The present invention relates to an organic thin film transistor, and more particularly, to a self-aligned organic thin film transistor and a fabrication method thereof, wherein a conductive layer is directly patterned by performing backside exposure using a gate electrode as a mask to thereby form self-aligned source/drain electrodes.
Recently, studies on the use of an organic compound as a semiconductor material have been actively conducted. In the field of thin film transistors (TFTs), studies on the use of an organic semiconductor such as pentacene instead of an inorganic material such as silicon have also been actively conducted. The organic semiconductor is synthesized by various methods, is easily formed in the shape of a fiber or film, and is relatively inexpensive in fabrication. Since it is possible to fabricate a device at a temperature of 100 C or less using the organic semiconductor, a plastic substrate can be used. In addition, the organic semiconductor has an excellent flexibility and conductivity, so that the organic semiconductor can be usefully applied to various types of flexible devices.
Hereinafter, a conventional organic TFT will be described with reference to the drawings.
First of all, as shown in
In the conventional organic TFT 10, each of the source/drain electrodes 14 has a portion 16 partially overlapping with the gate electrode 12. The overlapping portion 16 formed between the two electrodes 12 and 14 induces parasitic resistance and parasitic capacity. Thus, there is a problem in that electrical characteristics of the organic TFT 10 may be lowered.
Accordingly, an object of the present invention is to provide improve electrical characteristics of an organic TFT by preventing an overlapping portion from being formed between a source/drain electrode and a gate electrode.
Another object of the present invention is to simplify a fabrication method of an organic TFT.
In order to achieve these objects, the present invention provides a self-aligned organic TFT and a fabrication method thereof, wherein a conductive layer is directly patterned by performing backside exposure using a gate electrode as a mask, thereby forming self-aligned source/drain electrodes. Furthermore, the present invention provides a fabrication method of a self-aligned organic TFT using a reel-to-reel process.
A self-aligned organic TFT according to the present invention comprises a substrate; a gate electrode patterned and formed on the substrate; a gate dielectric layer covering the substrate and the gate electrode; source/drain electrodes formed on the gate dielectric layer so that they are self-aligned with the gate electrode and are not overlap with the gate electrode; and an organic semiconductor layer formed between and on the source/drain electrodes.
The gate dielectric layer may be formed of a UV transmittable dielectric material, and the source/drain electrodes may be formed of a UV curable conductive material.
A fabrication method of a self-aligned organic TFT according to the present invention comprises the steps of providing a substrate; forming a gate electrode from a first conductive layer patterned on the substrate; forming a gate dielectric layer on top of the substrate to cover the gate electrode; forming a second conductive layer on the gate dielectric layer; performing UV backside exposure for irradiating the second conductive layer with UV from a bottom side of the substrate using the gate electrode as a mask; forming source/drain electrodes self-aligned with the gate electrode not to overlap with the gate electrode by developing the second conductive layer; and forming an organic semiconductor layer between and on the source/drain electrodes.
The step of forming a gate electrode may include the step of covering the substrate with a shadow mask and thermally depositing the first conductive layer. Further, the step of forming a gate electrode may include the step of forming the first conductive layer on the substrate using any one of thermal deposition, e-beam evaporation, sputtering, micro contact printing and nano imprinting.
The step of forming a gate dielectric layer may be performed using a spin coating or laminating method. Preferably, the gate dielectric layer is formed of a UV transmittable dielectric material. Particularly, the gate dielectric layer may be formed of any one of poly-4-vinylphenol (PVP), polyimide, polyvinylalcohol (PVA), polystyrene (PS), and a mixed dielectric material of organic/inorganic materials.
The step of forming a second conductive layer may be performed using any one of screen printing, spray printing, inkjet printing, gravure printing, offset, reverse-offset, gravure-offset and flexography. Preferably, the second conductive layer is formed of a UV curable conductive material. Particularly, the second conductive layer may be in a paste or ink state in which a powdery conductive material is scattered in a UV curing resin.
The step of forming an organic semiconductor layer may be performed using a thermal deposition or inkjet printing method. Here, the organic semiconductor layer is preferably formed of any one of pentacene, tetracene, anthracene or TIPS pentacene[6,13-bis(triisopropylsilyethynyl)pentacene], P3HT[poly(3-hexylthiophene)], F8T2[poly(9,9-dioctylfluorene-co-bithiophene)], PQT-12[poly(3,3-didodecylquater-thiophene)] and PBTTT[poly(2,5-bis(3-tetradecylthiphene-2-yl)thieno[3,2-b]thiophene].
The substrate may be formed of plastic or glass.
In the meantime, the substrate may be provided in a reel shape. In such a case, at least two of the steps of forming a gate electrode, forming a gate dielectric layer, forming a second conductive layer, performing UV backside exposure, forming source/drain electrodes and forming an organic semiconductor may be consecutively performed while the reel-shaped substrate is continuously unwound and transferred.
An organic TFT according to the present invention has a structure in which source/drain electrodes are formed to be self-aligned with a gate electrode and thus do not overlap with each other. Accordingly, electrical characteristics of the organic TFT can be improved.
Particularly, in the organic TFT of the present invention, a gate dielectric layer is formed of a UV transmittable dielectric material, and a second conductive layer for source/drain electrodes is formed of a UV curable conductive material. Therefore, UV backside exposure can be performed using the gate electrode as a mask, and the second conductive layer can be directly patterned instead of using a typical patterning method in which a photoresist pattern should be used. Accordingly, the source/drain electrodes self-aligned with the gate electrode can be formed, and the process can also be simplified. Furthermore, in the present invention, an organic TFT can be fabricated using a reel-to-reel process, and therefore, the entire fabrication processes can be simplified.
