the ring 307 via a roller pin 332 that passes through the roller 330. Thus, the roller 330 and center portion of the torsional spring 320 remain substantially stationary as the cups 325 move into and out of the band 305.


The ends of the torsional spring 320 are held by a spring holder 315 that is attached to the cup 325. The ends of the torsional spring 320 press against the back support 327 to provide a substantially constant force to the cup 325 against changes in size of the fundus 300. The cup 325 has slots that engage with the roller 330 and/or the roller pin 332 to provide a gimbal-pivoted support interaction between the spring 320 and the cup 325.


As illustrated in FIG. 3D, the cup 325 is pushed all the way into the band 305, and the roller pin 332 sits all the way to one end of the slot in the cup 325. In this manner, the ends of the torsional spring 320 are pushed away from the center of the torsional spring 320. As the cup 325 moves towards the fundus 300, the ends of the spring 320 tend to come together, resulting in a smaller moment arm.


With the moment arm of the spring 320 decreasing as the spring 320 moves towards a relaxed position and increasing as the spring 320 moves towards a wound position, the greater moment arm compensates for a potential increase in force as the spring 320 becomes more wound—as the cup 325 is pushed towards the back support 327. Thus, the spring 320 may exert a substantially constant force against the cup 325, which allows the cup 325 to exert a substantially constant force against the fundus 300. Further, the spring 320 may be preloaded to such a degree that small changes in deflection of the spring 320 result in a substantially constant force.


The male 310 and female 311 portions of the latch mechanism facilitate securing the band 305 around the fundus 300. The male portion 310 includes a cam screw 342 that is biased away from the female portion 311 with a compression spring. A physician uses an instrument such as a screw driver to push the cam screw 342 into the female portion 311 in order to secure the male portion 310 to the female portion 311 and in order to release the vertical cups 325 so they can exert a substantially constant force against the fundus 300.


A retaining ring 340 is circumferentially located around the band 305 and slides within the band 305 in order to release the vertical cups 325. The spring holder 315 attached to the vertical cup 325 includes a spring holder tab 347 that allows a retaining ring tab 346 to hold the spring holder 315 and the vertical cup 325 against the back support 327 in order to preload the spring 320. The retaining ring 340 also facilitates implanting the band 305 around the fundus 300 because the vertical cups 325 in the preloaded position are not exposed (which could lead to undesirable contact with the fundus 300 if they were exposed) as the band 305 is implanted.



FIGS. 3C and 3D illustrate the vertical cup 325 in this preloaded position, with the retaining ring tab 346 holding the spring holder tab 347 in place according to an embodiment of the present invention. In order to release the vertical cup 325, the retaining ring 340 rotates with respect to the vertical cup 325, and the retaining ring tab 346 slides away from the spring holder tab 347. The roller 330 may then slide within the vertical cup 325 as the spring 320 pushes the vertical cup 325 away from the back support 327.


In accordance with an embodiment, a ring release cylinder 344 is configured to facilitate sliding the retaining ring 340 within the band 305 in order to slide the retaining ring tabs 346 away from the spring holder tabs 347. The ring release cylinder 344 includes a cylinder tab 348 that abuts a retaining ring release tab 349 on the retaining ring 340 in order to rotate the retaining ring 340 as the cylinder 344 slides within the female portion 311 of the latch mechanism.


The cam screw 342 causes the cylinder 344 to slide within the female portion 311 when a physician inserts the cam screw 342 into the female portion 311. The cam screw 342 includes pins 343 at the end of the cam screw 342 closest to the female portion 311. These pins 343 are configured to slide within the pin slots 345 in the cylinder 344 as the physician pushes the cam screw 342 into the female portion 311.


When the pins 343 press against the cylinder 344 at the ends of the slots 345, the cylinder 344 slides within the female portion 311 and moves the cylinder tab 348. As the cylinder tab 348 moves, it pushes the retaining ring release tab 349 in order to rotate the retaining ring 340 with respect to the band 305. After the retaining ring 340 has been rotated to release the vertical cups 325, the physician rotates the cam screw 342 in the cylinder pin slots 345 in order to lock the cam screw 342 in the female portion 311 to secure the male portion 310 to the female portion 311 and to facilitate securing the band 305 about the fundus 300. The cam screw 342 and the cylinder 344 may also be used to reposition the retaining ring 340 to hold the spring holders 315 against the back supports 327 by moving the cylinder 344 in the direction opposite the direction discussed above.


In another embodiment, as illustrated in FIGS. 4A-4B, a low-k compression spring 420 exerts a substantially constant force against a vertical cup 425 and a fundus 400. The vertical cups 425 are spaced circumferentially about a ring 407 of a self-adjusting gastric band 405. The ring 407 includes multiple hinges 408 to facilitate securing the band 405 to the fundus. Although five portions of the ring 407 and corresponding hinges 408 are illustrated, any number of portions and hinges 408 may be utilized to facilitate securing the band 405 to the fundus 400.


Similar to the embodiments illustrated in FIGS. 3A-3D, the self-adjusting band 405 may include a latch mechanism to close the band 405 and a retaining ring to facilitate releasing the vertical cups 425 from a preloaded position against a back support 427. But in some embodiments, a retaining ring or other release mechanism may not be used.


The compression spring 420 is coupled to the back support 427 via a back support spring retaining portion 428, and the spring 420 is coupled to the vertical cup 425 via a cup spring retaining portion 429 opposite the back support 427. The compression spring 420 may be similar to the spring 120 discussed above with respect to FIGS. 1A-1E in that the movement of the spring 420 and the vertical cup 425 are small with respect to the uncompressed length of the spring 420. Thus, the spring 420 exhibits a substantially constant force over its range of motion in the self-adjusting band 405.


In accordance with various embodiments, and with reference to FIGS. 5A-5D, rotatable fingers 510 may be utilized to provided a desired constriction of the patient's fundus. FIGS. 5A-5D illustrate the functionality of the fingers 510, but the ring 507 upon which the fingers 510 are disposed is only representative of a ring 507 of a self-adjusting gastric band 505. It should be understood that variations to the structure of the ring 507 to facilitate securing the ring 507 about the fundus are contemplated within the scope of the present disclosure.


The rotatable fingers 510 are rotatably coupled to the ring 507 at pivots 530. When the rotatable fingers 510 rotate counter-clockwise, they increase the constriction of the fundus by rotating toward the center of the ring 507. When the rotatable fingers 510 rotate clockwise, they decrease the constriction of the fundus by rotating away from the center of the ring 507.


A first leaf spring 520 is coupled to the ring 507 via a spring holder 525. A second leaf spring 522 is coupled to the rotatable finger 510, and the free ends of the leaf springs 520, 522 overlap. In this manner, the two leaf springs 520, 522 bias the rotatable finger 510 toward the center of the ring 507 and toward the fundus with a substantially constant force.


The leaf springs 520, 522 are preloaded to generate the desired force. In an embodiment, the desired force is in the range of approximately 0.1 to approximately 1.0 lbf. Further in an embodiment, the desired force is approximately 0.25 lbf. The range of angular motion of the leaf springs may normally produce small variations in the spring force, but the force remains substantially constant in an embodiment because the increase in a lever arm of the stationary leaf spring 520 causes an effective reduction of the spring factor and therefore a substantially constant resultant force.


In various embodiments, any mechanism for reducing the spring factor while increasing the deflection results in a substantially constant force applied to the fingers 510, and all such mechanisms are contemplated within the scope of the present invention. In another embodiment, the leaf springs and fingers may be configured such that the same deflection and lever arm result regardless of the rotation angle in order to obtain a substantially constant force.


The leaf spring 522 that rotates with the finger 510 is also configured to result in a substantially constant force as the finger 510 rotates. The resultant force works through lever arms of both springs 520, 522, so the geometry of the springs 520, 522 is configured to produce the desired resultant force. Further, based on the geometry of the springs 520, 522 and/or the fingers 510, any desired force profile may be developed by a combination of springs and lever arms. For example, in an embodiment, it may be desirable for the force applied to the fundus to increase or decrease as the fundus geometry changes to provide physiological benefits.


In an embodiment, and with reference to FIG. 6, one leaf spring 620, coupled to the ring 607 via a spring holder 625, may be used to provide the desired force to a rotatable finger 610. The spring 620 may slide along one edge of the finger 610 as the finger 610 rotates, thereby changing the effective lever arm of the spring 620. When the lever arm increases as the deflection increases, the resultant force applied to the finger 610 remains substantially constant.


