Inflatable seatbelt systems for vehicles can play a pivotal role in occupant safety. A typical inflatable seatbelt system includes belt webbing configured for a three-point harness, which is comprised of a retractor, an inboard lap belt buckle, and an outboard lap belt anchor. The belt webbing typically extends between the retractor and the outboard lap belt anchor. Also, the belt webbing typically has a tongued latch plate slidable thereon that is selectively fastened to the inboard lap belt buckle.
In inflatable systems, the belt webbing typically envelops or otherwise surrounds an elongated inflatable airbag that is inflated by an inflator device during a vehicle collision. This inflator device typically is contained within a rigid guide tube that is sewn within the belt webbing. In this respect, the rigid guide tube protects the movable inflator device and moves along with the inflator device. However, the movable inflator device and the guide tube can produce noise within the vehicle and thus increase NVH levels. Also, the movable inflator may require additional belt webbing and complex wiring. This webbing and wiring can induce a bumpy feel while the seatbelt is retracted or extracted from the retractor and thus diminish the tactile ergonomics of the seatbelt system. IT will also be appreciated that the rigid tube can change the belt geometry so as to decrease an occupant's comfort.
The tongued latch plate typically has a slot for sliding belt webbing therethrough so as to secure a variety of different sized passengers within the vehicle seat. The slot can be somewhat narrow and cause the belt webbing to fold or overlap therein. In this regard, there may be significant friction between the belt webbing and the latch plate. Thus, it can be somewhat difficult to slide the latch plate along the belt webbing. In addition, the relatively narrow slots can restrict the flow of air within an inflatable seatbelt and diminish various inflation characteristics for the inflatable seatbelt. For instance, the restricted flow of air can adversely affect the inflation rate, peak pressure values, and steady-state pressure values.
Furthermore, existing seatbelt restraint systems have a shoulder belt anchor or guide loop that can be rotated only within a plane. In that way, the shoulder belt anchor may not be sufficiently movable for flatly sliding the belt webbing therethrough. In this respect, belt webbing may fold or otherwise become lodged within the shoulder belt anchor and obstruct the extraction and/or retraction of the inflatable seatbelt.
It would therefore be desirable to provide an inflatable seatbelt system that prevents the belt webbing from folding and readily adjusts for a deployed inflatable seatbelt.
One embodiment of the present invention is a self-adjusting seatbelt fastener (“seatbelt fastener”) for a seatbelt restraint system (“restraint system”) for a vehicle. The seatbelt fastener is comprised of a latch plate and an urging mechanism slidably attached to the latch plate. The latch plate has a ring portion and a tongue portion, which latches to a seatbelt buckle. The ring portion defines an opening for sliding a belt webbing therethrough. In addition, the ring portion of the latch plate has the urging mechanism slidably attached thereto. The urging mechanism extends substantially into the opening and flattens the belt webbing.
One advantage of the present invention is that a seatbelt system is provided that eliminates the noise, additional belt webbing, solid guide tubes, and somewhat complex wiring, which typically increase the cost of inflatable seatbelt systems and induce a bumpy or otherwise unpleasant feel when the seatbelt is extracted and retracted.
Another advantage of one embodiment of the claimed invention is that a seatbelt system is provided that easily slides a seatbelt fastener along belt webbing and otherwise enhances the comfort and performance of the seatbelt system.
Yet another advantage of one embodiment of the claimed invention is that a seatbelt system is provided that positions belt webbing substantially flat against a vehicle occupant's body and thus improves vehicle safety, as well as passenger comfort.
Still another advantage of one embodiment of the claimed invention is that a seatbelt system is provided that prevents belt webbing from becoming lodged in a seatbelt fastener, which can otherwise diminish the performance of an inflatable seatbelt.
Yet another advantage of one embodiment of the claimed invention is that a seatbelt system is provided that has a simple construction that can be produced on a large scale basis and thus provide an economy of scale.
Another advantage of one embodiment of the claimed invention is that a seatbelt system is provided that is efficiently packaged for easily integrating within a variety of vehicles without modification to the vehicle structure.
Yet another advantage of the claimed invention is that a seatbelt system is provided that is readily integrated within a variety of vehicles without changing the geometry of the seatbelt.
Still another advantage of one embodiment of the claimed invention is that a seatbelt system is provided that minimizes edge loading of a belt during a vehicle collision.