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
In the embodiments, technical descriptions which are well-known in the art to which the present invention pertains and are not directly related to the present invention will be omitted. This is to convey the subject manner of the present invention more clearly without obscuring it by omitting the unnecessary descriptions.
In the accompanying drawings, some components are shown schematically or to be exaggerated or omitted, and dimensions of each component do not entirely reflect the actual dimensions. Throughout the drawings, like reference numerals indicate like elements throughout the specification and drawings.
Configuration of Self-Aligned Organic Thin Film Transistor
Referring to
In the configuration of the organic TFT 20, the source/drain electrodes 25 are formed to be self-aligned with the gate electrode 22, so that no overlapping portion occurs. Accordingly, it is possible to prevent the problem that parasitic resistance and parasitic capacitance are generated in the overlapping portion 16 (see
Hereinafter, a fabrication method of the organic TFT will be described. From the following description, the configuration of the aforementioned organic TFT will also become apparent.
Fabrication Method of Self-Aligned Organic Thin Film Transistor
First of all, as shown in
Thereafter, a gate electrode 22 is formed on the substrate 21 (step S2). The gate electrode 22 may be formed by a method of depositing and patterning a first conductive layer on the substrate 21 or by a method of covering the substrate 21 with a patterned mask and then depositing a first conductive layer. For example, in accordance with the latter method, the substrate 21 is covered with a shadow mask, and a thermal evaporation process is performed. In this case, the first conductive layer may be deposited up to a thickness of 400 at a deposition rate of 1/second, for example. Meanwhile, in the case of the former method, a process of patterning the first conductive layer may be performed using a well-known photolithography technique.
In step S2, the method of forming the first conductive layer may include e-beam evaporation, sputtering, micro contact printing, nano imprinting and the like, in addition to thermal evaporation. Generally, the gate electrode is formed of various kinds of metallic materials including Al, Cr, Mo, Cu, Ti, Ta and the like. However, the gate electrode may be formed of a non-metallic material with conductivity.
After the gate electrode 22 is formed, a gate dielectric layer 23 is formed on top of the substrate 21 to cover the gate electrode 22 as shown in
An ultraviolet (UV) transmittable dielectric material is used as a material of the gate dielectric layer 23. For example, the gate dielectric layer 23 may include a material such as poly-4-vinylphenol (PVP), polyimide, polyvinylalcohol (PVA) and polystyrene (PS), and a mixed dielectric material of organic/inorganic materials such as aluminum oxide/polystyrene (Al2O3/PS).
For example, when the gate dielectric layer 23 is formed of PVP by a spin coating process, the PVP is mixed with a cross-linker in a solvent and then applied. At this time, propylene glycol monomethyl ether acetate (PGMEA) may be used as the solvent, and poly melamine-co-formaldehyde, which is known as CLA may be used as the cross-linker. The weight ratio of PGMEA to PVP to CLA is 100:10:5.
Then, as shown in
Thereafter, as shown in
More specifically, UV energy reacts with a photoinitiator contained in the UV curing resin to form a free radical, and a polymer is instantaneously formed by allowing the free radical to react with monomer or oligomer in the resin. The monomer or oligomer is liquid in a normal state (1 atmospheric pressure and 25 C). However, when strong UV energy is applied to the liquid, a polymerization reaction is induced, and then, the liquid is changed into a polymer that is solid in external appearance. That is, curing reaction is induced.
After the UV backside exposure is performed, source/drain electrodes 25 are formed by developing the second conductive layer 24 as shown in
As such, since the source/drain electrodes 25 are formed from the second conductive layer 24 exposed using the gate electrode 22 as a mask, they do not overlap with the gate electrode 22 through self-alignment. Accordingly, parasitic resistance and parasitic capacity can be eliminated, and electrical characteristics can be improved. Furthermore, instead of a typical patterning method in which a conductive layer is etched using a photoresist pattern, the second conductive layer 24 can be directly patterned, whereby the process can be very simplified.
Subsequently, as shown in
Meanwhile, a reel-to-reel process may be used in the aforementioned fabrication method of a self-aligned organic TFT.
Referring to
A second conductive layer 24 to be used as source/drain electrodes 25 is formed through a screen printing process, wherein reference numeral 35 designates a screen printing mask and squeezer used herein. If the source/drain electrodes 25 are formed through the UV backside exposure and development processes, an organic semi-conductor layer 26 is formed through a dispensing process, for example. Reference numeral 36 designates a dispenser used herein.
The reel-to-reel process of
An organic TFT according to the present invention has a structure in which source/drain electrodes are formed to be self-aligned with a gate electrode so that they do not overlap with each other. Accordingly, electrical characteristics of the organic TFT can be improved.
Particularly, in the organic TFT of the present invention, a gate dielectric layer is formed of a UV transmittable dielectric material, and a second conductive layer for source/drain electrodes is formed of a UV curable conductive material. Therefore, UV backside exposure can be performed using the gate electrode as a mask, and the second conductive layer can be directly patterned instead of a typical patterning method in which a photoresist pattern should be used. Accordingly, the source/drain electrodes self-aligned with the gate electrode can be formed, and the forming process can be simplified. Furthermore, in the present invention, an organic TFT can be fabricated using a reel-to-reel process, and therefore, it is possible to simplify the entire fabrication processes.
Number | Date | Country | Kind |
---|---|---|---|
10-2007-0066207 | Jul 2007 | KR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/KR08/03019 | 5/30/2008 | WO | 00 | 8/20/2008 |