In various embodiments, and with reference to FIGS. 7A-7G, a gastric band 705 includes a canted spring 720 to provide a substantially constant force to a plurality of lobes 715 in order to achieve a desired constriction to a patient's fundus. The lobes 715 may be made of silicone rubber of a low durometer so that the lobes 715 are compliant and flex with movement of the fundus. For example, the lobes 715 may apply more or less of a constriction to the fundus to allow for a large bolus to pass through the fundus or to accommodate changes in size, shape, and/or location of the fundus. In an embodiment, the outer shell or ring 707 may be made of a higher durometer silicone rubber than the lobes 715. A latch 710 may be used to secure the band 705 around the patient's fundus.


The canted spring 720 is circumferentially disposed around the band 705. The outside diameter of the canted spring 720 is configured to abut the ring 707 of the gastric band 705, and the inside diameter of the spring 720 is configured to abut the lobes 715. In an embodiment, the lobes 715 may be a continuous, flexible component. The canted spring 720 deflects radially in response to changes in the size, shape, and/or position of the fundus. The radial deflection of the spring 720 causes the inside diameter of the band 705 to change as the lobes 715 move in and out. As the canted spring 720 deflects, it applies a substantially constant force against the lobes 715 and the fundus. The substantially constant force is maintained because the effective lever arm of the spring 720 increases as the deflection increases.


In accordance with an embodiment, with reference particularly to FIG. 7E, the canted spring 720 is illustrated at a first degree of deflection 720A and a second degree of deflection 720B. The first degree of deflection 720A results in a smaller inside diameter formed by the lobes 715, while the second degree of deflection 720B results in a larger inside diameter formed by the lobes 715. The spring 720 provides a substantially constant radial force at both the first and the second degrees of deflection. It should be understood that the canted spring 720, as with the other springs disclosed herein, may have various deflected positions, and two are shown here for purposes of illustration only, and not by way of limitation.


The canted spring 720 may include various mechanisms and/or characteristics to reduce friction between the coils of the spring 720, the lobes 715, the ring 707 and/or other portions of the gastric band 705. For example, rollers 721 may be placed along the spring 720 to facilitate reducing friction with the silicone material of the band 705 (e.g., the lobes 715 and/or the ring 707) as the spring 720 deflects. The rollers 721 may be located at various locations on the spring 720, and in an embodiment, the rollers 721 may cover substantially the entire spring 720. In other embodiments, silicone oil or another lubricating material may be utilized to reduce friction. Further, a low-friction silicone may be utilized as a laminating layer for the spring 720 to reduce friction.


In accordance with another embodiment, and with reference to FIG. 7G, wheel carts 724 may be utilized to reduce friction between the spring 720 and the components of the band 705. The wheel carts 724 may be disposed between the spring 720 and the lobes 715, the ring 707, and/or other components of the band 705. In an embodiment, the wheel carts 724 are coupled to the spring 720, and the wheel carts 724 slide along the surface of the band 705 that they contact as the spring 720 deflects.


With reference to FIG. 8, a self-adjusting gastric band 805, according to an embodiment, includes hinges 808 that define segments of a ring 807 of the gastric band 805. The hinges allow the segments of the ring 807 to move in order to facilitate implantation of the band 805. Further, the hinged segments are modular which facilitates simpler fabrication and/or molding of the segments of the band 805.


Each segment includes an outer cup portion 809 configured to receive a near-constant force compression spring. The near-constant force compression spring abuts the outer cup portion 809 on one end, and a lobe 815 on the other end. The structure of the lobe 815 and the near-constant force compression spring are similar to the embodiments illustrated in FIGS. 1A-1E and FIG. 2. The near-constant force compression spring expands and contracts with changes in the patient's fundus, to facilitate automatically self-adjusting to the changes and applying a substantially constant force to the fundus.


Unless otherwise indicated, all numbers expressing quantities of ingredients, components, forces, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.


The terms “a,” “an,” “the” and similar referents used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.


Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.


Certain embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on these described embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.


Furthermore, certain references have been made to patents and printed publications throughout this specification. Each of the above-cited references and printed publications are individually incorporated herein by reference in their entirety.


Specific embodiments disclosed herein may be further limited in the claims using consisting of and/or consisting essentially of language. When used in the claims, whether as filed or added per amendment, the transition term “consisting of” excludes any element, step, or ingredient not specified in the claims. The transition term “consisting essentially of” limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s). Embodiments of the invention so claimed are inherently or expressly described and enabled herein.


In closing, it is to be understood that the embodiments of the invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described.