Yet another advantage of one embodiment of the claimed invention is that a seatbelt system is provided that has a robust construction for withstanding substantially high loads.
Other advantages of the present invention will become apparent upon considering the following detailed description and appended claims, and upon reference to the accompanying drawings.
For a more complete understanding of this invention, reference should now be made to the embodiments illustrated in greater detail in the accompanying drawings and described below by way of the examples of the invention:
In the following figures, the same reference numerals are used to identify the same components in the various views.
The present invention is particularly suited for a vehicle having an inflatable seatbelt system with a self-adjusting seatbelt fastener and a shoulder belt anchor. In this way, the embodiments described herein employ structural features where the context permits. However, various other embodiments are contemplated having different combinations of the described features, having features other than those described herein, or lacking one or more of those features. For example, the seatbelt system may omit the self-adjusting seatbelt fastener and/or the shoulder belt anchor as desired. It is therefore contemplated that the invention can be carried out in a variety of other modes and utilized for other suitable applications.
Referring to
In this embodiment, the inflatable seatbelt 12 has a shoulder belt portion 18 and a lap belt portion 20, which as best shown in
Also, in this embodiment, the inflatable seatbelt 12 further includes infrangible webbing within the shoulder belt portion 18. In particular, the infrangible webbing is disposed within the sleeve 22 and in connection between an end portion of the airbag 24 and the retractor 80. In this respect, the inflatable seatbelt 12 is smoothly retracted and extracted from the retractor 80.
Referring back to
The seatbelt system 10 further includes an inflator device 36, one or more crash sensors 38, restraint control module 39, and the inflatable seatbelt 12. In this embodiment, the inflator device 36 is attached directly to the outboard lap belt anchor 30 in a fixed position. However, the inflator device 36 can instead be rotatably attached to the outboard lap belt anchor 30 so as to fit a variety of occupants. The inflator device 36 injects gas directly into the airbag 24 and inflates the lap belt portion 20 and then the shoulder belt portion 18. The inflator device 30 and the lap belt portion 20 can be configured to partially or fully inflate the lap belt portion 20. In another embodiment shown in
The crash sensors 38 are accelerometers with a mechanical configuration, an electromechanical configuration, or other suitable constructions. In operation, the crash sensors 38 send a signal to the control module 39, which then actuates the inflator device 36. In this embodiment, the inflator device 36 is a stored gas mechanism that blasts cold air into the inflatable airbag 24 when the crash sensors 38 detect a vehicle collision. It is understood that the inflator device 36 can instead be various other suitable mechanisms as desired.
Referring now to
The latch plate 42 includes a ring portion 46 and a tongue portion 48, which has one or more apertures 50 for fastening to the lap belt buckle 34 (shown in
The urging mechanism 44 is comprised of a shell 60 and one or more resilient members 62. As detailed below, the shell 60 has a guiding surface 64 extending substantially into the opening 56 in the latch plate 42 and flattening the belt webbing 22 therein.
The shell 60 defines a cavity 66 with the bar structure 58 of the latch plate 42 extending therethrough. The bar structure 58 has a predetermined thickness (t) and the cavity 66 has a predetermined width (W). Thus, the shell 60 is movable on the latch plate 42 by a predetermined travel distance.
The resilient members 62 are sandwiched between the shell 60 and the first surface 52 of the latch plate 42. In this way, the resilient members 62 force the shell 60 against the belt webbing 22 and flatten the inflatable seatbelt 12. This feature is beneficial for preventing the inflatable seatbelt 12 from folding, which could otherwise lodge the seatbelt 12 within the opening 56 and prevent the seatbelt fastener 14 from sliding along the belt webbing 22. In addition, flattening the inflatable seatbelt 12 sufficiently positions the inflatable seatbelt 12 for readily directing air between the shoulder belt portion 18 and the lap belt portion 20 of the inflatable airbag 24 and thus quickly deploying the airbag 24.
