Self-aligned well structures for low-noise chemical sensors

Information

  • Patent Grant
  • 8962366
  • Patent Number
    8,962,366
  • Date Filed
    Monday, January 28, 2013
    12 years ago
  • Date Issued
    Tuesday, February 24, 2015
    9 years ago
Abstract
In one implementation, a chemical detection device is described. The device includes a chemically-sensitive field effect transistor including a floating gate conductor coupled to a gate dielectric and having an upper surface, and a sensing material on the upper surface. The device also includes a fill material defining a reaction region extending above the sensing material, the reaction region overlying and substantially aligned with the floating gate conductor.
Description
BACKGROUND

The present disclosure relates to sensors for chemical analysis, and to methods for manufacturing such sensors.


A variety of types of chemical sensors have been used in the detection of various chemical processes. One type is a chemically-sensitive field effect transistor (chemFET). A chemFET includes a source and a drain separated by a channel region, and a chemically sensitive area coupled to the channel region. The operation of the chemFET is based on the modulation of channel conductance, caused by changes in charge at the sensitive area due to a chemical reaction occurring nearby. The modulation of the channel conductance changes the threshold voltage of the chemFET, which can be measured to detect and/or determine characteristics of the chemical reaction. The threshold voltage may for example be measured by applying appropriate bias voltages to the source and drain, and measuring a resulting current flowing through the chemFET. As another example, the threshold voltage may be measured by driving a known current through the chemFET, and measuring a resulting voltage at the source or drain.


An ion-sensitive field effect transistor (ISFET) is a type of chemFET that includes an ion-sensitive layer at the sensitive area. The presence of ions in an analyte solution alters the surface potential at the interface between the ion-sensitive layer and the analyte solution, due to the protonation or deprotonation of surface charge groups at the sensitive area caused by the ions present in the analyte solution. The change in surface potential at the sensitive area of the ISFET affects the threshold voltage of the device, which can be measured to indicate the presence and/or concentration of ions within the solution.


Arrays of ISFETs may be used for monitoring chemical reactions, such as DNA sequencing reactions, based on the detection of ions present, generated, or used during the reactions. See, for example, U.S. Pat. No. 7,948,015 to Rothberg et al., which is incorporated by reference herein. More generally, large arrays of chemFETs or other types of chemical sensors may be employed to detect and measure static and/or dynamic amounts or concentrations of a variety of analytes (e.g. hydrogen ions, other ions, compounds, etc.) in a variety of processes. The processes may for example be biological or chemical reactions, cell or tissue cultures or monitoring, neural activity, nucleic acid sequencing, etc.


A specific issue that arises in the operation of chemical sensor arrays is the susceptibility of the sensor output signals to noise. Specifically, the noise affects the accuracy of the downstream signal processing used to determine the characteristics of the chemical and/or biological process being detected by the sensors.


It is therefore desirable to provide devices including low noise chemical sensors, and methods for manufacturing such devices.


SUMMARY

In one implementation, a method for forming a chemical detection device is described. The method includes forming a gate dielectric on a semiconductor substrate. A floating gate structure is formed on the gate dielectric. Forming the floating gate structure includes forming a conductive material overlying the gate dielectric, forming a sacrificial material overlying the conductive material, and patterning the conductive material and the sacrificial material. A fill material is formed adjacent to the patterned sacrificial material and the patterned conductive material. The patterned sacrificial material is then removed to define a reaction region substantially aligned with the patterned conductive material.


In another implementation, a chemical detection device is described. The device includes a chemically-sensitive field effect transistor including a floating gate conductor coupled to a gate dielectric and having an upper surface, and a sensing material on the upper surface. The device also includes a fill material defining a reaction region extending above the sensing material, the reaction region overlying and substantially aligned with the floating gate conductor.


Particular aspects of one more implementations of the subject matter described in this specification are set forth in the drawings and the description below. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a block diagram of components of a system for nucleic acid sequencing according to an exemplary embodiment.



FIG. 2 illustrates a cross-sectional view of a portion of the integrated circuit device and flow cell according to an exemplary embodiment.



FIG. 3 illustrates a cross-sectional view of representative chemical sensors and corresponding reaction regions according to an exemplary embodiment.



FIGS. 4 to 8 illustrate stages in a manufacturing process for forming a low noise chemical sensor and corresponding well structure according to an exemplary embodiment.





DETAILED DESCRIPTION

A chemical detection device is described that includes low noise chemical sensors, such as chemically-sensitive field effect transistors (chemFETs), for detecting chemical reactions within overlying, operationally associated reaction regions.


It has been found that a significant amount of the total noise in chemical sensors, such as chemFETs, can be attributed to etching processes involved in defining the overlying reaction regions. In particular, forming the reaction region through an overlying material by subjecting the sensing surface of a chemical sensor to prolonged periods of a high-energy directional etching process can cause significant noise in the sensor. For example, plasma impinging on the sensing surface can cause charge build up, to the point of causing undesirable changes or damage within the sensor. This accumulated charge can become trapped in the gate oxide and/or the gate oxide-semiconductor substrate interface of the chemFETs, thereby contributing to the noise and resulting in variations in operation and degradation in performance.


Techniques are described herein for forming a reaction region overlying the sensing surface of a chemical sensor, using a self-aligned process that does not require the sensing surface to be subjected to an etching process. In exemplary embodiments, an upper floating gate conductor element of the chemical sensor and an overlying sacrificial material element are patterned together to form a stack. Following the formation of a fill material adjacent to the stack, the sacrificial material element can then be selectively removed to define the reaction region, using a non-etch process that does not contribute to charge accumulation. In embodiments in which the sacrificial material element comprises thermally decomposable material, the non-etching process may involve heating the device to thermally decompose and evaporate the sacrificial material element to form the reaction region, without damaging the sensing surface or removing the fill material.


As a result of the techniques described herein, low noise chemical sensors with uniform performance across an array are provided, such that the characteristics of subsequent chemical reactions can be accurately detected.



FIG. 1 illustrates a block diagram of components of a system for nucleic acid sequencing according to an exemplary embodiment. The components include a flow cell 101 on an integrated circuit device 100, a reference electrode 108, a plurality of reagents 114 for sequencing, a valve block 116, a wash solution 110, a valve 112, a fluidics controller 118, lines 120/122/126, passages 104/109/111, a waste container 106, an array controller 124, and a user interface 128. The integrated circuit device 100 includes a microwell array 107 overlying a sensor array that includes chemical sensors as described herein. The flow cell 101 includes an inlet 102, an outlet 103, and a flow chamber 105 defining a flow path of reagents over the microwell array 107.


The reference electrode 108 may be of any suitable type or shape, including a concentric cylinder with a fluid passage or a wire inserted into a lumen of passage 111. The reagents 114 may be driven through the fluid pathways, valves, and flow cell 101 by pumps, gas pressure, or other suitable methods, and may be discarded into the waste container 106 after exiting the outlet 103 of the flow cell 101. The fluidics controller 118 may control driving forces for the reagents 114 and the operation of valve 112 and valve block 116 with suitable software.


The microwell array 107 includes an array of reaction regions as described herein, also referred to herein as microwells, which are operationally associated with corresponding chemical sensors in the sensor array. For example, each reaction region may be coupled to a chemical sensor suitable for detecting an analyte or reaction property of interest within that reaction region. The microwell array 107 may be integrated in the integrated circuit device 100, so that the microwell array 107 and the sensor array are part of a single device or chip.


The flow cell 101 may have a variety of configurations for controlling the path and flow rate of reagents 114 over the microwell array 107. The array controller 124 provides bias voltages and timing and control signals to the integrated circuit device 100 for reading the chemical sensors of the sensor array. The array controller 124 also provides a reference bias voltage to the reference electrode 108 to bias the reagents 114 flowing over the microwell array 107.


During an experiment, the array controller 124 collects and processes output signals from the chemical sensors of the sensor array through output ports on the integrated circuit device 100 via bus 127. The array controller 124 may be a computer or other computing means. The array controller 124 may include memory for storage of data and software applications, a processor for accessing data and executing applications, and components that facilitate communication with the various components of the system in FIG. 1.


The values of the output signals of the chemical sensors indicate physical and/or chemical parameters of one or more reactions taking place in the corresponding reaction regions in the microwell array 107. For example, in an exemplary embodiment, the values of the output signals may be processed using the techniques disclosed in Rearick et al., U.S. patent application Ser. No. 13/339,846, filed Dec. 29, 2011, based on U.S. Prov. Pat. Appl. Nos. 61/428,743, filed Dec. 30, 2010, and 61/429,328, filed Jan. 3, 2011, and in Hubbell, U.S. patent application Ser. No. 13/339,753, filed Dec. 29, 2011, based on U.S. Prov. Pat. Appl. No. 61/428,097, filed Dec. 29, 2010, which are all incorporated by reference herein in their entirety.


The user interface 128 may display information about the flow cell 101 and the output signals received from chemical sensors in the sensor array on the integrated circuit device 100. The user interface 128 may also display instrument settings and controls, and allow a user to enter or set instrument settings and controls.


In an exemplary embodiment, during the experiment the fluidics controller 118 may control delivery of the individual reagents 114 to the flow cell 101 and integrated circuit device 100 in a predetermined sequence, for predetermined durations, at predetermined flow rates. The array controller 124 can then collect and analyze the output signals of the chemical sensors indicating chemical reactions occurring in response to the delivery of the reagents 114.


During the experiment, the system may also monitor and control the temperature of the integrated circuit device 100, so that reactions take place and measurements are made at a known predetermined temperature.