Claims
  • 1. A mechanically self-adjusting, gastric band, which when banded assumes a ring configuration, the band constructed to be banded about a fundus, the self-adjusting gastric band comprising: a movable member, moveable in a radial direction when the band is in the ring configuration, for contacting the fundus; anda spring biasing member for applying a substantially constant force in a radially inward direction to the moveable member, the biasing member automatically moving the movable member in the radially inward direction relative to the ring configuration, wherein the movable member self-adjusts radially in response to the biasing force applied by the spring biasing member as the fundus adjusts in size.
  • 2. The self-adjusting gastric band of claim 1, wherein when the fundus increases in size as a large bolus enters the fundus, the movable member self-adjusts radially to a second position from an initial position in response to the biasing force applied by the spring biasing member and when the large bolus passes through the fundus, the moveable member self-adjusts radially to the initial position, wherein the movable member has substantially the same stiffness at the initial position and the second position.
  • 3. The self-adjusting gastric band of claim 1, wherein a constriction formed by the band when the moveable member is at the first position is looser than a constriction formed by the band when the moveable member is at the second position.
  • 4. The self-adjusting gastric band of claim 1, wherein the substantially constant force is in the range of about 0.05 to about 1.0 lbf.
  • 5. The self-adjusting gastric band of claim 1, wherein the substantially constant force is about 0.25 lbf.
  • 6. The self-adjusting gastric band of claim 1, wherein the movable member is a lobe comprising a rolling diaphragm extending from a surface of the self-adjusting gastric band.
  • 7. The self-adjusting gastric band of claim 6, further comprising up to seven lobes.
  • 8. The self-adjusting gastric band of claim 6, wherein the biasing mechanism is a near-constant force compression spring disposed within a cup proximate the rolling diaphragm, wherein the near-constant force compression spring abuts the surface of the band to facilitate moving the rolling diaphragm to impose a constriction.
  • 9. The self-adjusting gastric band of claim 8, wherein the cup comprises a tab to prevent the near-constant force compression spring from expanding beyond a predetermined distance.
  • 10. The self-adjusting gastric band of claim 1, wherein the movable member is a cup slidably coupled to a roller that is coupled to a ring of the self-adjusting gastric band.
  • 11. The self-adjusting gastric band of claim 10, wherein the spring biasing member is a torsional spring coupled to the roller, and the torsional spring comprises ends that contact a back support of the ring to facilitate applying the substantially constant force to the movable member.
  • 12. The self-adjusting gastric band of claim 11, wherein the cup slides toward the back support when a bolus enters the fundus.
  • 13. The self-adjusting gastric band of claim 12, wherein a moment arm of the torsional spring increases as the cup slides toward the back support, wherein the increased moment arm facilitates maintaining the substantially constant force.
  • 14. The self-adjusting gastric band of claim 12, further comprising a retaining ring circumferentially disposed about the self-adjusting gastric band, the retaining ring comprising a release tab abutting a tab on the spring holder for maintaining the spring holder in a preloaded position against the back support, and when the retaining ring rotates around the self-adjusting gastric band, the release tab slides past the spring holder tab to release the spring holder and the cup to facilitate the cup exerting the substantially constant force on the movable member.
  • 15. The self-adjusting gastric band of claim 14, further comprising a latch mechanism having a male portion and a female portion, the male portion comprising a cam screw and the female portion comprising a slidable cylinder.
  • 16. The self-adjusting gastric band of claim 15, wherein the cam screw comprises pins and the slidable cylinder comprises pin slots for receiving the pins when the cam screw is inserted into the slidable cylinder.
  • 17. The self-adjusting gastric band of claim 16, wherein the slidable cylinder comprises a tab that abuts a retaining ring release tab on the retaining ring, wherein the cylinder tab pushes the retaining ring release tab to rotate the retaining ring when the cam screw is inserted into the slidable cylinder and slides the slidable cylinder within the female portion, the retaining ring releasing the cup as the retaining ring rotates.
  • 18. The self-adjusting gastric band of claim 17, wherein the cam screw secures the male portion to the female portion to secure the self-adjusting band gastric band around the fundus when the cam screw rotates within the pin slots after rotating the retaining ring.
  • 19. The self-adjusting gastric band of claim 1, wherein the movable member is a vertical cup disposed circumferentially about the self-adjusting gastric band, and wherein the spring biasing member is a compression spring coupled to a back support on a ring of the self-adjusting gastric band, the compression spring providing the substantially constant force against the cup and the fundus.
  • 20. The self-adjusting gastric band of claim 19, further comprising a retaining ring circumferentially disposed around the self-adjusting gastric band to release the cup from a preloaded position against the back support when the retaining ring rotates with respect to the self-adjusting gastric band.
  • 21. The self-adjusting gastric band of claim 2, wherein the movable member is a rotatable finger coupled to a pivot on a ring of the self-adjusting gastric band, the rotatable finger rotating counter-clockwise to apply the first constriction and rotating clockwise to apply the second constriction in response to the large bolus entering the fundus.
  • 22. The self-adjusting gastric band of claim 21, wherein the spring biasing member is a leaf spring coupled to the ring, the leaf spring biasing the rotatable finger toward the fundus at the substantially constant force.
  • 23. The self-adjusting gastric band of claim 22, wherein a lever arm of the leaf spring increases as the rotatable finger rotates to maintain the substantially constant force.
  • 24. The self-adjusting gastric band of claim 22, further comprising a second leaf spring, the leaf spring and the second leaf spring biasing the rotatable finger toward the fundus.
  • 25. The mechanically self-adjusting gastric band according to claim 1, wherein the movable member extends from an inner surface of the gastric band.
  • 26. The mechanically self-adjusting gastric band according to claim 25, comprising a plurality of movable members, wherein when the gastric band is placed around the fundus, the movable members are disposed circumferentially around the inner surface of the gastric band.