In this embodiment, the resilient members 62 are a series of helical springs having a predetermined coefficient of stiffness for sandwiching the seatbelt 12 between the shell 60 and the second surface 54 of the latch plate 42. In other words, the springs are sufficiently stiff for flattening the seatbelt 12. In addition, the springs are sufficiently deformable for moving the urging mechanism 44 to the clearance position and minimizing friction against the belt webbing 22 so as to easily slide the belt webbing 22 through the seatbelt fastener 14. The springs are also sufficiently deformable for yielding to the force of the inflating airbag 24. It is contemplated that the resilient members 62 can have a variety of suitable constructions rather than helical springs. In addition, it will be appreciated that the resilient members 62 can have a two or more coefficients of stiffness along the cavity 66 for providing a variety of inflation characteristics. Examples of these inflation characteristics include the rate of inflation, peak pressure, and the steady-state pressure.
Referring now to the alternative embodiment shown in
In addition, the concave surface 68 of the urging mechanism 44 and the convex surface 70 of the latch plate 42 have a low-friction coating 72 for easily sliding the inflatable seatbelt 12 therebetween. The low-friction coating 72 is an electro-polish coating. However, it is understood that the seatbelt fastener 14 can instead have other suitable low-friction coatings or lack the same as desired.
With attention to
In this example, as detailed in the descriptions for
In addition, it will also be appreciated that the flat interface portion 76 assists in preventing the inflatable seatbelt 12 from bunching together or otherwise folding over itself as the shoulder belt retractor 80 (shown in
Furthermore, this feature is beneficial for laying the shoulder belt portion 18 of the inflatable seatbelt 12 substantially flat across the chest of a vehicle occupant. In this way, the shoulder belt anchor 16 enhances the comfort of the vehicle occupant.
In the embodiments shown in
Also, in this embodiment, the ring construction 74 of the shoulder belt anchor 16 has a pivotal fastener 88 (best shown in
Specifically, in this embodiment, the pivotal fastener 88 is a substantially spherical protrusion and is utilized for being contained within a socket (not shown) formed in the vehicle pillar 90. However, it will be appreciated that the pivotal fastener 88 can be various other suitable fasteners. For instance, the socket can instead be formed within the shoulder belt anchor 16 for receiving a substantially spherical protrusion extending from the vehicle pillar 90.
The shoulder belt anchor 16 further includes a biasing mechanism 92 for selectively forcing the inflatable seatbelt 12 substantially flat against the interface portion 76.
In this embodiment, the biasing mechanism 92 includes a housing 96, which is slidably coupled to a cross member 98 of the ring construction 74. This housing 96 has a channel 100 formed therethrough which is sized for receiving the cross member 98 and moving the housing 96 between the belt-flattening configuration and the offset configuration.
The biasing mechanism 92 further includes one or more biasing members 102 for forcing the biasing mechanism 92 to the belt-flattening configuration. In this embodiment the biasing members 102 are helical springs. However, the biasing members 102 can have other suitable constructions. The springs are sandwiched between the cross member 98 and the supporting surface 82 of the housing 96. It will be appreciated that the biasing mechanism 92 can instead be comprised of an elastic material for deforming to a variety of shapes, e.g. concave, as the airbag 24 is inflated.
Moreover, the springs are sufficiently stiff for pressing the inflatable seatbelt 12 substantially flat against the interface portion 76 while allowing the inflating airbag 24 to force the biasing mechanism 92 to the offset configuration.
In another embodiment shown in
While particular embodiments of the invention have been shown and described, it will be understood, of course, that the invention is not limited thereto since modifications may be made by those skilled in the art, particularly in light of the foregoing teachings. Accordingly, it is intended that the invention be limited only in terms of the appended claims.
This is a continuation-in-part of U.S. non-provisional application Ser. No. 10/906,078 filed on Feb. 2, 2005, entitled “BELT GUIDE APPARATUS FOR A SEATBELT RESTRAINT SYSTEM OF A VEHICLE” (Attorney Docket No. 81107535/FGT 1950 PA), and relates to U.S. non-provisional application Ser. No. 11/277,844 filed concurrently herewith on Mar. 29, 2006, entitled “INFLATABLE SEATBELT SYSTEM” (Attorney Docket No. 811272111/FGT 2266 PA), the disclosures of which are incorporated by reference herein. The present invention relates generally to seatbelt systems for vehicles, and more particularly to a self-adjusting seatbelt fastener.
Number | Date | Country | |
---|---|---|---|
Parent | 10906078 | Feb 2005 | US |
Child | 11277860 | Mar 2006 | US |