The system may be configured to let a single fluid or reagent contact the reference electrode 108 throughout an entire multi-step reaction during operation. The valve 112 may be shut to prevent any wash solution 110 from flowing into passage 109 as the reagents 114 are flowing. Although the flow of wash solution may be stopped, there may still be uninterrupted fluid and electrical communication between the reference electrode 108, passage 109, and the microwell array 107. The distance between the reference electrode 108 and the junction between passages 109 and 111 may be selected so that little or no amount of the reagents flowing in passage 109 and possibly diffusing into passage 111 reach the reference electrode 108. In an exemplary embodiment, the wash solution 110 may be selected as being in continuous contact with the reference electrode 108, which may be especially useful for multi-step reactions using frequent wash steps.



FIG. 2 illustrates cross-sectional and expanded views of a portion of the integrated circuit device 100 and flow cell 101. During operation, the flow chamber 105 of the flow cell 101 confines a reagent flow 208 of delivered reagents across open ends of the reaction regions in the microwell array 107. The volume, shape, aspect ratio (such as base width-to-well depth ratio), and other dimensional characteristics of the reaction regions may be selected based on the nature of the reaction taking place, as well as the reagents, byproducts, or labeling techniques (if any) that are employed.


The chemical sensors of the sensor array 205 are responsive to (and generate output signals) chemical reactions within associated reaction regions in the microwell array 107 to detect an analyte or reaction property of interest. The chemical sensors of the sensor array 205 may for example be chemically sensitive field-effect transistors (chemFETs), such as ion-sensitive field effect transistors (ISFETs). Examples of chemical sensors and array configurations that may be used in embodiments are described in U.S. Patent Application Publication No. 2010/0300559, No. 2010/0197507, No. 2010/0301398, No. 2010/0300895, No. 2010/0137143, and No. 2009/0026082, and U.S. Pat. No. 7,575,865, each which are incorporated by reference herein.



FIG. 3 illustrates a cross-sectional view of two representative chemical sensors and their corresponding reaction regions according to an exemplary embodiment. In FIG. 3, two chemical sensors 350, 351 are shown, representing a small portion of a sensor array that can include millions of chemical sensors.


Chemical sensor 350 is coupled to corresponding reaction region 301, and chemical sensor 351 is coupled to corresponding reaction region 302. Chemical sensor 350 is representative of the chemical sensors in the sensor array. In the illustrated example, the chemical sensor 350 is an ion-sensitive field effect transistor. The chemical sensor 350 includes a floating gate structure 318 having a floating gate conductor (referred to herein as the sensor plate 320) separated from the reaction region 301 by sensing material 316. As shown in FIG. 3, the sensor plate 320 is the uppermost patterned layer of conductive material in the floating gate structure 318 underlying the reaction region 301.


In the illustrated example, the floating gate structure 318 includes multiple patterned layers of conductive material within layers of dielectric material 319. As described in more detail below, the upper surface of the sensing material 316 acts as the sensing surface 317 for the chemical sensor 350.


In the illustrated embodiment, the sensing material 316 is an ion-sensitive material, such that the presence of ions or other charged species in a solution in the reaction region 301 alters the surface potential of the sensing surface 317. The change in the surface potential is due to the protonation or deprotonation of surface charge groups at the sensing surface caused by the ions present in the solution. The sensing material 316 may be deposited using various techniques, or naturally formed during one or more of the manufacturing processes used to form the chemical sensor 350. In some embodiments, the sensing material 316 is a metal oxide, such as an oxide of silicon, tantalum, aluminum, lanthanum, titanium, zirconium, hafnium, tungsten, palladium, iridium, etc.


In some embodiments, the sensing material 316 is an oxide of the upper layer of conductive material of the sensor plate 320. For example, the upper layer of the sensor plate 320 may be titanium nitride, and the sensing material 316 may comprise titanium oxide or titanium oxynitride. More generally, the sensing material 316 may comprise one or more of a variety of different materials to facilitate sensitivity to particular ions. For example, silicon nitride or silicon oxynitride, as well as metal oxides such as silicon oxide, aluminum or tantalum oxides, generally provide sensitivity to hydrogen ions, whereas sensing materials comprising polyvinyl chloride containing valinomycin provide sensitivity to potassium ions. Materials sensitive to other ions such as sodium, silver, iron, bromine, iodine, calcium, and nitrate may also be used, depending upon the implementation.


The chemical sensor 350 also includes a source region 321 and a drain region 322 within a semiconductor substrate 354. The source region 321 and the drain region 322 comprise doped semiconductor material have a conductivity type different from the conductivity type of the substrate 354. For example, the source region 321 and the drain region 322 may comprise doped P-type semiconductor material, and the substrate may comprise doped N-type semiconductor material.


Channel region 323 separates the source region 321 and the drain region 322. The floating gate structure 318 overlies the channel region 323, and is separated from the substrate 354 by a gate dielectric 352. The gate dielectric 352 may be for example silicon dioxide. Alternatively, other dielectrics may be used for the gate dielectric 352.


As shown in FIG. 3, the reaction region 301 is within an opening extending through a fill material 310 on the dielectric material 319. As described in more detail below, the fill material 310 may comprise one or more layers of material.


The opening includes a sidewall 303 extending to the bottom surface of the sensor plate 320 of the floating gate structure 318. As a result of this structure, a lower portion 314 of the opening contains the sensing material 316 and the sensor plate 320. An upper portion 315 of the opening extends from the lower portion 314 to the upper surface of the fill material 310 to define the reaction region 301.


As described in more detail below with respect to FIGS. 4-8, the opening through the fill material 310 is formed using a self-aligned process which does not require directly subjecting the sensing surface 317 to a high-energy directional plasma etching process. This self-aligned process includes patterning the sensor plate 320, the sensing material 316 and an overlying sacrificial material element together using a single etch mask to form a multi-layer stack. The sacrificial material element defines the size and location of the reaction region 301. Following the formation of the fill material 310 adjacent to the stack, the sacrificial material element is selectively removed to expose the sensing material 316 and define the reaction region 301. By using the same mask to pattern the sensor plate 320 and to define the location of the reaction region 301, the reaction region 301 is self-aligned to the sensor plate 320. In doing so, the formation of the reaction region 301 does not require an additional mask or critical alignment step, thereby reducing costs and avoiding yield problems which can arise due to misalignment.


As a result of the self-aligned process described herein, the microwell 301 is substantially aligned with the sensor plate 320 of the floating gate structure 318. As used herein, elements or features that are “substantially aligned” have sidewalls substantially flush with a plane parallel to the sidewalls, where “substantially flush” is intended to accommodate manufacturing tolerances using a single etch mask which may cause variations in the planarity of the sidewalls. As a result, as shown in FIG. 3, the sidewall 303 of the opening defining the reaction region 301 is substantially vertically aligned with the sidewall of the sensor plate 320 and the sidewall of the sensing material 316.


The sacrificial material element comprises sacrificial material which can be selectively removed relative to the fill material 310, when subjected to a chosen process which does not contribute charge accumulation on the floating gate structure 318. In exemplary embodiments described herein, the chosen process is a non-etch process. Etching is a process for removing material by using a wet etchant or reactive ionic particles that chemically react with the material.


For example, the sacrificial material element may comprise a thermally decomposable material, such as a polymer having a relatively low thermal decomposition temperature. The sacrificial material element may for example comprise a Unity® polymer from Promerus Inc., such as polypropylene carbonate (PPC), polyethylene carbonate (PEC), polycyclohexanepropylene carbonate (PCPC), polycyclohexane carbonate (PCC), polynorbornene carbonate (PNC), polybutylnorbornene (PNB), etc.


During manufacturing, the structure can then be heated to a temperature at or above the thermal decomposition temperature of the sacrificial material element, such that the sacrificial material element thermally decomposes and evaporates. The temperature and the amount the time the device is heated depends on the selected material for the sacrificial material element, as well as its thickness, and can be determined empirically.


Alternatively, the sacrificial material element may comprise other materials which can be selectively removed relative to the fill material 310, when subjected to a chosen process. For example, the sacrificial material element may comprise a dielectric material that can be selectively etched using for example a wet etch process, or a low power plasma etch process that does not contribute significant charge accumulation on the floating gate structure 318. In one embodiment, the sacrificial material element is silicon dioxide, the fill material is silicon nitride, and a wet etchant such as buffered oxide etch (BOE) is performed to selectively remove the sacrificial material element. Alternatively other materials and/or wet etchants may be used.


The fill material 310 may for example comprise one or more layers of dielectric material, such as silicon dioxide or silicon nitride. Alternatively, in some embodiments, the fill material 310 is a thermally decomposable material. In such a case, the sacrificial material element comprises material having a decomposition temperature less than that of the fill material 310. The structure can then be heated to a temperature at or above the thermal decomposition temperature of the sacrificial material element, but below the thermal decomposition temperature of the fill material 310, such that the sacrificial material element thermally decomposes and evaporates without damaging or removing the fill material 310. In doing so, the shape of the sacrificial material element becomes the shape of the reaction region 301. In one implementation, the sacrificial material element is a Unity® polymer from Promerus Inc. which decomposes at a temperature above 200 degrees Celsius, and the fill material 310 is for example polymide, which decomposes at a temperature above 400 degrees Celsius.


The sacrificial material element protects the upper surface of the sensing material 316, acts as the sensing surface 317 for the chemical sensor 350, during the patterning process used to form the stack. In doing so, damage to the sensing surface 317 can be avoided. In addition, by selectively removing the sacrificial material element using a non-etch process which does not accumulate charge on the floating gate structure 318 (e.g. heating to cause thermal decomposition of the material), noise induced in the chemical sensor 350 during the formation of the reaction region 301 can be eliminated. As a result, the techniques described herein can be used to form low noise chemical sensors having uniform performance across an array, such that the characteristics of chemical reactions can be accurately measured.