  • 27. The self-adjusting gastric band of claim 1, further comprising a plurality of the moveable members and a plurality of the spring biasing members, each biasing member corresponding to a moveable member.
  • 28. A mechanically self-adjusting, gastric band, which when banded assumes a ring configuration in which the band has a radially inner surface and a radially outer surface, the band constructed to be banded about a fundus, the self-adjusting gastric band comprising: a lobe, extending from the radially inner surface and moveable in a radial direction when the band is in the ring configuration, for contacting the fundus, wherein the lobe includesi. a rolling diaphragm coupled to the radially inner surface of the band;ii. a cup disposed between the diaphragm and the radially inner surface of the band;iii. a near-constant force compression spring disposed within the cup and contacting the radially inner surface of the band, wherein the diaphragm, cup, and spring are constructed to move in a radial direction relative to the ring configuration, the spring constructed to apply a substantially constant force to the cup and the diaphragm, the near-constant force compression spring automatically moving the cup and the rolling diaphragm in the radial direction relative to the ring configuration, wherein the cup and the rolling diaphragm self-adjust radially in response to the biasing force applied by the spring as the fundus adjusts in size.
  • 29. The mechanically self-adjusting gastric band according to claim 28, comprising a plurality of lobes, wherein when the gastric band is banded around the fundus in the ring configuration, the lobes are disposed circumferentially around the radially inner surface of the gastric band.
  • 30. The gastric band of claim 28, further comprising a plurality of the lobes spaced circumferentially around the radially inner surface.
US Referenced Citations (529)
Number Name Date Kind
1174814 Brennan et al. Mar 1916 A
1830947 Klingel Nov 1931 A
1999683 Borresen Apr 1935 A
2163048 McKee Jun 1939 A
2339138 Black Jan 1944 A
2405667 Ottesen Aug 1946 A
2438231 Schultz et al. Mar 1948 A
2635907 Heimbuch Apr 1953 A
2714469 Carlson Aug 1955 A
2936980 Rapata May 1960 A
3059645 Hasbrouck et al. Oct 1962 A
3189961 Heller Jun 1965 A
3667081 Burger Jun 1972 A
3840018 Heifetz Oct 1974 A
3955834 Ahlrot May 1976 A
4053176 Hilbush Oct 1977 A
4118805 Reimels Oct 1978 A
4133315 Berman et al. Jan 1979 A
4157713 Clarey Jun 1979 A
4176412 Peterson Dec 1979 A
4236521 Lauterjung Dec 1980 A
4271827 Angelchik Jun 1981 A
4299012 Oetiker Nov 1981 A
4340083 Cummins Jul 1982 A
4399809 Baro et al. Aug 1983 A
4408597 Tenney, Jr. et al. Oct 1983 A
4417567 Trick Nov 1983 A
4424208 Wallace et al. Jan 1984 A
4442153 Meltsch Apr 1984 A
4450375 Siegal May 1984 A
4485805 Foster, Jr. Dec 1984 A
4492004 Oetiker Jan 1985 A
4551862 Haber Nov 1985 A
4558699 Bashour Dec 1985 A
4559699 Owen et al. Dec 1985 A
4582640 Smestad et al. Apr 1986 A
4582865 Balazs et al. Apr 1986 A
4592339 Kuzmak et al. Jun 1986 A
4592355 Antebi Jun 1986 A
4601713 Fuqua Jul 1986 A
4667672 Romanowski May 1987 A
4671351 Rappe Jun 1987 A
4693695 Cheng Sep 1987 A
4694827 Weiner et al. Sep 1987 A
4696288 Kuzmak et al. Sep 1987 A
4708140 Baron Nov 1987 A
4716154 Malson et al. Dec 1987 A
4753086 Schmidt Jun 1988 A
4760837 Petit Aug 1988 A
4803075 Wallace et al. Feb 1989 A
4881939 Newman Nov 1989 A
4883467 Franetzki et al. Nov 1989 A
4886787 de Belder et al. Dec 1989 A
4896787 Delamour et al. Jan 1990 A
4915690 Cone et al. Apr 1990 A
4925446 Garay et al. May 1990 A
4944487 Holtermann Jul 1990 A
4944659 Labbe et al. Jul 1990 A
4958791 Nakamura Sep 1990 A
4969899 Cox, Jr. Nov 1990 A
4994019 Fernandez et al. Feb 1991 A
5045060 Melsky et al. Sep 1991 A
5074868 Kuzmak Dec 1991 A
5084061 Gau et al. Jan 1992 A
5091171 Yu et al. Feb 1992 A
5116652 Alzner May 1992 A
5120313 Elftman Jun 1992 A
5143724 Leshchiner et al. Sep 1992 A
5152770 Bengmark et al. Oct 1992 A
5160338 Vincent Nov 1992 A
5188609 Bayless et al. Feb 1993 A
5224494 Enhorning Jul 1993 A
5226429 Kuzmak Jul 1993 A
5246456 Wilkinson Sep 1993 A
5246698 Leshchiner et al. Sep 1993 A
5259399 Brown Nov 1993 A
5265890 Balsells Nov 1993 A
5326349 Baraff Jul 1994 A
5343894 Frisch et al. Sep 1994 A
5356883 Kuo et al. Oct 1994 A
5360445 Goldowsky Nov 1994 A
5391156 Hildwein et al. Feb 1995 A
5399351 Leshchiner et al. Mar 1995 A
5449363 Brust et al. Sep 1995 A
5449368 Kuzmak Sep 1995 A
5458568 Racchini et al. Oct 1995 A
5509888 Miller Apr 1996 A
5531716 Luzio et al. Jul 1996 A
5535752 Halperin et al. Jul 1996 A
5554113 Novak et al. Sep 1996 A
5562714 Grevious Oct 1996 A
5601604 Vincent Feb 1997 A
5607418 Arzbaecher Mar 1997 A
5633001 Agerup May 1997 A
5653718 Yoon Aug 1997 A
5658298 Vincent et al. Aug 1997 A
5676162 Larson, Jr. et al. Oct 1997 A
5695504 Gifford, III et al. Dec 1997 A
5704893 Timm Jan 1998 A
5713911 Racenet et al. Feb 1998 A
5733257 Sternby Mar 1998 A
5748200 Funahashi May 1998 A
5766232 Grevious et al. Jun 1998 A
5769877 Barreras, Sr. Jun 1998 A
5785295 Tsai Jul 1998 A
5817113 Gifford, III et al. Oct 1998 A
5827529 Ono et al. Oct 1998 A
5833698 Hinchliffe et al. Nov 1998 A
5861014 Familoni Jan 1999 A
RE36176 Kuzmak Mar 1999 E
5886042 Yu et al. Mar 1999 A
5904697 Gifford, III et al. May 1999 A
5910149 Kuzmak Jun 1999 A
5928195 Malamud et al. Jul 1999 A
5938669 Klaiber et al. Aug 1999 A
5944696 Bayless et al. Aug 1999 A
5944751 Laub Aug 1999 A
5993473 Chan et al. Nov 1999 A
6013679 Kuo et al. Jan 2000 A
6024340 Lazarus et al. Feb 2000 A
6024704 Meador et al. Feb 2000 A
6048309 Flom et al. Apr 2000 A
6067991 Forsell May 2000 A
6074341 Anderson et al. Jun 2000 A
6074378 Mouri et al. Jun 2000 A
6083249 Familoni Jul 2000 A
6090131 Daley Jul 2000 A
6102678 Peclat Aug 2000 A
6102922 Jakobsson et al. Aug 2000 A
6171321 Gifford, III et al. Jan 2001 B1
6193734 Bolduc et al. Feb 2001 B1
6203523 Haller et al. Mar 2001 B1
6210345 Van Brunt Apr 2001 B1
6210347 Forsell Apr 2001 B1
6221024 Miesel Apr 2001 B1
6224857 Romeo et al. May 2001 B1
6306088 Krausman et al. Oct 2001 B1
6327503 Familoni Dec 2001 B1
6371965 Gifford, III et al. Apr 2002 B2
6372494 Naughton et al. Apr 2002 B1
6383218 Sourdile et al. May 2002 B1
6383219 Telandro et al. May 2002 B1
6387105 Gifford, III et al. May 2002 B1
6417750 Sohn Jul 2002 B1
6418934 Chin Jul 2002 B1
6419696 Ortiz et al. Jul 2002 B1
6432040 Meah Aug 2002 B1
6439539 Powell Aug 2002 B1
6443957 Addis Sep 2002 B1
6443965 Gifford, III et al. Sep 2002 B1
6450173 Forsell Sep 2002 B1
6450946 Forsell Sep 2002 B1
6451034 Gifford, III et al. Sep 2002 B1
6453907 Forsell Sep 2002 B1
6454699 Forsell Sep 2002 B1
6454700 Forsell Sep 2002 B1
6454701 Forsell Sep 2002 B1
6454785 De Hoyos Garza Sep 2002 B2
6457801 Fish et al. Oct 2002 B1
6460543 Forsell Oct 2002 B1
6461293 Forsell Oct 2002 B1
6463935 Forsell Oct 2002 B1
6464628 Forsell Oct 2002 B1
6470892 Forsell Oct 2002 B1
6474584 Ekich Nov 2002 B2
6475136 Forsell Nov 2002 B1
6485496 Suyker et al. Nov 2002 B1
6491704 Gifford, III et al. Dec 2002 B2
6491705 Gifford, III et al. Dec 2002 B2
6511490 Robert Jan 2003 B2
6517556 Monassevitch Feb 2003 B1
