1. Field of the Invention
The present invention generally relates to a self-aligned double-gate metal oxide semiconductor (DG-MOSFET), with electrically separated top and bottom gates. Moreover, with the invention, the top and bottom gates may be formed by different materials.
2. Description of the Related Art
The double-gate metal oxide semiconductor field effect transistor (DG-MOSFET), is a MOSFET having a top and a bottom gate which control the carriers in the channel. The double-gate MOSFET has several advantages over a conventional single-gate MOSFET: higher transconductance, lower parasitic capacitance, avoidance of dopant fluctuation effects, and superior short-channel characteristics. Moreover, good short-channel characteristics are obtained down to 20 nm channel length with no doping needed in the channel region. This circumvents all the tunneling break-down, dopant quantization, and impurity scattering problems associated with channel doping.
Conventional systems have attempted to make a double-gate structure with both top and bottom gates self-aligned to the channel region. However, there is no satisfactory method of achieving this self-aligned structure. Previous efforts generally fall into the following categories. A first, category includes etching silicon (Si) into a pillar structure and depositing gates around it (vertical Field Effect Transistor (FET)). A second, category etches a silicon on insulator (SOI) film into a thin bar, makes the source/drain contacts on both ends of the bar, and deposits the gate material on all three surfaces of the thin Si bar. Another way involves making a conventional single-gate MOSFET, then using bond-and-etch back techniques to form the second gate. A fourth conventional method starts with a thin SOI film, patterns a strip and digs a tunnel under it by etching the buried oxide to form a suspended Si bridge. Then, this method deposits the gate material all around the suspended Si bridge.
There are serious drawbacks in all of the above approaches. For example, the first and second require formation of a vertical pillar or Si bar at a thickness of 10 nm and it is difficult to reach this dimension with good thickness control and prevent Reactive Ion Etching (RIE) damage. While in the vertical case (first), it is difficult to make a low series resistance contact to the source/drain terminal which is buried under the pillar. In the lateral case (second), the device width is limited by the Si bar height. In the third case, thickness control and top/bottom gate self-alignment are major problems. In the fourth case, the control over the gate length is poor, and the two gates are electrically connected and must be made of the same material.
A co-pending application by, K. K. Chan, G. M. Cohen, Y. Taur, H. S. P. Wong, entitle “Self-Aligned Double-Gate MOSFET by Selective Epitaxy and Silicon Wafer Bonding Techniques”, Ser. No. 09/272,297, filed Mar. 19, 1999 (hereinafter “Chan”) incorporated herein by reference, utilizes a method for the fabrication of a double-gate MOSFET structure with both top and bottom gates self-aligned to the channel region. The process circumvents most of the problems discussed above. Yet, the top and bottom gates are still physically connected. This occurs because the gate material is deposited in one processing step as an “all-around the channel” gate.
This may not be desirable in some applications for the following reasons. First, from the circuit design point of view, two electrically separated gates are preferable. Second, the bottom gate and top gate are essentially made of the same material, thus only a symmetric DG-MOSFET may be fabricated. Asymmetric DG-MOSFET in which the bottom gate material is different than the top gate cannot be realized.
Chan discloses forming an “all-around the channel” gate by forming a suspended silicon bridge (the channel) followed by the deposition of the gate material conformally around it. To obtain a good threshold voltage control, the channel thickness should be thinned down to 3–5 nm. It is not clear if such thin bridges can be processed with a high enough yield. Thus, this may impose a limitation on the process suggested in Chan.
Thus, there is a need for a self-aligning DG-MOSFET that is formed by depositing the top and bottom gates independently. Such a structure would produce many advantages. For example, the independent formation of the gates permits the gates to be electrically separated; to be made of varying materials and thickness, and to provide a structure that is planarized, making it easier to connect the device. In addition, there is a need for a DG-MOSFET which permits the formation of a very thin channel.
It is, therefore, an object of the present invention to provide a structure and method for manufacturing a double-gate integrated circuit which includes forming a laminated structure having a channel layer and first insulating layers on each side of the channel layer, forming openings in the laminated structure, forming drain and source regions in the openings, removing portions of the laminated structure to leave a first portion of the channel layer exposed, forming a first gate dielectric layer on the channel layer, forming a first gate electrode on the first gate dielectric layer, removing portions of the laminated structure to leave a second portion of the channel layer exposed, forming a second gate dielectric layer on the channel layer, forming a second gate electrode on the second gate dielectric layer, doping the drain and source regions, using self-aligned ion implantation, wherein the first gate electrode and the second gate electrode are formed independently of each other.
The gate dielectric is typically made of SiO2 but it can be made of other dielectric materials. Also, the gate dielectric associated with the top gate is independent of the gate dielectric associated for the bottom gate. Thus, the gate dielectrics may be of different thicknesses and materials.
The foregoing and other objects, aspects and advantages will be better understood from the following detailed description of a preferred embodiment of the invention with reference to the drawings, in which:
The following describes the present invention which is a self-aligned double-gate metal oxide semiconductor (DG-MOSFET), with electrically separated top and bottom gates and method for making the same. Moreover, the top and bottom gates comprise different materials.
As depicted in
Then, a thin silicon dioxide 6 layer (approximately 2 nm) is formed onto the SOI layer 5. This is followed by the formation of a thick silicon nitride 7 layer (e.g., about 150 nm) onto the silicon dioxide layer 6.