The sensor plate 320 and the sensing material 316 may for example have circular cross-sections, which results in the opening and the reaction region 301 having circular cross-sections. Alternatively, these may be non-circular. For example, the cross-section may be square, rectangular, hexagonal, or irregularly shaped.


In operation, reactants, wash solutions, and other reagents may move in and out of the reaction region 301 by a diffusion mechanism 340. The chemical sensor 350 is responsive to (and generates an output signal related to) the amount of a charge 324 present on the sensing material 316 opposite the sensor plate 320. Changes in the charge 324 cause changes in the voltage on the floating gate structure 318, which in turn changes in the threshold voltage of the transistor. This change in threshold voltage can be measured by measuring the current in the channel region 323 between the source region 321 and a drain region 322. As a result, the chemical sensor 350 can be used directly to provide a current-based output signal on an array line connected to the source region 321 or drain region 322, or indirectly with additional circuitry to provide a voltage-based output signal.


In an embodiment, reactions carried out in the reaction region 301 can be analytical reactions to identify or determine characteristics or properties of an analyte of interest. Such reactions can generate directly or indirectly byproducts that affect the amount of charge adjacent to the sensor plate 320. If such byproducts are produced in small amounts or rapidly decay or react with other constituents, multiple copies of the same analyte may be analyzed in the reaction region 301 at the same time in order to increase the output signal generated. In an embodiment, multiple copies of an analyte may be attached to a solid phase support 312, either before or after deposition into the reaction region 301. The solid phase support 312 may be microparticles, nanoparticles, beads, solid or porous comprising gels, or the like. For simplicity and ease of explanation, solid phase support 312 is also referred herein as a particle. For a nucleic acid analyte, multiple, connected copies may be made by rolling circle amplification (RCA), exponential RCA, or like techniques, to produce an amplicon without the need of a solid support.


In various exemplary embodiments, the methods, systems, and computer readable media described herein may advantageously be used to process and/or analyze data and signals obtained from electronic or charged-based nucleic acid sequencing. In electronic or charged-based sequencing (such as, pH-based sequencing), a nucleotide incorporation event may be determined by detecting ions (e.g., hydrogen ions) that are generated as natural by-products of polymerase-catalyzed nucleotide extension reactions. This may be used to sequence a sample or template nucleic acid, which may be a fragment of a nucleic acid sequence of interest, for example, and which may be directly or indirectly attached as a clonal population to a solid support, such as a particle, microparticle, bead, etc. The sample or template nucleic acid may be operably associated to a primer and polymerase and may be subjected to repeated cycles or “flows” of deoxynucleoside triphosphate (“dNTP”) addition (which may be referred to herein as “nucleotide flows” from which nucleotide incorporations may result) and washing. The primer may be annealed to the sample or template so that the primer's 3′ end can be extended by a polymerase whenever dNTPs complementary to the next base in the template are added. Then, based on the known sequence of nucleotide flows and on measured output signals of the chemical sensors indicative of ion concentration during each nucleotide flow, the identity of the type, sequence and number of nucleotide(s) associated with a sample nucleic acid present in a reaction region coupled to a chemical sensor can be determined.



FIGS. 4 to 8 illustrate stages in a manufacturing process for forming a low noise chemical sensor and corresponding well structure according to an exemplary embodiment.



FIG. 4 illustrates a structure 400 formed in a first stage. In the illustrated embodiment, the structure 400 includes a partially completed floating gate structure 410 within the dielectric 319.


The structure 400 can be formed by depositing a layer of gate dielectric material on the semiconductor substrate 354, and depositing a layer of polysilicon (or other electrically conductive material) on the layer of gate dielectric material. The layer of polysilicon and the layer gate dielectric material can then be etched using an etch mask to form the gate dielectric elements (e.g. gate dielectric 352) and the lowermost conductive material element of the floating gate structures (e.g. conductive material element 412 of floating gate structure 410). Following formation of an ion-implantation mask, ion implantation can then be performed to form the source and drain regions (e.g. source region 321 and a drain region 322) of the chemical sensors.


A first layer of the dielectric material 319 can then be deposited over the lowermost conductive material elements. Conductive plugs can then be formed within vias etched in the first layer of dielectric material 319 to contact the lowermost conductive material elements of the floating gate structures. A layer of conductive material can then be deposited on the first layer of the dielectric material 319 and patterned to form second conductive material elements electrically connected to the conductive plugs. This process can then be repeated multiple times to form the partially completed floating gate structures shown in FIG. 4. Alternatively, other and/or additional techniques may be performed to form the structure 400.


Forming the structure 400 can also include forming additional elements such as array lines (e.g. word lines, bit lines, etc.) for accessing the chemical sensors, additional doped regions in the substrate 354, and other circuitry (e.g. access circuitry, bias circuitry etc.) used to operate the chemical sensors, depending upon the device and array configuration in which the chemical sensors described herein are implemented. In some embodiments, the elements of the structure 400 may for example be manufactured using techniques described in U.S. Patent Application Publication No. 2010/0300559, No. 2010/0197507, No. 2010/0301398, No. 2010/0300895, No. 2010/0137143, and No. 2009/0026082, and U.S. Pat. No. 7,575,865, each which are incorporated by reference herein.


Next, conductive material 500 is formed on the structure illustrated in FIG. 4. Sensing material 510 is formed on the conductive material 500, and sacrificial material 520 is formed on sensing material 510. An etch mask including mask elements 530, 532 is then formed on the layer of sacrificial material, resulting in the structure illustrated in FIG. 5.


The conductive material 500 comprises one or more layers of electrically conductive material. For example, the conductive material 500 may include a layer of titanium nitride formed on a layer of aluminum, or a layer of titanium nitride formed on a layer of copper. Alternatively, the number of layers may be different than two, and other and/or additional conductive materials may be used. Examples of conductive materials that can be used in some embodiments include tantalum, aluminum, lanthanum, titanium, zirconium, hafnium, tungsten, palladium, iridium, etc., and combinations thereof.


The sensing material 510 may comprise one or more layers of material, such as those materials discussed above with respect to the ion-sensitive layer 316 of FIG. 3. In the illustrated example, the sensing material 510 is deposited on the conductive material 500. The sensing material 510 may be deposited using various techniques, such as sputtering, atomic layer deposition (ALD), low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), metal organic chemical vapor deposition (MOCVD), metal organic vapour phase epitaxy (MOVPE), spin coating, spray coating etc.


Alternatively, rather than separately depositing the sensing material 510, the sensing material 510 may be grown as an oxide of the upper layer of conductive material 500. In such a case, after depositing the conductive material, an oxidation process may for example be performed to oxidize the conductive material 500 to create the sensing material 510.


As described in more detail below, the thickness of the sacrificial material 520 defines the depth of the subsequently formed reaction regions. The sacrificial material 520 may be deposited using various techniques, depending on the material. For example, in embodiments in which the sacrificial material 520 has a relatively low decomposition temperature, so that it can subsequently be thermally decomposed, it may be spin coated. Alternatively, other techniques may be used. For example, the sacrificial material may be formed by sputtering, ALD, LPCVD, PECVD, MOCVD, MOVPE, spray coating etc.


The mask elements 530, 532 define the locations of the reaction regions and the sensor plates of the corresponding chemical sensors. In the illustrated embodiment, the mask elements 530, 532 comprise photoresist material which has been patterned using a lithographic process. Alternatively, other techniques and materials may be used.


Next, an etching or other patterning process is performed on the structure illustrated in FIG. 5 using the mask elements 530, 532 as a mask, resulting in the structure illustrated in FIG. 6. As shown in FIG. 6, the etching is performed through the conductive material 500, and stops at or in the dielectric material 319. The etching may for example be performed using a single etch chemistry to each all the materials 500, 510, 520, using for example chlorine or fluorine based etching chemistry, or oxygen plasma. Alternatively, different etch chemistries may be used for each of the layers.


The etching process defines multi-layer stacks 600, 602 beneath the mask elements 530, 532 respectively. The multi-layer stack 600 includes conductive material element 610 of conductive material 500 in electrical contact with the partial floating gate structure 410 (see FIG. 4). The conductive material element 610 (also referred to as the sensor plate herein) is the uppermost patterned layer of the floating gate structure 318, and thus completes the floating gate structure 318.


The multi-layer stack 600 also includes a sensing material element 620 of patterned sensing material 510 on the conductive material element 610, and a sacrificial material element 630 of patterned sacrificial material 520 on the sensing material element 620.


The cross-sectional shapes of the multi-layer stacks 600, 602 depend on the cross-sectional shapes of the mask elements 530, 532. These cross-sections may for example be circular. Alternatively, these may be non-circular. For example, the cross-section may be square, rectangular, hexagonal, or irregularly shaped.


In the illustrated embodiment, the mask elements 530, 532 are used as etch masks for the etching process. In some alternative embodiments, the mask elements 530, 532 may be omitted, and the sacrificial material 520 comprises a material that is photosensitive (photodefinable). In such a case, the locations of the multi-layer stacks 600, 602 can be defined by projecting an image onto the sacrificial material 520 using a lithographic process. After exposure, the sacrificial material 520 can then be removed from the undesired locations to form the sacrificial material elements of the multi-layer stacks 600, 602. The sacrificial material elements can then be used as etch masks during etching through the conductive material 500 to complete the multi-layer stacks 600, 602.