6527701 Sayet et al. Mar 2003 B1
6547801 Dargent et al. Apr 2003 B1
6565582 Gifford, III et al. May 2003 B2
6579301 Bales et al. Jun 2003 B1
6601604 Cooper Aug 2003 B1
6615084 Cigaina Sep 2003 B1
6627620 Nielsen Sep 2003 B1
6630486 Royer Oct 2003 B1
6632239 Snyder et al. Oct 2003 B2
6646628 Shirochi et al. Nov 2003 B2
6676674 Dudai Jan 2004 B1
6685668 Cho et al. Feb 2004 B1
6685963 Taupin et al. Feb 2004 B1
6691047 Fredericks Feb 2004 B1
6715731 Post et al. Apr 2004 B1
6729600 Mattes et al. May 2004 B2
6754527 Stroebel et al. Jun 2004 B2
6767924 Yu et al. Jul 2004 B2
6811136 Eberhardt et al. Nov 2004 B2
6820651 Seuret et al. Nov 2004 B2
6834201 Gillies et al. Dec 2004 B2
6871090 He et al. Mar 2005 B1
6889086 Mass et al. May 2005 B2
6916326 Benchetrit Jul 2005 B2
6921819 Piron et al. Jul 2005 B2
6924273 Pierce Aug 2005 B2
6940467 Fischer et al. Sep 2005 B2
6966875 Longobardi Nov 2005 B1
7017583 Forsell Mar 2006 B2
7021147 Subramanian et al. Apr 2006 B1
7037344 Kagan et al. May 2006 B2
7040349 Moler et al. May 2006 B2
7054690 Imran May 2006 B2
7058434 Wang et al. Jun 2006 B2
7060080 Bachmann Jun 2006 B2
7066486 Lee Jun 2006 B2
7118526 Egle Oct 2006 B2
7119062 Alvis et al. Oct 2006 B1
7128750 Stergiopulos Oct 2006 B1
7144400 Byrum et al. Dec 2006 B2
7172607 Hofle et al. Feb 2007 B2
7177693 Starkebsum Feb 2007 B2
7191007 Desai et al. Mar 2007 B2
7204821 Clare et al. Apr 2007 B1
7223239 Schulze et al. May 2007 B2
7238191 Bachmann Jul 2007 B2
7240607 Fish Jul 2007 B2
7255675 Gertner et al. Aug 2007 B2
7263405 Boveja et al. Aug 2007 B2
7282023 Frering Oct 2007 B2
7288064 Boustani et al. Oct 2007 B2
7297103 Jarsaillon et al. Nov 2007 B2
7299082 Feldman et al. Nov 2007 B2
7310557 Maschino et al. Dec 2007 B2
7311716 Byrum Dec 2007 B2
7311717 Egle Dec 2007 B2
7314443 Jordan et al. Jan 2008 B2
7314636 Caseres et al. Jan 2008 B2
7338433 Coe Mar 2008 B2
7340306 Barrett et al. Mar 2008 B2
7351198 Byrum et al. Apr 2008 B2
7351240 Hassler, Jr. et al. Apr 2008 B2
7364542 Jambor et al. Apr 2008 B2
7367340 Nelson et al. May 2008 B2
7367937 Jambor et al. May 2008 B2
7374565 Hassler, Jr. et al. May 2008 B2
7390294 Hassler, Jr. Jun 2008 B2
7396353 Lorenzen et al. Jul 2008 B2
7416528 Crawford et al. Aug 2008 B2
7457668 Cancel et al. Nov 2008 B2
7481763 Hassler, Jr. et al. Jan 2009 B2
7500944 Byrum et al. Mar 2009 B2
7502649 Ben-Haim et al. Mar 2009 B2
7530943 Lechner May 2009 B2
7594885 Byrum Sep 2009 B2
7599743 Hassler, Jr. et al. Oct 2009 B2
7599744 Giordano et al. Oct 2009 B2
7601162 Hassler, Jr. et al. Oct 2009 B2
7615001 Jambor et al. Nov 2009 B2
7618365 Jambor et al. Nov 2009 B2
7658196 Ferreri et al. Feb 2010 B2
7670279 Gertner Mar 2010 B2
7699770 Hassler, Jr. et al. Apr 2010 B2
7712470 Gertner May 2010 B2
7727141 Hassler, Jr. et al. Jun 2010 B2
7741476 Lebreton Jun 2010 B2
7758493 Gingras Jul 2010 B2
7763039 Ortiz et al. Jul 2010 B2
7766815 Ortiz Aug 2010 B2
7771439 Griffiths Aug 2010 B2
7775215 Hassler, Jr. et al. Aug 2010 B2
7775966 Dlugos et al. Aug 2010 B2
7775967 Gertner Aug 2010 B2
7794386 Brooks Sep 2010 B2
7811298 Birk Oct 2010 B2
7824422 Benchetrit Nov 2010 B2
7828813 Mouton Nov 2010 B2
7832407 Gertner Nov 2010 B2
7841978 Gertner Nov 2010 B2
7844342 Dlugos, Jr. et al. Nov 2010 B2
7862502 Pool et al. Jan 2011 B2
7879068 Dlugos et al. Feb 2011 B2
7951067 Byrum et al. May 2011 B2
20010011543 Forsell Aug 2001 A1
20020072780 Foley Jun 2002 A1
20020091395 Gabbay Jul 2002 A1
20020095181 Beyar Jul 2002 A1
20020098097 Singh Jul 2002 A1
20020139208 Yatskov Oct 2002 A1
20020183765 Adams Dec 2002 A1
20020193679 Malave et al. Dec 2002 A1
20020198548 Robert Dec 2002 A1
20030014003 Gertner Jan 2003 A1
20030019498 Forsell Jan 2003 A1
20030045775 Forsell Mar 2003 A1
20030045902 Weadock Mar 2003 A1
20030060873 Gertner et al. Mar 2003 A1
20030066536 Forsell Apr 2003 A1
20030073880 Polsky et al. Apr 2003 A1
20030093157 Casares et al. May 2003 A1
20030100910 Gifford, III et al. May 2003 A1
20030120288 Benchetrit Jun 2003 A1
20030148995 Piron et al. Aug 2003 A1
20030158564 Benchetrit Aug 2003 A1
20030158569 Wazne Aug 2003 A1
20030181890 Schulze et al. Sep 2003 A1
20030181917 Gertner Sep 2003 A1
20030191433 Prentiss Oct 2003 A1
20030208212 Cigaina Nov 2003 A1
20040000843 East Jan 2004 A1
20040044332 Stergiopulos Mar 2004 A1
20040049209 Benchetrit Mar 2004 A1
20040059393 Policker et al. Mar 2004 A1
20040068847 Belisle et al. Apr 2004 A1
20040106899 McMichael et al. Jun 2004 A1
20040133219 Forsell Jul 2004 A1
20040147816 Policker et al. Jul 2004 A1
20040148034 Kagan et al. Jul 2004 A1
20040153106 Dudai Aug 2004 A1
20040162595 Foley Aug 2004 A1
20040215159 Forsell Oct 2004 A1
20040230137 Mouton Nov 2004 A1
20040254536 Conlon et al. Dec 2004 A1
20040254537 Conlon et al. Dec 2004 A1
20040260319 Egle Dec 2004 A1
20040267288 Byrum et al. Dec 2004 A1
20040267291 Byrum et al. Dec 2004 A1
20040267292 Byrum et al. Dec 2004 A1
20040267293 Byrum et al. Dec 2004 A1
20040267377 Egle Dec 2004 A1
20050002984 Byrum et al. Jan 2005 A1
20050038484 Knudson et al. Feb 2005 A1
20050038498 Dubrow et al. Feb 2005 A1
20050055039 Burnett et al. Mar 2005 A1
20050070934 Tanaka et al. Mar 2005 A1
20050070937 Jambor et al. Mar 2005 A1
20050082793 Lee Apr 2005 A1
20050100779 Gertner May 2005 A1
20050104457 Jordan et al. May 2005 A1
20050119672 Benchetrit Jun 2005 A1
20050119674 Gingras Jun 2005 A1
20050131383 Chen et al. Jun 2005 A1
20050131485 Knudson et al. Jun 2005 A1
20050136122 Sadozai et al. Jun 2005 A1
20050142152 Leshchiner et al. Jun 2005 A1
20050143765 Bachmann et al. Jun 2005 A1
20050143766 Bachmann et al. Jun 2005 A1
20050154274 Jarsaillon et al. Jul 2005 A1
20050171568 Duffy Aug 2005 A1
20050183730 Byrum Aug 2005 A1
20050192531 Birk Sep 2005 A1
20050192601 Demarais Sep 2005 A1
20050192629 Saadat et al. Sep 2005 A1
20050216042 Gertner Sep 2005 A1
20050226936 Agerup Oct 2005 A1
20050228415 Gertner Oct 2005 A1
20050228504 Demarais Oct 2005 A1
20050240155 Conlon Oct 2005 A1
20050240156 Conlon Oct 2005 A1
20050240279 Kagan et al. Oct 2005 A1
20050244288 O'Neill Nov 2005 A1
20050250979 Coe Nov 2005 A1
20050251181 Bachmann Nov 2005 A1
20050251182 Bachmann Nov 2005 A1
20050267406 Hassler, Jr. Dec 2005 A1
20050267500 Hassler, Jr. Dec 2005 A1
20050267533 Gertner Dec 2005 A1
20050271729 Wang Dec 2005 A1
20050277899 Conlon et al. Dec 2005 A1
20050283041 Egle Dec 2005 A1
20050288739 Hassler, Jr. et al. Dec 2005 A1
20050288740 Hassler, Jr. et al. Dec 2005 A1
20060015138 Gertner Jan 2006 A1
20060020298 Camilleri et al. Jan 2006 A1
20060041183 Massen et al. Feb 2006 A1
20060074439 Garner et al. Apr 2006 A1
20060074473 Gertner Apr 2006 A1
20060089571 Gertner Apr 2006 A1
20060122147 Wohlrab Jun 2006 A1
20060142700 Sobelman et al. Jun 2006 A1
20060142790 Gertner Jun 2006 A1
20060161139 Levine et al. Jul 2006 A1
20060161186 Hassler et al. Jul 2006 A1
20060167531 Gertner et al. Jul 2006 A1
20060173238 Starkebaum Aug 2006 A1
20060173424 Conlon Aug 2006 A1
20060183967 Lechner Aug 2006 A1
20060189887 Hassler, Jr. et al. Aug 2006 A1
20060189888 Hassler, Jr. et al. Aug 2006 A1
20060189889 Gertner Aug 2006 A1
20060194758 Lebreton Aug 2006 A1
20060195139 Gertner Aug 2006 A1
20060197412 Rasmussen Sep 2006 A1