After the first series of layers is completed, the invention etches two regions 8 into the stack of films. As depicted in
This disclosure illustrates the inventive structure and process along different cross-sectional lines for clarity. For example,
The invention begins a series of steps to reshape the etched regions. First, as depicted in
Next, the invention forms side-wall spacers 10 on the side-walls of the etched regions 8, as shown in
Then, as shown in
Also, the invention reshapes the top portion of the structure as shown in
Subsequently, the invention places a mesa hard mask 17 onto the structure as shown in
More specifically, the invention isolates individual devices using the mesa hard mask 17. The structure is patterned as follows: (1) etching with reactive ion etching (RIE) past the SOI film and stopping on the nitride as shown in
As depicted in
Next, as shown in
As shown in
Next the invention, dopes source/drain regions 11 using a self aligned ion-implantation 24 to heavily dope the silicon 11 as shown in
A self-aligned silicide process is then applied to form the silicide 26 over the source/drain and gates 11, as shown in
Next, the bottom gate 22 is finalized. First, a nitride or LTO film 27 of preferably about 100 nm is deposited and subsequently patterned by photolithography to form a hard mask that defines the bottom gate area 28 as shown in top view in
Next, contact holes 31 are formed on the source, and drain 11, and contact holes 32 are etched over the two gates 16, 22, by photo-lithography patterning and etching as shown in
Many benefits over the prior art are realized by the specific improvements of this invention. First, this invention deposits the top and bottom gates in two separate steps and creates top and bottom gates that are electrically separated, which results in several advantages. For example, the bottom gate may be used to control the threshold voltage, thereby allowing a mix threshold voltage (Vt) circuit for low power applications.
This structure also allows for increases in the circuit density. When gates are electrically separated the double-gate MOSFET comprises a four terminal device with two input gates. Thus, a single device can be used to implement binary logic operations such as a NOR (nFET) or a NAND (pFET) cell. The implementation of these binary logic functions would typically require two standard MOSFETs per cell. This increase in the circuit density also applies to analog circuits. For example a mixer may be implemented by applying the oscillator voltage to one gate and the signal (data) voltage to the other gate.
Since the invention grows the top and bottom gates and respective gate dielectrics independently, the gates and gate dielectrics may be of different materials and different thicknesses. Also different doping levels and doping species may be incorporated into each gate. Thus, asymmetric gates may be fabricated. The asymmetric double-gate MOSFET is most useful for a mixed application where the gates are tied together to achieve speed and can be used separately to achieve low power and high density e.g. for static random access memory (SRAM).
Also, the invention provides a structure that is planar, making it easier to connect the device. Devices with a very thin channel of about 3 to 5 nm thick may be required to obtain a good threshold voltage behavior. Fabricating suspended silicon bridges with a thin layer may reduce the overall yield. This invention supports the channel with a thick layer 22. Thus, the invention allows devices with a very thin channel to be fabricated and permits such devices to obtain a good threshold voltage behavior. The invention also utilizes a self-aligned silicide process which lowers the series resistance.
While the invention has been described in terms of preferred embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims.
This application is a division of U.S. application Ser. No. 09/612,260 filed Jul. 7, 2000. Now U.S. Pat. No. 6,982,460.
Number | Name | Date | Kind |
---|---|---|---|
4488162 | Jambotkar | Dec 1984 | A |
4980308 | Hayashi et al. | Dec 1990 | A |
5102819 | Matsushita et al. | Apr 1992 | A |
5120666 | Gotou | Jun 1992 | A |
5166084 | Pfiester | Nov 1992 | A |
5266515 | Robb et al. | Nov 1993 | A |
5273921 | Neudeck et al. | Dec 1993 | A |
5296727 | Kawai et al. | Mar 1994 | A |
5340754 | Witek et al. | Aug 1994 | A |
5349228 | Neudeck et al. | Sep 1994 | A |
5371401 | Kurita | Dec 1994 | A |
5372959 | Chan | Dec 1994 | A |
5376559 | Mukai et al. | Dec 1994 | A |
5461250 | Burghartz et al. | Oct 1995 | A |
5646058 | Taur et al. | Jul 1997 | A |
5702963 | Vu et al. | Dec 1997 | A |
5708286 | Uesugi et al. | Jan 1998 | A |
5801397 | Cunningham | Sep 1998 | A |
5818070 | Yamazaki et al. | Oct 1998 | A |
5834797 | Yamanaka | Nov 1998 | A |
6004837 | Gambino et al. | Dec 1999 | A |
6037204 | Chang et al. | Mar 2000 | A |
6143582 | Vu et al. | Nov 2000 | A |
6188111 | Kumagai | Feb 2001 | B1 |
6365465 | Chan et al. | Apr 2002 | B1 |
6504173 | Hsu et al. | Jan 2003 | B1 |
6611029 | Ahmed et al. | Aug 2003 | B1 |
6627953 | Vu et al. | Sep 2003 | B1 |
6642115 | Cohen et al. | Nov 2003 | B1 |
6689650 | Gambino et al. | Feb 2004 | B1 |
6759710 | Chan et al. | Jul 2004 | B1 |
6762101 | Chan et al. | Jul 2004 | B1 |
6790732 | Zahurak et al. | Sep 2004 | B1 |
6855982 | Xiang et al. | Feb 2005 | B1 |
6864129 | Risch et al. | Mar 2005 | B1 |
6876042 | Yu et al. | Apr 2005 | B1 |
6927435 | Moriya et al. | Aug 2005 | B1 |
6967377 | Cohen et al. | Nov 2005 | B1 |
6982460 | Cohen et al. | Jan 2006 | B1 |
Number | Date | Country |
---|---|---|
0 043 944 | Jun 1981 | EP |
64-53460 | Mar 1989 | JP |
2-54966 | Feb 1990 | JP |
2-294076 | Dec 1990 | JP |
05-226655 | Sep 1993 | JP |
8-023100 | Jan 1996 | JP |
11-330482 | Nov 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20050127412 A1 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09612260 | Jul 2000 | US |
Child | 11050366 | US |