Next, fill material 310 is deposited on the structure illustrated in FIG. 6, and a planarization process is performed to remove the mask elements 530, 532 and expose the patterned sacrificial material of the multi-layer stacks 600, 602, resulting in the structure illustrated in FIG. 7.


The fill material 310 may comprise one or more layers of various materials, and may be deposited using various techniques. In the illustrated embodiment, the fill material 310 is a high temperature polymer such as polyimide, TEFLON, etc. and is deposited by spin coating. Alternatively, other materials and formation techniques may be used.


In the illustrated embodiment, the planarization process used to expose the patterned sacrificial material of the multi-layer stacks 600, 602 is a chemical mechanical polishing (CMP) process. Alternatively, other planarization processes may be used.


Next, the sacrificial material elements of the multi-layer stacks 600, 602 are selectively removed to define respective reaction regions 301, 302 for the corresponding chemical sensors, resulting in the structure illustrated in FIG. 8.


In the illustrated example, the sacrificial material and the fill material 310 are each thermally decomposable material, and the sacrificial material has a decomposition temperature less than that of the fill material 310. The structure is then heated (e.g. in a furnace) to a temperature at or above the thermal decomposition temperature of the sacrificial material, but below the thermal decomposition temperature of the fill material 310, such that the sacrificial material element thermally decomposes and evaporates without damaging or removing the fill material 310. In doing so, the fill material 310 retains the shape of the sacrificial material element as the shape of the reaction region 301.


Alternatively, as described above, other techniques may be used to selectively remove (e.g. selectively wet etch) the sacrificial material.


The sacrificial material element protects the upper surface of the ion-sensitive layer 316 during the patterning process used to form the stack. In doing so, damage to the sensing surface of the chemical sensor can be avoided. In addition, by selectively removing the sacrificial material element using for example a non-etch process which does not accumulate charge on the floating gate structure (e.g. heating to cause thermal decomposition of the material), noise induced in the chemical sensor during the formation of the reaction region can be eliminated. As a result, the techniques described herein can be used to form low noise chemical sensors having uniform performance across an array, such that the characteristics of chemical reactions can be accurately measured.


While the present invention is disclosed by reference to the preferred embodiments and examples detailed above, it is to be understood that these examples are intended in an illustrative rather than in a limiting sense. It is contemplated that modifications and combinations will readily occur to those skilled in the art, which modifications and combinations will be within the spirit of the invention and the scope of the following claims.