20060199997 Hassler, Jr. et al. Sep 2006 A1
20060211912 Dlugos et al. Sep 2006 A1
20060211913 Dlugos et al. Sep 2006 A1
20060211914 Hassler, Jr. et al. Sep 2006 A1
20060212051 Snyder et al. Sep 2006 A1
20060212053 Gertner Sep 2006 A1
20060235448 Roslin et al. Oct 2006 A1
20060246137 Hermitte et al. Nov 2006 A1
20060247721 Maschino et al. Nov 2006 A1
20060247722 Maschino et al. Nov 2006 A1
20060252982 Hassler, Jr. Nov 2006 A1
20060252983 Lembo et al. Nov 2006 A1
20060257488 Hubbard Nov 2006 A1
20060264699 Gertner Nov 2006 A1
20060276812 Hill et al. Dec 2006 A1
20060293627 Byrum et al. Dec 2006 A1
20070015954 Dlugos Jan 2007 A1
20070015955 Tsonton Jan 2007 A1
20070015956 Crawford et al. Jan 2007 A1
20070016231 Jambor et al. Jan 2007 A1
20070016262 Gross et al. Jan 2007 A1
20070027356 Ortiz Feb 2007 A1
20070027358 Gertner et al. Feb 2007 A1
20070044655 Fish Mar 2007 A1
20070077292 Pinsky Apr 2007 A1
20070078476 Hull et al. Apr 2007 A1
20070125826 Shelton Jun 2007 A1
20070156013 Birk Jul 2007 A1
20070167672 Dlugos et al. Jul 2007 A1
20070167982 Gertner et al. Jul 2007 A1
20070173685 Jambor et al. Jul 2007 A1
20070173888 Gertner et al. Jul 2007 A1
20070179335 Gertner et al. Aug 2007 A1
20070185373 Tsonton Aug 2007 A1
20070185462 Byrum Aug 2007 A1
20070213836 Paganon Sep 2007 A1
20070218083 Brooks Sep 2007 A1
20070232848 Forsell Oct 2007 A1
20070232849 Gertner Oct 2007 A1
20070233170 Gertner Oct 2007 A1
20070235083 Dlugos Oct 2007 A1
20070243227 Gertner Oct 2007 A1
20070250085 Bachmann et al. Oct 2007 A1
20070250086 Wiley et al. Oct 2007 A1
20070255335 Herbert et al. Nov 2007 A1
20070255336 Herbert et al. Nov 2007 A1
20070265598 Karasik Nov 2007 A1
20070265645 Birk et al. Nov 2007 A1
20070265646 McCoy et al. Nov 2007 A1
20070293716 Baker et al. Dec 2007 A1
20070298005 Thibault Dec 2007 A1
20080009680 Hassler, Jr. Jan 2008 A1
20080015406 Dlugos et al. Jan 2008 A1
20080015501 Gertner Jan 2008 A1
20080027269 Gertner Jan 2008 A1
20080027469 Bachmann Jan 2008 A1
20080071306 Gertner Mar 2008 A1
20080097487 Pool et al. Apr 2008 A1
20080097496 Chang et al. Apr 2008 A1
20080108862 Jordan et al. May 2008 A1
20080147002 Gertner Jun 2008 A1
20080161717 Gertner Jul 2008 A1
20080161875 Stone Jul 2008 A1
20080167647 Gertner Jul 2008 A1
20080167648 Gertner Jul 2008 A1
20080172072 Pool et al. Jul 2008 A1
20080188766 Gertner Aug 2008 A1
20080195092 Kim et al. Aug 2008 A1
20080208240 Paz Aug 2008 A1
20080221598 Dlugos et al. Sep 2008 A1
20080243071 Quijano et al. Oct 2008 A1
20080249806 Dlugos et al. Oct 2008 A1
20080250340 Dlugos et al. Oct 2008 A1
20080250341 Dlugos et al. Oct 2008 A1
20080255403 Voegele et al. Oct 2008 A1
20080255414 Voegele et al. Oct 2008 A1
20080255425 Voegele et al. Oct 2008 A1
20080255459 Voegele et al. Oct 2008 A1
20080255537 Voegele et al. Oct 2008 A1
20080275294 Gertner Nov 2008 A1
20080275295 Gertner Nov 2008 A1
20080275484 Gertner Nov 2008 A1
20080281347 Gertner Nov 2008 A1
20080287969 Tsonton et al. Nov 2008 A1
20080287974 Widenhouse et al. Nov 2008 A1
20080287976 Weaner et al. Nov 2008 A1
20080300618 Gertner Dec 2008 A1
20080319435 Rioux et al. Dec 2008 A1
20090054914 Lechner Feb 2009 A1
20090062825 Pool et al. Mar 2009 A1
20090062826 Steffen Mar 2009 A1
20090082793 Birk Mar 2009 A1
20090118572 Lechner May 2009 A1
20090149874 Ortiz et al. Jun 2009 A1
20090157106 Marcotte et al. Jun 2009 A1
20090157107 Kierath et al. Jun 2009 A1
20090157113 Marcotte et al. Jun 2009 A1
20090171375 Coe et al. Jul 2009 A1
20090171378 Coe et al. Jul 2009 A1
20090171379 Coe et al. Jul 2009 A1
20090187202 Ortiz et al. Jul 2009 A1
20090192404 Ortiz et al. Jul 2009 A1
20090192415 Ortiz et al. Jul 2009 A1
20090192533 Dlugos, Jr. et al. Jul 2009 A1
20090192534 Ortiz et al. Jul 2009 A1
20090192541 Ortiz et al. Jul 2009 A1
20090198261 Schweikert Aug 2009 A1
20090202387 Dlugos, Jr. et al. Aug 2009 A1
20090204131 Ortiz et al. Aug 2009 A1
20090204132 Ortiz et al. Aug 2009 A1
20090209995 Byrum et al. Aug 2009 A1
20090216255 Coe et al. Aug 2009 A1
20090220176 Fusco Sep 2009 A1
20090222031 Axelsson Sep 2009 A1
20090222065 Dlugos, Jr. et al. Sep 2009 A1
20090228063 Dlugos, Jr. et al. Sep 2009 A1
20090228072 Coe et al. Sep 2009 A1
20090270904 Birk et al. Oct 2009 A1
20090306462 Lechner Dec 2009 A1
20100010291 Birk et al. Jan 2010 A1
20100049224 Vargas Feb 2010 A1
20100087843 Bertolote et al. Apr 2010 A1
20100099945 Birk et al. Apr 2010 A1
20100100079 Berkcan Apr 2010 A1
20100145378 Gertner Jun 2010 A1
20100152532 Marcotte Jun 2010 A1
20100168508 Gertner Jul 2010 A1
20100185049 Birk et al. Jul 2010 A1
20100191265 Lau et al. Jul 2010 A1
20100191271 Lau et al. Jul 2010 A1
20100204647 Gertner Aug 2010 A1
20100204723 Gertner Aug 2010 A1
20100217071 Ricol Aug 2010 A1
20100226988 Lebreton Sep 2010 A1
20100228080 Tavori et al. Sep 2010 A1
20100234682 Gertner Sep 2010 A1
20100240228 Lenhert Sep 2010 A1
20100249803 Griffiths Sep 2010 A1
20100280310 Raven Nov 2010 A1
20100305397 Birk et al. Dec 2010 A1
20100312046 Lau et al. Dec 2010 A1
20100312147 Gertner Dec 2010 A1
20100324358 Birk et al. Dec 2010 A1
20100324359 Birk Dec 2010 A1
20110201874 Birk et al. Aug 2011 A1
Foreign Referenced Citations (120)
Number Date Country
949965 Jun 1974 CA
1250382 Apr 2000 CN
1367670 Sep 2002 CN
10020688 Dec 2000 DE
0119596 Sep 1984 EP
0230747 Aug 1987 EP
0416250 Mar 1991 EP
0611561 Aug 1994 EP
0695558 Feb 1996 EP
0876808 Nov 1998 EP
1036545 Sep 2000 EP
1072282 Jan 2001 EP
1105073 Jun 2001 EP
1396242 Mar 2004 EP
1396243 Mar 2004 EP
1491167 Dec 2004 EP
1491168 Dec 2004 EP
1529502 May 2005 EP
1547549 Jun 2005 EP
1547549 Jun 2005 EP
1574189 Sep 2005 EP
1600183 Nov 2005 EP
1602346 Dec 2005 EP
1704833 Sep 2006 EP
1719480 Nov 2006 EP
1736123 Dec 2006 EP
1736195 Dec 2006 EP
1736202 Dec 2006 EP
1743605 Jan 2007 EP
1829504 Sep 2007 EP
1829505 Sep 2007 EP
1829506 Sep 2007 EP
1967168 Sep 2008 EP
1992315 Nov 2008 EP
2074970 Jul 2009 EP
2074971 Jul 2009 EP
2074972 Jul 2009 EP
2095796 Sep 2009 EP
2095798 Sep 2009 EP
2191796 Jun 2010 EP
2688693 Sep 1993 FR
2769491 Apr 1999 FR
2783153 Mar 2000 FR
2797181 Feb 2001 FR
2799118 Apr 2001 FR
2823663 Oct 2002 FR
2921822 Apr 2009 FR
1174814 Dec 1969 GB
2090747 Jul 1982 GB
57-171676 Oct 1982 JP
2-019147 Jan 1990 JP
11-244395 Sep 1999 JP
2003-526410 Sep 2003 JP
2005-131380 May 2005 JP
2005-334658 Dec 2005 JP
WO 8600079 Jan 1986 WO
WO 8600912 Feb 1986 WO
WO 8911701 Nov 1989 WO
WO 9000369 Jan 1990 WO
WO 9220349 Nov 1992 WO
WO 9402517 Feb 1994 WO
WO 9633751 Jan 1996 WO
WO 9835639 Aug 1998 WO
WO 9835640 Aug 1998 WO
WO 0000108 Jan 2000 WO
WO 0001428 Jan 2000 WO
WO 0009047 Feb 2000 WO
WO 0009049 Feb 2000 WO
WO 0015158 Mar 2000 WO
WO 0066196 Nov 2000 WO
WO 0110359 Feb 2001 WO
WO 0112078 Feb 2001 WO
WO 0141671 Jun 2001 WO
WO 0147435 Jul 2001 WO
WO 0147575 Jul 2001 WO
WO 0149245 Jul 2001 WO
WO 0152777 Jul 2001 WO
WO 0168007 Sep 2001 WO
WO 0185071 Nov 2001 WO
WO 0205753 Jan 2002 WO
WO 0209792 Feb 2002 WO
WO 0219953 Mar 2002 WO
WO 0226317 Apr 2002 WO
WO 02053093 Jul 2002 WO
WO 02065948 Aug 2002 WO
WO 02096326 Dec 2002 WO
WO 03007782 Jan 2003 WO
03057092 Jul 2003 WO
WO 03055420 Jul 2003 WO
WO 03057092 Jul 2003 WO
WO 03059215 Jul 2003 WO
WO 03077191 Sep 2003 WO
WO 03101352 Dec 2003 WO