Claims
  • 1. A method for forming a chemical detection device, the method comprising: forming a gate dielectric on a semiconductor substrate;forming a floating gate structure on the gate dielectric, including: forming a conductive material overlying the gate dielectric;forming a sensing material on the conductive material;forming a sacrificial material overlying the sensing material;patterning the conductive material, the sensing material and the sacrificial material;forming a fill material adjacent to the patterned sacrificial material and the patterned sensing material and the patterned conductive material; andremoving the patterned sacrificial material to expose the patterned sensing material and define a reaction region substantially aligned with the patterned conductive material.
  • 2. The method of claim 1, wherein removing the patterned sacrificial material comprises using a non-etching process.
  • 3. The method of claim 1, wherein removing the patterned sacrificial material comprises applying heat to thermally decompose at least some of the patterned sacrificial material.
  • 4. The method of claim 3, wherein the fill material has a decomposition temperature greater than that of the sacrificial material.
  • 5. The method of claim 1, wherein the sensing material comprises a metal-oxide.
  • 6. The method of claim 1, wherein the sensing material is sensitive to hydrogen ions.
  • 7. The method of claim 1, wherein the chemical detection device generates a sensor signal in response to a chemical reaction occurring within the reaction region.
  • 8. The method of claim 7, wherein the chemical reaction is a sequencing reaction.
  • 9. The method of claim 1, further comprising forming a source and drain in the semiconductor substrate.
  • 10. The method of claim 1, wherein the reaction region is configured to receive at least one reactant.
  • 11. The method of claim 1, wherein removing the patterned sacrificial material comprises using a wet etch process.
US Referenced Citations (406)
Number Name Date Kind
4086642 Yoshida et al. Apr 1978 A
4411741 Janata Oct 1983 A
4490678 Kuisl et al. Dec 1984 A
4641084 Komatsu Feb 1987 A
4691167 Vlekkert et al. Sep 1987 A
4701253 Litenberg et al. Oct 1987 A
4722830 Urie et al. Feb 1988 A
4743954 Brown May 1988 A
4764797 Shaw et al. Aug 1988 A
4777019 Dandekar Oct 1988 A
4822566 Newman Apr 1989 A
4863849 Melamede Sep 1989 A
4864229 Lauks et al. Sep 1989 A
4874499 Smith et al. Oct 1989 A
4971903 Hyman Nov 1990 A
5009766 Lauks Apr 1991 A
5038192 Bonneau Aug 1991 A
5110441 Kinlen et al. May 1992 A
5113870 Rossenfeld May 1992 A
5138251 Koshiishi et al. Aug 1992 A
5151759 Vinal Sep 1992 A
5164319 Hafeman et al. Nov 1992 A
5284566 Cuomo et al. Feb 1994 A
5317407 Michon May 1994 A
5319226 Sohn et al. Jun 1994 A
5407854 Baxter et al. Apr 1995 A
5436149 Barnes Jul 1995 A
5439839 Jang Aug 1995 A
5466348 Holm-Kennedy Nov 1995 A
5490971 Gifford et al. Feb 1996 A
5554339 Cozzette et al. Sep 1996 A
5583462 Grasshoff Dec 1996 A
5593838 Zanzucchi et al. Jan 1997 A
5600451 Maki Feb 1997 A
5631704 Dickinson et al. May 1997 A
5637469 Wilding et al. Jun 1997 A
5702964 Lee Dec 1997 A
5793230 Chu et al. Aug 1998 A
5846708 Hollis et al. Dec 1998 A
5911873 McCarron et al. Jun 1999 A
5912560 Pasternak Jun 1999 A
5922591 Anderson et al. Jul 1999 A
5923421 Rajic et al. Jul 1999 A
5958703 Dower et al. Sep 1999 A
5965452 Kovacs Oct 1999 A
6002299 Thomsen Dec 1999 A
6107032 Kilger et al. Aug 2000 A
6195585 Karunasiri et al. Feb 2001 B1
6210891 Nyren et al. Apr 2001 B1
6255678 Sawada et al. Jul 2001 B1
6262568 Komatsu et al. Jul 2001 B1
6274320 Rothberg et al. Aug 2001 B1
6327410 Walt et al. Dec 2001 B1
6355431 Chee et al. Mar 2002 B1
6361671 Mathies et al. Mar 2002 B1
6384684 Redman-White May 2002 B1
6403957 Fodor et al. Jun 2002 B1
6406848 Bridgham et al. Jun 2002 B1
6413792 Sauer et al. Jul 2002 B1
6429027 Chee et al. Aug 2002 B1
6432360 Church Aug 2002 B1
6433386 Yun et al. Aug 2002 B1
6459398 Gureshnik et al. Oct 2002 B1
6465178 Chappa et al. Oct 2002 B2
6475728 Martin et al. Nov 2002 B1
6482639 Snow et al. Nov 2002 B2
6485944 Church et al. Nov 2002 B1
6490220 Merritt et al. Dec 2002 B1
6499499 Dantsker et al. Dec 2002 B2
6518024 Choong et al. Feb 2003 B2
6518146 Singh et al. Feb 2003 B1
6535824 Mansky et al. Mar 2003 B1
6537881 Rangarajan et al. Mar 2003 B1
6538593 Yang et al. Mar 2003 B2
6545620 Groeneweg Apr 2003 B2
6571189 Jensen et al. May 2003 B2
6602702 McDevitt et al. Aug 2003 B1
6605428 Klinger et al. Aug 2003 B2
6613513 Parce et al. Sep 2003 B1
6624637 Pechstein et al. Sep 2003 B1
6627154 Goodman et al. Sep 2003 B1
6654505 Bridgham et al. Nov 2003 B2
6657269 Migliorato et al. Dec 2003 B2
6682899 Bryan et al. Jan 2004 B2
6682936 Kovacs Jan 2004 B2
6700814 Nahas et al. Mar 2004 B1
6703660 Yitzchaik et al. Mar 2004 B2
6716629 Hess et al. Apr 2004 B2
6762022 Makarov et al. Jul 2004 B2
6770472 Manalis et al. Aug 2004 B2
6780591 Williams et al. Aug 2004 B2
6806052 Bridgham et al. Oct 2004 B2
6828100 Ronaghi Dec 2004 B1
6831994 Bridgham et al. Dec 2004 B2
6841128 Kambara et al. Jan 2005 B2
6859570 Walt et al. Feb 2005 B2
6888194 Yoshino May 2005 B2
6898121 Chien et al. May 2005 B2
6906524 Chung et al. Jun 2005 B2
6919211 Fodor et al. Jul 2005 B1
6926865 Howard Aug 2005 B2
6927045 Hadd et al. Aug 2005 B2
6929944 Matson Aug 2005 B2
6939451 Zhao et al. Sep 2005 B2
6953958 Baxter et al. Oct 2005 B2
6958216 Kelley et al. Oct 2005 B2
6969488 Bridgham et al. Nov 2005 B2
6998274 Chee et al. Feb 2006 B2
7008550 Li et al. Mar 2006 B2
7019305 Eversmann et al. Mar 2006 B2
7022288 Boss Apr 2006 B1
7033754 Chee et al. Apr 2006 B2
7037687 Williams et al. May 2006 B2
7045097 Kovacs May 2006 B2
7049645 Sawada et al. May 2006 B2
7060431 Chee et al. Jun 2006 B2
7067886 Bonges et al. Jun 2006 B2
7084641 Brederlow et al. Aug 2006 B2
7085502 Shushakob et al. Aug 2006 B2
7087387 Gerdes et al. Aug 2006 B2
7090975 Schultz et al. Aug 2006 B2
7091059 Rhodes Aug 2006 B2
7092757 Larson et al. Aug 2006 B2
7097973 Zenhausern Aug 2006 B1
7105300 Parce et al. Sep 2006 B2
7129554 Lieber et al. Oct 2006 B2
7169560 Lapidus et al. Jan 2007 B2
7190026 Lotfi Mar 2007 B2
7192745 Jaeger Mar 2007 B2
7193453 Wei et al. Mar 2007 B2
7211390 Rothberg et al. May 2007 B2
7220550 Keen May 2007 B2
7223540 Pourmand et al. May 2007 B2
7226734 Chee et al. Jun 2007 B2
7229799 Williams et al. Jun 2007 B2
7235389 Lim et al. Jun 2007 B2
7238323 Knapp et al. Jul 2007 B2
7244559 Rothberg et al. Jul 2007 B2
7244567 Chen et al. Jul 2007 B2
7264929 Rothberg et al. Sep 2007 B2
7264934 Fuller Sep 2007 B2
7265929 Umeda et al. Sep 2007 B2
7267751 Gelbart et al. Sep 2007 B2
7276749 Martin et al. Oct 2007 B2
7279588 Hong et al. Oct 2007 B2
7282370 Bridgham et al. Oct 2007 B2
7285384 Fan et al. Oct 2007 B2
7291496 Holm-Kennedy Nov 2007 B2
7297518 Quake et al. Nov 2007 B2
7298475 Gandhi et al. Nov 2007 B2
7303875 Bock et al. Dec 2007 B1
7317216 Holm-Kennedy Jan 2008 B2
7323305 Leamon et al. Jan 2008 B2
7335526 Peters et al. Feb 2008 B2
7335762 Rothberg et al. Feb 2008 B2
7359058 Kranz et al. Apr 2008 B2
7363717 Ekseth et al. Apr 2008 B2
7381936 Tan et al. Jun 2008 B2
7394263 Pechstein et al. Jul 2008 B2
7419636 Aker et al. Sep 2008 B2
7425431 Church et al. Sep 2008 B2
7455971 Chee et al. Nov 2008 B2
7462452 Williams et al. Dec 2008 B2
7462512 Levon et al. Dec 2008 B2
7462709 Jaeger Dec 2008 B2
7465512 Wright et al. Dec 2008 B2
7466258 Akopyan et al. Dec 2008 B1
7470352 Eversmann et al. Dec 2008 B2
7476504 Turner Jan 2009 B2
7482153 Okada et al. Jan 2009 B2
7482677 Lee et al. Jan 2009 B2
7515124 Yaguma et al. Apr 2009 B2
7534097 Wong et al. May 2009 B2
7538827 Chou May 2009 B2
7575865 Leamon et al. Aug 2009 B2
7576037 Engelhardt et al. Aug 2009 B2
7595883 El Gamal et al. Sep 2009 B1
7605650 Forbes Oct 2009 B2
7608810 Yamada Oct 2009 B2
7609093 Sarig et al. Oct 2009 B2
7609303 Lee Oct 2009 B1
7612369 Stasiak Nov 2009 B2
7612817 Tay Nov 2009 B2
7614135 Santini et al. Nov 2009 B2
7622294 Walt et al. Nov 2009 B2
7645596 Williams et al. Jan 2010 B2
7649358 Toumazou et al. Jan 2010 B2
7667501 Surendranath et al. Feb 2010 B2
7686929 Toumazou et al. Mar 2010 B2
7695907 Miyahara et al. Apr 2010 B2
7733401 Takeda Jun 2010 B2
7772383 Chakrabarti et al. Aug 2010 B2
7785785 Pourmand et al. Aug 2010 B2
7785790 Church et al. Aug 2010 B1
7794584 Chodavarapu et al. Sep 2010 B2
7821806 Horiuchi Oct 2010 B2
7838226 Kamahori et al. Nov 2010 B2
7842377 Lanphere et al. Nov 2010 B2
7842457 Berka et al. Nov 2010 B2
7859029 Lee et al. Dec 2010 B2
7859291 Kim Dec 2010 B2
7875440 Williams et al. Jan 2011 B2
7884398 Levon et al. Feb 2011 B2
7885490 Heideman et al. Feb 2011 B2
7888013 Miyahara et al. Feb 2011 B2
7888015 Toumazou et al. Feb 2011 B2
7888708 Yazawa et al. Feb 2011 B2
7890891 Stuber et al. Feb 2011 B2
7898277 Weir Mar 2011 B2
7923240 Su Apr 2011 B2
7927797 Nobile et al. Apr 2011 B2
7932034 Esfandyarpour et al. Apr 2011 B2
7948015 Rothberg et al. May 2011 B2
7960776 Kim et al. Jun 2011 B2
7972828 Ward et al. Jul 2011 B2
7981362 Glezer et al. Jul 2011 B2
8012690 Berka et al. Sep 2011 B2
8017938 Gomez et al. Sep 2011 B2
8035175 Shim et al. Oct 2011 B2
8052863 Suzuki et al. Nov 2011 B2
8067731 Matyjaszczyk et al. Nov 2011 B2
8114591 Toumazou et al. Feb 2012 B2
8124936 Lagna Feb 2012 B1
8133698 Silver et al. Mar 2012 B2
8138496 Li et al. Mar 2012 B2
8199859 Zerbe et al. Jun 2012 B2
8217433 Fife Jul 2012 B1
8231831 Hartzell et al. Jul 2012 B2
8232582 Sauer et al. Jul 2012 B2
8232813 Burdett et al. Jul 2012 B2
8247849 Fife et al. Aug 2012 B2
8262900 Rothberg et al. Sep 2012 B2
8263336 Rothberg et al. Sep 2012 B2
8264014 Rothberg et al. Sep 2012 B2
8269261 Rothberg et al. Sep 2012 B2
8277628 Ronaghi et al. Oct 2012 B2
8293082 Rothberg et al. Oct 2012 B2
8306757 Rothberg et al. Nov 2012 B2
8313625 Rothberg et al. Nov 2012 B2
8313639 Rothberg et al. Nov 2012 B2
8317999 Rothberg et al. Nov 2012 B2
8343856 Therrien et al. Jan 2013 B2
8349167 Rothberg et al. Jan 2013 B2
8361713 Bridgham et al. Jan 2013 B2
8383896 Kamahori et al. Feb 2013 B2
8426898 Rothberg et al. Apr 2013 B2
8445194 Drmanac et al. May 2013 B2
8449824 Sun May 2013 B2
8552771 Jordan et al. Oct 2013 B1
8558288 Rothberg et al. Oct 2013 B2
8592154 Rearick et al. Nov 2013 B2
8673627 Nobile et al. Mar 2014 B2
20020012933 Rothberg et al. Jan 2002 A1
20020042388 Cooper et al. Apr 2002 A1
20020150909 Stuelpnagel et al. Oct 2002 A1
20020168678 Williams et al. Nov 2002 A1
20030054396 Weiner Mar 2003 A1
20030068629 Rothberg et al. Apr 2003 A1
20030108867 Chee et al. Jun 2003 A1
20030119020 Stevens et al. Jun 2003 A1
20030124572 Umek et al. Jul 2003 A1
20030124599 Chen et al. Jul 2003 A1
20030141928 Lee Jul 2003 A1
20030155942 Thewes et al. Aug 2003 A1
20030186262 Cailloux et al. Oct 2003 A1
20030211502 Sauers et al. Nov 2003 A1
20030215857 Kilger et al. Nov 2003 A1
20030224419 Corcoran et al. Dec 2003 A1
20030231531 Baxter et al. Dec 2003 A1
20040023253 Kunwar et al. Feb 2004 A1
20040079636 Hsia et al. Apr 2004 A1
20040106211 Kauer et al. Jun 2004 A1
20040136866 Pontis et al. Jul 2004 A1
20040185484 Costa et al. Sep 2004 A1
20040197803 Yaku et al. Oct 2004 A1
20050006234 Hassibi Jan 2005 A1
20050009022 Weiner et al. Jan 2005 A1
20050031490 Gumbrecht et al. Feb 2005 A1
20050032075 Yaku et al. Feb 2005 A1
20050058990 Guia et al. Mar 2005 A1
20050067372 Li et al. Mar 2005 A1
20050106587 Klapproth May 2005 A1
20050142033 Glezer et al. Jun 2005 A1
20050156207 Yazawa et al. Jul 2005 A1
20050181440 Chee et al. Aug 2005 A1
20050191698 Chee et al. Sep 2005 A1
20050202582 Eversmann et al. Sep 2005 A1
20050212016 Brunner et al. Sep 2005 A1
20050221473 Dubin et al. Oct 2005 A1
20050230245 Morgenshtein et al. Oct 2005 A1
20050233318 Chee et al. Oct 2005 A1
20050239132 Klapproth Oct 2005 A1
20050282224 Fouillet et al. Dec 2005 A1
20060000772 Sano et al. Jan 2006 A1
20060024711 Lapidus et al. Feb 2006 A1
20060057025 Eversmann et al. Mar 2006 A1
20060057604 Chen et al. Mar 2006 A1
20060073513 Chee et al. Apr 2006 A1
20060141474 Miyahara et al. Jun 2006 A1
20060166203 Tooke et al. Jul 2006 A1
20060197118 Migliorato et al. Sep 2006 A1
20060199193 Koo et al. Sep 2006 A1
20060199493 Hartmann, Jr. et al. Sep 2006 A1
20060205061 Roukes Sep 2006 A1
20060219558 Hafeman et al. Oct 2006 A1
20060228721 Leamon et al. Oct 2006 A1
20060246497 Huang et al. Nov 2006 A1
20060269927 Lieber Nov 2006 A1
20070069291 Stuber et al. Mar 2007 A1
20070087401 Neilson et al. Apr 2007 A1
20070092872 Rothberg et al. Apr 2007 A1
20070095663 Chou et al. May 2007 A1
20070212681 Shapiro et al. Sep 2007 A1
20070231824 Chee et al. Oct 2007 A1
20070233477 Halowani et al. Oct 2007 A1
20070262363 Tao et al. Nov 2007 A1
20070278488 Hirabayashi et al. Dec 2007 A1
20080003142 Link et al. Jan 2008 A1
20080014589 Link et al. Jan 2008 A1
20080096216 Quake et al. Apr 2008 A1
20080121946 Youn et al. May 2008 A1
20080185616 Johnson et al. Aug 2008 A1
20080205559 Iida Aug 2008 A1
20080210931 Truong et al. Sep 2008 A1
20080230386 Srinivasan et al. Sep 2008 A1
20090026082 Rothberg et al. Jan 2009 A1
20090048124 Leamon et al. Feb 2009 A1
20090062132 Bortner Mar 2009 A1
20090079414 Levon et al. Mar 2009 A1
20090120905 Kohl et al. May 2009 A1
20090127589 Rothberg et al. May 2009 A1
20090156425 Walt et al. Jun 2009 A1
20090170728 Walt et al. Jul 2009 A1
20090194416 Hsiung et al. Aug 2009 A1
20100007326 Nakazato Jan 2010 A1
20100137143 Rothberg et al. Jun 2010 A1
20100244106 Parker et al. Sep 2010 A1
20100273166 Garcia Oct 2010 A1
20100300895 Nobile et al. Dec 2010 A1
20100301398 Rothberg et al. Dec 2010 A1
20110037121 Lee et al. Feb 2011 A1
20110062972 Minkyu et al. Mar 2011 A1
20110114827 Yamaoka et al. May 2011 A1
20110165557 Ah et al. Jul 2011 A1
20110181253 Isham et al. Jul 2011 A1
20110217697 Rothberg et al. Sep 2011 A1
20110230375 Rothberg et al. Sep 2011 A1
20110236263 Sawada et al. Sep 2011 A1
20110247933 Rothberg et al. Oct 2011 A1
20110263463 Rothberg et al. Oct 2011 A1
20110275522 Rothberg et al. Nov 2011 A1
20110281737 Rothberg et al. Nov 2011 A1
20110281741 Rothberg et al. Nov 2011 A1
20110287945 Rothberg et al. Nov 2011 A1
20110299337 Parris et al. Dec 2011 A1
20120000274 Fife Jan 2012 A1
20120001056 Fife et al. Jan 2012 A1
20120001235 Fife Jan 2012 A1
20120001236 Fife et al. Jan 2012 A1
20120001237 Fife et al. Jan 2012 A1
20120001646 Bolander et al. Jan 2012 A1
20120013392 Rothberg et al. Jan 2012 A1
20120022795 Johnson et al. Jan 2012 A1
20120034607 Rothberg et al. Feb 2012 A1
20120037961 Rothberg et al. Feb 2012 A1
20120045368 Hinz et al. Feb 2012 A1
20120045844 Rothberg et al. Feb 2012 A1
20120055811 Rothberg et al. Mar 2012 A1
20120055813 Rothberg et al. Mar 2012 A1
20120056248 Fife et al. Mar 2012 A1
20120074956 Fife et al. Mar 2012 A1
20120129703 Rothberg et al. May 2012 A1
20120129732 Rothberg et al. May 2012 A1
20120135870 Rothberg et al. May 2012 A1
20120143531 Davey et al. Jun 2012 A1
20120161207 Homyk et al. Jun 2012 A1
20120173159 Davey et al. Jul 2012 A1
20120247977 Rothberg et al. Oct 2012 A1
20120261274 Rearick et al. Oct 2012 A1
20120265474 Rearick et al. Oct 2012 A1
20120279859 Rothberg et al. Nov 2012 A1
20120280285 Rothberg et al. Nov 2012 A1
20120280286 Rothberg et al. Nov 2012 A1
20120283146 Rothberg et al. Nov 2012 A1
20120286332 Rothberg et al. Nov 2012 A1
20120286333 Rothberg et al. Nov 2012 A1
20120286771 Rothberg et al. Nov 2012 A1
20120288853 Rothberg et al. Nov 2012 A1
20120288976 Rothberg et al. Nov 2012 A1
20120289413 Rothberg et al. Nov 2012 A1
20120293158 Rothberg et al. Nov 2012 A1
20120295795 Rothberg et al. Nov 2012 A1
20120322054 Rothberg et al. Dec 2012 A1
20120325683 Milgrew Dec 2012 A1
20120326213 Bustillo et al. Dec 2012 A1
20120326767 Milgrew Dec 2012 A1
20120329043 Milgrew Dec 2012 A1
20120329044 Milgrew Dec 2012 A1
20120329192 Bustillo et al. Dec 2012 A1
20130001653 Milgrew Jan 2013 A1
20130004948 Milgrew Jan 2013 A1
20130004949 Rearick et al. Jan 2013 A1
20130009214 Bustillo et al. Jan 2013 A1
20130015505 Rothberg et al. Jan 2013 A1
20130015506 Rothberg et al. Jan 2013 A1
20130017959 Rothberg et al. Jan 2013 A1
Foreign Referenced Citations (62)
Number Date Country
1582334 Feb 2005 CN
1585896 Feb 2005 CN
1826525 Aug 2006 CN
102203282 Sep 2011 CN
102008012899 Sep 2009 DE
0223618 May 1987 EP
1371974 Dec 2003 EP
1432818 Jun 2004 EP
1542009 Jun 2005 EP
1557884 Jul 2005 EP
1870703 Dec 2007 EP
2307577 Apr 2011 EP
2457851 Sep 2009 GB
2461127 Jul 2010 GB
58070155 Apr 1983 JP
2002272463 Sep 2002 JP
2005218310 Aug 2004 JP
05077210 Mar 2005 JP
2005518541 Jun 2005 JP
06138846 Jun 2006 JP
2011525810 Sep 2011 JP
100442838 Jul 2004 KR
100455283 Oct 2004 KR
WO-8909283 Oct 1989 WO
WO-9813523 Apr 1998 WO
WO-9846797 Oct 1998 WO
WO-0120039 Mar 2001 WO
WO-0181896 Nov 2001 WO
WO-02077287 Oct 2002 WO
WO-02086162 Oct 2002 WO
WO-03073088 Sep 2003 WO
WO-2004040291 May 2004 WO
WO2004040291 May 2004 WO
WO2004048962 Jun 2004 WO
WO2005015156 Feb 2005 WO
WO-2005047878 May 2005 WO
WO2005043160 May 2005 WO
WO-2005054431 Jun 2005 WO
WO2005602049 Jul 2005 WO
WO-2005084367 Sep 2005 WO
WO2005090961 Sep 2005 WO
WO-2006022370 Mar 2006 WO
WO-2006005967 Jun 2006 WO
WO2007002204 Jan 2007 WO
WO-2007086935 Aug 2007 WO
WO-2008007716 Jan 2008 WO
WO-2008058282 May 2008 WO
WO-2008076406 Jun 2008 WO
WO-2008107014 Sep 2008 WO
WO-2009012112 Jan 2009 WO