WO 03105732 Dec 2003 WO
WO 2004014245 Feb 2004 WO
WO 2004019671 Mar 2004 WO
WO 2004108025 Dec 2004 WO
WO 2004112563 Dec 2004 WO
WO 2005007232 Jan 2005 WO
WO 2005009305 Feb 2005 WO
WO 2005067994 Jul 2005 WO
WO 2005072195 Aug 2005 WO
WO 2005087147 Sep 2005 WO
WO 2005094447 Oct 2005 WO
WO 2005112888 Dec 2005 WO
WO 2006040647 Apr 2006 WO
WO 2006049725 May 2006 WO
WO 2006083885 Aug 2006 WO
WO 2006108203 Oct 2006 WO
WO 2007067206 Jun 2007 WO
WO 2007081304 Jul 2007 WO
WO 2007106727 Sep 2007 WO
WO 2007114905 Oct 2007 WO
WO 2007145638 Dec 2007 WO
WO 2008063673 May 2008 WO
WO 2008134755 Nov 2008 WO
WO 2009050709 Apr 2009 WO
WO 2009132127 Oct 2009 WO
WO 2009136126 Nov 2009 WO
WO 2010042493 Apr 2010 WO
Non-Patent Literature Citations (91)
Entry
“Innovative medical devices and implants”; LGSP medical futures, p. 5.
Acuna-Goycolea et al.; “Mechanism of Neuropeptide Y, Peptide YY, and Pancreatic Polypeptide Inhibition of Identified Green Fluorescent Protein-Expressing GABA Neurons in the Hypothalamic Neuroendocrine Acruate Nucleus”; The Journal of Neuroscience; V. 25(32); pp. 7406-7419; Aug. 10, 2005.
Adrian et al.; “Mechanism of Pancreatic Polypeptide Release in Man.” The Lancet; pp. 161-163; Jan. 22, 1977.
Anson; “Shape Memory Alloys—Medical Applications,” Source: Materials World, vol. 7, No. 12, pp. 745-747, Dec. 1999.
Asakawa et al; “Antagonism of Ghrelin Receptor Reduces Food Intake and Body Weight Gain in Mice”; Gut.; V.52; pp. 947-952; 2003.
Baggio et al. “Biology of Incretins: GLP-1 and GIP”; Gastroenrology; V. 132; pp. 2131-2157; 2007.
Ballantyne; “Peptide YY(1-36) and Peptide YY(3-36): Part I. Distribution, Release, and Actions”; Obesity Surgery; V.16; pp. 651-658; 2006.
Ballantyne; “Peptide YY(1-36) and Peptide YY(3-36): Part II. Changes after Gastrointestinal Surgery and Bariatric Surgery”; Obesity Surgery; V.16; pp. 795-803; 2006.
Berne et al; “Physiology”; V. 5; pp. 55-57, 210, 428, 540, 554, 579, 584, 591; 2004.
BioEnterics Corporation, an Inamed Company, BioEnterics Intragastric Balloon; Directions for Use Published Document, P/N 94200 Rev: B, pp. 1-56.
BioEnterics Lap-Band Adjustable Gastric Banding System, Inamed Health, pub., pp. 1-115; Aug. 28, 2003.
Boulant et al.; “Cholecystokinin in Transient Lower Oesophageal Sphincter Relaxation Due to Gastric Distension in Humans”; Gut.; V. 40; pp. 575-581; 1997.
Bradjewin et al.; “Dose Ranging Study of the Effects of Cholecystokinin in Healthy Volunteers”; J. Psychiatr. Neurosci.; V. 16 (2); pp. 91-95; 1991.
Burdyga et al.; “Cholecystokinin Regulates Expression of Y2 Receptors in Vagal Afferent Neurons Serving the Stomach”; The Journal of Neuroscience; V. 28; No. 45; pp. 11583-11592; Nov. 5, 2008.
Chaptini et al.; “Neuroendocrine Regulation of Food Intake”; Current Opinion in Gastroenterology; V. 24; pp. 223-229; 2008.
Chaudhri; “Can Gut Hormones Control Appetite and Prevent Obesity?” Diabetes Care; V. 31; Supp 2; pp. S284-S289; Feb. 2008.
Cohen et al.; “Oxyntomodulin Suppresses Appetite and Reduces Food Intake in Humans”; J. Clin. Endocrinol. Metab.; V. 88; No. 10; pp. 4696-4701; 2003.
Corno et al.; “A new implantable device for telemetric control of pulmonary blood flow”; New ideas; received Apr. 24, 2004; received in revised form Jul. 12, 2002; 10 pages.
Corno et al.; “FlowWatchTM in clipped and inclipped position”; Interact Cardio Vase Thorac Surg 2002; 1:46-49; Copyright @ 2002 The European Asociation for Cardio-thoracic Surgery; 1 page.
Cummings et al.; “Plasma Ghrelin Levels After Diet-Induced Weight Loss or Gastric Bypass Sugery”; N. Engl J. Med; V. 346, No. 21; pp. 1623-1630; May 23, 2002.
Cummings; “Gastrointestinal Regulation of Foot Intake”; The Food Journal of Clinical Investigation; V. 117, N. 1; pp. 13-23; Jan. 2007.
Dakin et al.; “Oxyntomodulin Inhibits Food Intake in the Rat”; Endocrinology; V. 142; No. 10; pp. 4244-4250; 2001.
Dakin et al.; “Peripheral Oxyntomodulin Reduces Food Intake and Body Weight gain in Rats”; Endocrinology; V. 145; No. 6; pp. 2687-2695; Jun. 2004.
Davison; “Activation of Vagal-Gastric Mechanoreceptors by Cholecystokinin”; Proc. West. Pharmocol. Soc.; V. 29; pp. 363-366; 1986.
De Waele et al.; “Endoscopic Volume Adjustment of Intragastric Balloons for Intolerance”; Obesity Surgery; V. 11; pp. 223-224; 2001.
De Waele et al.; “Intragastric Balloons for Preoperative Weight Reduction”; Obesity Surgery; V. 58; pp. 58-60; 2001.
Desai et al.; “Molecular Weight of Heparin Using 13C Nuclear Magnetic Resonance Spectroscopy” Journal of Pharmaceutical Science, V. 84, I 2; 1995, Abstract only.
Doldi et al.; “Intragastric Balloon: Another Option for Treatment of Obesity and Morbid Obesity”; Hepato-Gastroenterology; V. 51, N. 55; pp. 294-307; Jan.-Feb. 2004.
Doldi et al.; “Treatment of Morbid Obesity with Intragastric Balloon in Association with Diet”; Obesity Surgery; V. 10, pp. 583-587; 2000.
Doldi et al; “Intragastric Balloon in Obese Patients”; Obesity Surgery; V. 10, 578-581; 2000.
Ekblad et al.; “Distribution of Pancreatic Peptide and Peptide-YY”; Peptides; V. 23; pp. 251-261; 2002.
El Khoury et al.; “Variation in Postprandial Ghrelin Status Following Ingestion of High-Carbohydrate, High Fat, and High Protein Meals in Males”; Ann Nutr Metab; V. 50; pp. 260-269; 2006.
Galloro et al; “Preliminary Endoscopic Technical Report of an New Silicone Intragastric Balloon in the Treatment of Morbid Obesity”; Obesity Surgery; V. 9, pp. 68-71; 1999.
GinShiCel MH Hydroxy Propyl Methyl Cellulose, Web Page http://www.ginshicel.cn/MHPC.html, Nov. 12, 2008.
Girard; “The incretins: From the concept to their use in the treatment of type 2 diabetes. Part A: Incretins: Concept and physiological functions”; Diabetes and Metabolism; V. 34; pp. 550-559; 2008.
Greenough et al.; “Untangling the Effects of Hunger, Anxiety, and Nausea on Energy Intake During Intravenous Cholecystokinin Octapeptide (CCK-8) Infusion”; Physiology & Behavior; V. 65, No. 2; pp. 303-310; 1998.
Grise et al.; “Peptide Yy Inhibits Growth of Human Breast Cancer in Vitro and in Vivo”; Journal of Surgical Research; V. 82; pp. 151-155; 1999.
Grundy; “Signaling the State of the Digestive Tract”; Autonomic Neuroscience: Basic and Clinical; V. 125; pp. 76-80; 2006.
Grundy; “Vagal Control of Gastrointestinal Function”; Bailliere's Clinical Gastroenterology; V. 2; No. 1; pp. 23-43; 1988.
Hallden et al. “Evidence for a Role of the Gut Hormone PYY in the Regulation of Intestinal Fatty Acid Binding Protein Transcripts in Differentiated Subpopulations of Intestinal Epithelial Cell Hybrids”; Journal of Biological Chemistry; V. 272 (19); pp. 125916-126000; 1997.
Hameed et al.; “Gut hormones and appetite control.” Oral Diseases; V. 15; pp. 18-26; 2009.
Hassan et al.; “Effects of Adjuvants to Local Anesthetics on Their Duration III Experimental Studies of Hyaluronic Acid” Abstract Pub Med [Acta Anesthesiol Scand.; 29 (4): 384-8], 1 page; May 1985.
Hodson et al.; “Management of Obesity with the New Intragastric Balloon”; Obesity Surgery; V. 11, pp. 327-329, 2001.
Holzer; “Gastrointestinal Afferents as Targets of Novel Drugs for the Treatment of Functional Bowel Disorders and Visceral Pain”; European Journal of Pharmacology; V. 429; pp. 177-193; 2001.