WO2009041917 Apr 2009 WO
WO2009074926 Jun 2009 WO
WO2009081890 Jul 2009 WO
WO-2009158006 Dec 2009 WO
WO-2010008480 Jan 2010 WO
WO-2010047804 Apr 2010 WO
WO-2010138182 Dec 2010 WO
WO-2012003359 Jan 2012 WO
WO-2012003363 Jan 2012 WO
WO-2012003368 Jan 2012 WO
WO-2012003380 Jan 2012 WO
WO-2012006222 Jan 2012 WO
Non-Patent Literature Citations (214)
Entry
Dazhong, Z. et al. “Research of CMOS Biosensor IC for Extracellular Electrophysiological Signal Recording and pH value Measuring” Solid-State and Integrated Circuit Technology, 9th International Conference, Oct. 20, 2008, pp. 2557-2560.
EP11801437.2 Extended European Search Report dated Jul. 25, 2013.
EP11804218.3 Extended European Search Report dated Jul. 11, 2013.
EP11804218.3 First Office Action dated Jul. 29, 2013.
EP11827128.7 European Search Report dated Aug. 1, 2013.
EP13161312.7 Extended European Search Report dated Oct. 15, 2013.
EP13163995.7 Extended European Search Report dated Aug. 20, 2013.
Eriksson, J. et al. “Pyrosequencing Technology at Elevated Temperature” Electrophoresis, vol. 25, 2004, pp. 20-27.
Hanshaw, R. et al., “An indicator displacement system for fluorescent detection of phosphate oxyanions under physiological conditions” Science Direct, Tetrahedron Ltrs., vol. 45, 2004, pp. 8721-8724.
Hizawa, et al. “Sensing Characteristics of Charge Transfer Type pH Sensor by Accumulative Operation” IEEE Sensors, EXCO, Daegu, Korea, 2006, pp. 144-147.
JP20120246413 First Office Action dated Jun. 28, 2013.
Lee, S. et al. “An Enhanced Glucose Biosensor Using Charge Transfer Techniques” Biosensors and Bioelectronics, vol. 24, 2008, pp. 650-656.
Matsuo, J. et al. “Charge Transfer Type pH Sensor with Super High Sensitivity” 14th International Conference on Solid-State Sensors Actuators and Microsystems, France, Jun. 10-14, 2007, pp. 1881-1884.
PCT/US2011/042683 International Preliminary Report on Patentability Mailed Jun. 4, 2013.
PCT/US2013/022129 International Search Report and Written Opinion dated Aug. 9, 2013.
Premanode, B. et al. “Drift Reduction in Ion-Sensitive FETs Using Correlated Double Sampling”, Electronics Letters, IEEE Stevenage, GB, vol. 43 (16) Aug. 2, 2007.
Rothberg, J. et al., “An integrated semiconductor device enabling non-optical genome sequencing” Nature, vol. 475, No. 7356, 2011, pp. 348-352.
Sawada, K. et al., “Highly sensitive ion sensors using charge transfer technique”, Sensors Actuators B, vol. 98, 2004, pp. 69-72.
Seong-Jin, K. et al. “Label-Free CMOS DNA Quantification With On-Chip Noise Reduction Schemes” Solid-State Sensors, Actuators and Microsystems Conference, IEEE, Jun. 10, 2013, pp. 947-950.
Voigt, H. et al. “Diamond-like carbon-gate pH-ISFET” Sensors and Actuators B., vol. 44, 1997, pp. 441-445.
[No Author Listed], “ISFET Wikipedia article”, Wikipedia, Last modified Nov. 7, 2006.
Akiyama, T. et al., “Ion-Sensitive Field-Effect Transistors with Inorganic Gate Oxide for pH Sensing”, IEE Transactions on Electron Devices, vol. ED-29 (12), 1982, pp. 1936-1941.
AU2011226767 Search Information Statement Mailed Oct. 26, 2011.
Bandiera, L. et al., “A fully electronic sensor for the measurement of cDNA hybridization kinetics”, Biosens Bioelectron, vol. 22, 2007, pp. 2108-2114.
Barbaro, M. et al., “A CMOS, Fully Integrated Sensor for Electronic Detection of DNA Hybridization”, IEEE Electron Device Letters, vol. 27(7), 2006, pp. 595-597.
Barbaro, M. et al., “A Charge-Modulated FET for Detection of Biomolecular Processes: Conception, Modeling, and Simulation”, IEEE Transactions on Electron Devices, vol. 53(1), 2006, pp. 158-166.
Barbaro, M. et al., “Fully electronic DNA hybridization detection by a standard CMOS biochip”, Sensors and Actuators B Chemical, vol. 118, 2006, pp. 41-46.
Bashford, G. et al., “Automated bead-trapping apparatus and control system for single-molecule DNA sequencing”, Optics Express, vol. 16(5), 2008, pp. 3445-3455.
Baumann, W. et al., “Microelectronic sensor system for microphysiological application on living cells”, Sensors and Actuators B, vol. 55(1), 1999, pp. 77-89.
Bausells, J. et al., “Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology”, Sensors and Actuators B Chemical, vol. 57(1-3), 1999, pp. 56-62.
Bergveld, P., “ISFET, Theory and Practice”, IEEE Sensor Conference, Toronto, Oct. 2003, pp. 1-26.
Bergveld, P., “Thirty years of ISFETOLOGY What happened in the past 30 years and what may happen in the next 30 years”, Sensors and Actuators B, vol. 88(1), 2003, pp. 1-20.
Besselink, G. et al., “ISFET Affinity Sensor”, Methods in Biotechnology, vol. 7: Affinity Biosensors: Techniques and Protocols, 1998, pp. 173-185.
Bobrov, P. et al., “Chemical sensitivity of an ISFET with Ta2O5 membrane in strong acid and alkaline solutions”, Sensors and Actuators B, vol. 3, 1991, pp. 75-81.
Bousse, L. et al., “A process for the combined fabrication of ion sensors and CMOS circuits”, IEEE Electron Device Letters, vol. 9(1), 1988, pp. 44-46.
Bousse, L. et al., “Zeta potential measurements of Ta2O5 and SiO2 thin films”, J. Colloid Interface Sci., vol. 147(1), 1991, pp. 22-32.
Chan, Wai P. et al., “An Integrated ISFETs Instrumentation System in Standard CMOS Technology”, IEEE Journal of Solid-State Circuits, vol. 45, No. 9, 2010, pp. 1923-1934.
Chen, Y. et al., “Nanoscale field effect transistor for biomolecular signal amplification”, App Phys Letter, vol. 91(24), 2007, pp. 243511-1-243511-3.
Chen, Y. et al., “Silicon-based nanoelectronic field-effect pH sensor with local gate control”, App Phys Letter, vol. 89, 2006, pp. 223512-1-223512-3.
Chinese Patent Application 200780051353.2 Second Office Action Mailed Mar. 5, 2013.
Chou, J. et al., “Letter to the Editor on Simulation of Ta2O5 gate ISFET temperature characteristics”, Sensors and Actuators B, vol. 80, 2001, pp. 290-291.
Chou, J. et al., “Simulation of Ta2O5 gate ISFET temperature characteristics”, Sensor and Actuators B, vol. 71, Letter to the Editor, 2000, pp. 73-76.
Chung, W-Y. et al., “ISFET interface circuit embedded with noise rejection capability”, Electronics Letters, vol. 40(18), e-pub, 2004, 1115-1116.
Chung, W-Y. et al., “ISFET performance enhancement by using the improved circuit techniques”, Sensors and Actuators B, vol. 113, 2006, pp. 555-562.
Chung, W-Y. et al., “New ISFET Interface Circuit Design with Temperature Compensation”, Microelectronics Journal, vol. 37(10), 2006, pp. 1105-1114.
Chung, W-Y. et al., “Temperature Compensation Electronics for ISFET Readout Applications”, Biomedical Circuits and Systems, IEEE International Workshop Singapore, 2004, pp. 305-308.
Eijkel, J. et al., “Measuring Donnan-related phenomena using a solid-state ion sensor and a concentration-step method”, J. Membrane Sci., vol. 127, 1997, pp. 203-221.
Eijkel, J., “Potentiometric detection and characterization of adsorbed protein using stimulus-response measurement techniques”, Thesis, Sep. 3, 1955, pp. 1-147; 160-192.
Eltoukhy, H. et al., “A 0.18um CMOS 10-6 lux Bioluminescence Detection System-on-Chip”, ISSCC 2004/Session12/Biomicrosystems/12.3, 2004, pp. 1-3.
Eltoukhy, H. et al., “A. 0.18-um CMOS Bioluminescence Detection Lab-on-Chip”, IEEE J Solid-State Circuits, vol. 41(3), 2006, pp. 651-662.
EP7867780.4 Examination Report Mailed Jul. 3, 2012.
Esfandyarpour, H. et al., “Gate-controlled microfluidic chamber with magnetic bead for DNA sequencing-by-synthesis technology”, Proc 5th Intl Conf Nanochannels, Microchannels and Minichannels, Puebla, Mexico, Jun. 18-20, 2007, pp. 1-5.
Eversmann, B. et al., “A 128×128 CMOS Biosensor Array for Extracellular Recording of Neural Activity”, IEEE J. Solid-State Circ., vol. 38(12), 2003, pp. 2306-2317.
Faramarzpour, N. et al., “CMOS-Based Active Pixel for Low-Light Level Detection: Analysis and Measurements”, IEEE Trans Electron Devices, vol. 54(12), 2007, pp. 3229-3237.
Finn, A. et al., “Towards an Optimization of FET-Based Bio-Sensors”, European Cells and Materials, vol. 4, Sup 2, 2002, pp. 21-23.
Fraden, J., “Handbook of Modern Sensors-Physics, Designs, and Applications”, 17.3.2 CHEMFET Sensors, 1996, pp. 499-501.
Fritz, J. et al., “Electronic detection of DNA by its intrinsic molecular charge”, PNAS, vol. 99(22), 2002, pp. 14142-14146.
GB0811656.8 Search and Examination Report Mailed Mar. 12, 2010.
GB0811656.8 Search Report Mailed Sep. 21, 2009.
GB0811657.6 Examination Report Mailed Jun. 30, 2010.
GB0811657.6 Search Report under Section 17 Mailed Oct. 26, 2009.
Gracia, I. et al., “Test Structures for ISFET Chemical Sensors”, Proc IEEE 1992 Intl Conf Microelec Test Struct, 1992, pp. 156-159.
Hammond, P. et al., “A System-on-Chip Digital pH Meter for Use in a Wireless Diagnostic Capsule”, IEEE Trans Biomedical Eng., vol. 52(4), 2005, pp. 687-694.