Houpt; “Gastrointestinal Factors in Hunger and Satiety.” Neuroscience and Behavioral Reviews; V. 6; pp. 145-164; 1982.
Jones; “Molecular, pharmacological, and clinical aspects of liraglutide, a oncedaily human GLP-1 analogue”; Molecular and Cellular Endocrinology; V. 297; pp. 137-140; 2009.
Kerem et al.; “Exogenous Ghrelin Enhances Endocrine and Exocrine Regeneration in Pancreatectomized Rats”; J Gastrointest Surg.; V.13; pp. 775-783, 2009.
Kesty et al.; “Hormone-based therapies in the regulation of fuel metabolism and body weight”; Expert Opin. Biol. Ther.; V. 8; No. 11; pp. 1733-1747; 2008.
Kissileff et al.; “Peptides that Regulate Food Intake: Cholecystokinin and Stomach Distension Combine to Reduce Food Intake in Humans”; Am. J. Physiol. Regul. Integr. Comp. Physiol; V. 285; pp. 992-998; 2003.
Kojima et al.; “A role for pancreatic polypeptide in feeding and body weight regulation.” Peptides; V. 28; pp. 459-463; 2007.
Kulicke et al. “Visco-Elastic Propeerties of Sodium Hyaluronate Solutions,” American Institute of Physics; pp. 585-587; 2008.
Lap-Band AP System Adjustable Gastric Banding System With OmniformTM Design: Directions for Use (DFU); Allergan, 16 pages; 2009.
Le Roux et al.; “Gut Hormone Profiles Following Bariatric Surgery Favor an Anorectic State, Facilitate Weight Loss, and Improve Metabolic Parameters”; Ann. Surg; V. 243; No. 1; pp. 108-114; Jan. 2006.
Liu et al.; “Adjuvant Hormonal Treatment With Peptide YY or Its Analog Decreases Human Pancreatic Carcinoma Growth”; The American Journal of Surgery; V. 171; pp. 192-196; Jan. 1996.
Mathus-Vliegen et al. “Intragastric Balloons for Morbid Obesity: Results, Patient Tolerance and Balloon Life Span”; Br. J. Surg.; V. 77, No. 7, pp. 76-79; Jan. 1990.
Mathus-Vliegen et al. “Treating Morbid and Supermorbid Obesity” International Journal of Gastroenterology; V. 5, No. 1, pp. 9-12; 2000.
Medeiros et al.; “Processing and metabolism of Peptide-YY: Pivotal roles of Dipeptidase-IV, Aminopeptidase-P, and Endopeptidase-24.11”; Endocrinology; V. 134, No. 5; pp. 2088-2094; 1994.
Naslund et al. “Pranidal subcutaneous injections of glucagon-like peptide-1 cause weight loss in obese human subjects”; British Journal of Nutrition; V. 91; pp. 439-446; 2004.
Potier et al.; “Protein, amino acids, and the control of food intake”; Current Opinion in Clinical Nutrition and Metabolic Care; V. 12; pp. 54-58; 2009.
Qjan et al.; “Pulmonary delivery of a GLP-1 receptor agonist, BMS-686117”; International Journal of Pharmaceutics; V. 366; pp. 218-220; 2008.
Rang et al.; “Pharmacology”; V. 5; pp. 203, 397, 402, 524; 2004.
Raybould et al.; “Integration of Postprandial Gastrointestinal Tract: Role of CCK and Sensory Pathways”; Annals of New York Academy of Science; pp. 143-156; 1994.
Renshaw et al. “Peptide YY: a Potential Therapy for Obesity”; Current Drug Targets; V. 6; pp. 171-179; 2005.
Sannino et al.; “Crosslinking of Cellulose Derivatives and Hyaluronic Acid with Water-Soluble Carbodiimide” Polymer 46; pp. 11206-11212; 2005.
Shechter et al.; “Reversible PEGylation of peptide YY3-36 prolongs its inhibition of food intake in mice”; FEBS Letters; V. 579; pp. 2439-2444; 2005.
Silver et al.; “Physical Properties of Hyaluronic Acid and Hydroxypropylmethylcellulose in Solution: Evaluation of Coating Abillity” Journal of Applied Biomaterials, V. 5; pp. 89-98, 1994.
Small et al.; “Gut hormones and the control of appetite”; TRENDS in Endocrinology and Metabolism; V. 15. No. 6; pp. 259-263; Aug. 2004.
Stanley et al.; “Gastrointestinal Satiety Signals III. Glucagon-like Peptide 1, oxyntomodulin, peptide YY, and pancreatic polypeptide”; Am. J. Physiol Gastrointest Liver Physiol; V. 286; pp. 693-697; 2004.
Tezel; “The Science of Hyaluronic Acid Dermal Fillers,” Journal of Cosmetic and Laser Therapy (2008) 10: pp. 35-42.
Tolhurst et al.; “Nutritional regulation of glucagon-like peptidel secretion”; J. Physiol.; V. 587, No. 1; pp. 27-32; 2009.
Totte et al.; “Weight Reduction by Means of Intragastric Device: Experience with the Bioenterics Intragastric Balloon”; Obesity Surgery; V. 11, pp. 519-523; 2001.
Tough et al.; “Y4 Receptors Mediate the Inhibitory Responses of Pancreatic Polypeptide in Human and Mouse Colon Mucosa”; The Journal of Pharmacology and Experimental Therapeutics; V. 319, No. 1; pp. 20-30; 2006.
Tseng et al; “Peptide YY and cancer: Current findings and potential clinical applications”; Peptides; V. 23; pp. 389-395; 2002.
Valassi et al.; “Neuroendocrine control of food intake”; Nut. Metab. & Cariovasc. Disease; V. 18; pp. 158-168; 2008.
Van Der Lely et al.; “Biological, Physiological, Pathophysiological Aspects of Ghrelin”; Endocrine Reviews; V. 25, No. 3; pp. 426-457; 2004.
Verdich et al. “A Meta-Analysis of the Effect of Glucagon-Like-Peptide-1 (7-36) Amide on ad Libitum Energy Intake in Humans”; J. Clin. Endocrinal. Metab. V. 86; pp. 4382-4389; Sep. 2001.
Wahlen et al.; “The BioEnterics Intragastric Balloon (BIB): How to Use It”; Obesity Surgery; V. 11; pp. 524-527; 2001.
Wang et al.; “Plasma Ghrelin Modulation in Gastric Band Operation and Sleeve Gastrectomy”; Obes. Surg.; pp. 357-362; 2008.
Weiner et al.; “Preparation of Extremely Obese Patients for Laparoscopic Gastric Banding by Gastric Balloon Therapy”; Obesity Surgery; V. 9, pp. 261-264, 1999.
Wynne et al.; “Subcutaneous Oxyntomodulin Reduces Body Weight in Overweight and Obese Subjects: A Double-Blind Randomized, Controlled Trial”; Diabetes; V. 54; pp. 2390-2395; 2005.
Yuzuriha et al.; “Gastrointestinal Hormones (anorexigenic peptide YY and orexigenic ghrelin) influence neural tube development”; FASEB J.; V. 21; pp. 2108-2112; 2007.
Brown et al; “Symmetrical Pouch Dilation After Laparoscopic Adjustable Gastric Banding: Incidence and Management”; Obesity Surgery; V. 18, pp. 1104-1108; 2008.
Ceelen et al.; “Surgical Treatment of Severe Obesity With a Low-Pressure Adjustable Gastric Band: Experimental Data and Clinical Results in 625 Patients”; Annals of Surgery; V. 237, No. 1; pp. 10-16; 2003.
Dixon et al.; “Pregnancy After Lap-Band Surgery: Management of the Band to Achieve Healthy Weight Outcomes”; Obesity Surgery; V. 11, pp. 59-65; 2001.
Helioscopie Product Insert for Heliogast, pp. 1-11 (undated).
Neary et al.; “Peptide YY(3-36) and Glucagon-Like Peptide-1(7-36) Inhibit Food Intake Additively”; Endocrinology; V.146; pp. 5120-5127; 2005.
Padidela et al.; “Elevated basal and post-feed glucagon-like petide 1 (GLP-1) concentrations in the neonatel period”; European Journal of Endocrinology; v. 160; pp. 53-58; 2009.
Patient Management After Lap-Band Placement; http://www.core.monash.org/patient-care.pdf.
Shi et al.; “Sexually Dimorphic Responses to Fat Loss After Caloric Restriction or Surgical Lipectomy”; Am. J. Physiol. Endocrinol. Metab.; V. 293; E316-E326; 2007.
The Lap-Band Device & How it Works; http://lapband.com/en/learn—about-lapband/device—how—it—works/.
Xanthakos et al.; “Bariatric Surgery for Extreme Adolescent Obesity: Indications, Outcomes, and Physiologic Effects on the Gut-Brain Axis”; Pathophysiology; V. 15; pp. 135-146; 2008.
Related Publications (1)
Number Date Country
20110270018 A1 Nov 2011 US