Hammond, P. et al., “Design of a Single-Chip pH Sensor Using a Conventional 0.6-μm CMOS Process”, IEEE Sensors Journal, vol. 4(6), 2004, pp. 706-712.
Hammond, P. et al., “Encapsulation of a liquid-sensing microchip using SU-8 photoresist”, MicoElectronic Engineering, vol. 73-74, 2004, pp. 893-897.
Hammond, S. et al., “Genomic sequencing and analysis of a Chinese Hamster ovary cell line using Illumina sequencing technology”, BMC Genomics, vol. 12:67, 2011, pp. 1-8.
Han, Y., “Label-free detection of biomolecules by a field-effect transistor microarray biosensor with bio-functionalized gate surfaces”, Aachen, Techn. Hochsch., Diss., 2006, pp. 1-63.
Hara, H. et al., “Dynamic response of a Ta2O5-gate pH-sensitive field-effect transistor”, Sensors Actuators B, vol. 32, 1996, pp. 115-119.
Hermon, Z. et al., “Miniaturized bio-electronic hybrid for chemical sensing applications”, Tech Connect News, 2008, p. 1.
Hideshima, S. et al., “Detection of tumor marker in blood serum using antibody-modified field effect transistor with optimized BSA blocking”, Sensors and Actuations B: Chemical, vol. 161, 2012, pp. 146-150.
Hizawa, T. et al., “Fabrication of a two-dimensional pH image sensor using a charge transfer technique”, Sensors and Actuators B Chemical, vol. 117, 2006, pp. 509-515.
Hizawa, T. et al., “32×32 pH Image Sensors for Real Time Observation of Biochemical Phenomena”, Solid-State Sensors, Actuators and Microsystems Conference, 2007, Transducers 2007. International, 2007, pp. 1311-1312.
Jakobson, C. et al., “Low frequency noise and drift in Ion Sensitive Field Effect Transistors”, Sensors Actuators B, vol. 68, 2000, pp. 134-139.
Ji, H. et al., “A CMOS contact imager for locating individual cells”, ISCAS, 2006, pp. 3357-3360.
Ji, H. et al., “Contact Imaging: Simulation and Experiment”, IEEE Trans Circuits Systems-I: Regular Papers, vol. 54(8), 2007, pp. 1698-1710.
Kim, D. et al., “An FET-type charger sensor for highly sensitive detection of DNA sequence”, Biosens Bioelectron, vol. 20(1), 2004, pp. 69-74.
Klein, M., “Time effects of ion-sensitive field-effect transistors”, Sensors and Actuators B, vol. 17(1-2), 1989, pp. 203-208.
Koch, S. et al., “Protein detection with a novel ISFET-based zeta potential analyzer”, Biosensors & Bioelectronics, vol. 14, 1999, pp. 413-421.
Krause, M. et al., “Extended Gate Electrode Arrays for Extracellular Signal Recordings”, Sensors and Actuators B, vol. 70, 2000, pp. 101-107.
Kruise, J. et al., “Detection of protein concentrations using a pH-step titration method”, Sensors Actuators B, vol. 44, 1997, pp. 297-303.
Leamon, J. et al., “A Massively Parallel PicoTiterPlate Based Platform for Discrete Picoliter-Scale Polymerase Chain Reactions”, Electrophoresis, vol. 24, 2003, pp. 3769-3777.
Leamon, J. et al., “Cramming More Sequencing Reactions onto Microreactor Chips”, Chemical Reviews, vol. 107, 2007, pp. 3367-3376.
Lee, C-S. et al., “Ion-sensitive Field-Effect Transistor for Biological Sensing”, Sensors, vol. 9, 2009, pp. 7111-7131.
Lohrengel, M. et al., “A new microcell or microreactor for material surface investigations at large current densities”, Electrochimica Acta, vol. 49, 2004, pp. 2863-2870.
Lui, A. et al., “A Test Chip for ISFET/CMNOS Technology Development”, Proc. of the 1996 IEEE Intl. Conf. on Microelectronic Test Structures, vol. 9, 1996, pp. 123-128.
Margulies, M. et al., “Genome sequencing in microfabricated high-density picolitre reactors”, Nature, vol. 437(7057), 2005, pp. 376-380.
Marshall, A. et al., “DNA chips: an array of possibilities”, Nature Biotechnology, vol. 16, 1998, pp. 27-31.
Martinoia, S. et al., “A behavioral macromodel of the ISFET in SPICE”, Sensors Actuators B, vol. 62, 2000, pp. 182-189.
Martinoia, S. et al., “Development of ISFET Array-Based Microsystems for Bioelectrochemical measurements of cell populations”, Biosensors & Bioelectronics, vol. 16, 2001, pp. 1043-1050.
Medoro, G. et al., “A Lab-on-a-Chip for Cell Detection and Manipulation”, IEEE Sensors J, vol. 3(3), 2003, pp. 317-325.
Meyburg, S. et al., “N-Channel field-effect transistors with floating gates for extracellular recordings”, Biosens Bioelectron, vol. 21(7), 2006, pp. 1037-1044.
Milgrew, M. et al., “A 16×16 CMOS proton camera array for direct extracellular imaging of hydrogen-ion activity”, IEEE Intl Solid-State Circuits Conf, Session 32:24, 2008, pp. 590-638.
Milgrew, M. et al., “A large transistor based sensor array chip for direct extracellular imaging”, Sensors and Actuators B Chemical, vol. 111-112, 2005, pp. 347-353.
Milgrew, M. et al., “Matching the transconductance characteristics of CMOS ESFET arrays by removing trapped charge”, IEEE Trans Electron Devices, vol. 55(4), 2008, pp. 1074-1079.
Milgrew, M. et al., “Microsensor Array Technology for Direct Extracellular Imaging”, Dept Electronic and EE, University of Glasgow, 2006, pp. 1-23.
Milgrew, M. et al., “The development of scalable sensor arrays using standard CMOS technology”, Sensors and Actuators B, vol. 103, 2004, pp. 37-42.
Milgrew, M. et al., “The fabrication of scalable multi-sensor arrays using standard CMOS technology”, 2003 IEEE Custom Integrated Circuits Conference, 2003, pp. 513-516.
Miyahara, Y. et al., “Biochip Using Micromachining Technology”, J. Institute of Electrostatics, Japan, vol. 27(6), (Translation Included), 2003, pp. 268-272.
Miyahara, Y. et al., “Direct Transduction of Primer Extension into Electrical Signal Using Genetic Field Effect Transistor”, Micro Total Analysis Systems 2004, vol. 1, 2004, pp. 303-305.
Miyahara, Y. et al., “Potentiometric Detection of DNA Molecules Using Field Effect Transistor”, The Japan Society of Applied Physics, No. 3 (Translation included), 2003, pp. 1180.
Nyren, P. et al., “Enzymatic Method for Continuous Monitoring of Inorganic Pyrophosphate Synthesis”, Analytical Biochemistry, vol. 151, 1985, pp. 504-509.
Oelbner, W. et al., “Encapsulation of ESFET sensor chips”, Sensors Actuators B, vol. 105, 2005, pp. 104-117.
Oelbner, W. et al., “Investigation of the dynamic response behaviour of ISFET pH sensors by means of laser Doppler velocimetry (LDV)”, Sensors Actuators B, vol. 26-27, 1995, pp. 345-348.
Offenhausser, A. et al., “Field-Effect transistor array for monitoring electrical activity from mammalian neurons in culture”, Biosensors & Bioelectronics, vol. 12(8), 1997, pp. 819-826.
Ohno, Y. et al., “Electrolyte-Gated Graphene Field-Effect Transistors for Detecting pH and Protein Adsorption”, Nano Letters, vol. 9(9), Jul. 28, 2009, pp. 3318-3322.
Park, K-Y. et al., “ISFET Glucose Sensor System With Fast Recovery Characteristics by Employing Electrolysis”, Sensors and Actuators B: Chemical, vol. 83 (1-3), 2002, pp. 90-97.
Patolsky, F. et al., “Nanowire-Based Biosensors”, Analyt Chem 1, vol. 78(13), 2006, pp. 4261-4269.
PCT/US2009/05745 International Preliminary Report on Patentability Mailed Apr. 26, 2011.
PCT/US2009/05745 International Search Report Mailed Dec. 11, 2009.
PCT/US2009/05745 Written Opinion Mailed Dec. 11, 2009.
PCT/US2007/025721 International Preliminary Report on Patentability Mailed Jun. 16, 2009.
PCT/US2007/025721 Written Opinion Mailed Jun. 16, 2009.
PCT/US2009/003766 International Preliminary Report on Patentability Mailed Jan. 5, 2011.
PCT/US2009/003766 International Search Report Mailed Apr. 8, 2010.
PCT/US2009/003766 Written Opinion Mailed Apr. 8, 2010.
PCT/US2009/003797 International Search Report Mailed Mar. 12, 2010.
PCT/US2009/003797 Written Opinion Mailed Mar. 12, 2010.
PCT/US2010/001543 International Preliminary Report on Patentability Mailed Nov. 29, 2011.
PCT/US2010/001543 International Search Report and Written Opinion Mailed Oct. 13, 2010.
PCT/US2010/048835 International Preliminary Report on Patentability Mailed Mar. 19, 2013.
PCT/US2010/048835 International Search Report and Written Opinion Mailed Dec. 16, 2010.
PCT/US2011/042655 International Search Report Mailed Oct. 21, 2011.
PCT/US2011/042660 International Search Report Mailed Nov. 2, 2011.
PCT/US2011/042665 International Search Report Mailed Nov. 2, 2011.
PCT/US2011/042668 International Preliminary Report on Patentability Mailed Mar. 26, 2013.
PCT/US2011/042668 International Search Report Mailed Oct. 28, 2011.
PCT/US2011/042669 International Search Report Mailed Jan. 9, 2012.
PCT/US2011/042669 Written Opinion Mailed Jan. 9, 2012.
PCT/US2011/042683 International Search Report Mailed Feb. 16, 2012.
PCT/US2011/042683 Written Opinion Mailed Feb. 16, 2012.
PCT/US2012/058996 International Search Report and Written Opinion Mailed Jan. 22, 2013.
PCT/US2012/071471 International Search Report and Written Opinion Mailed Apr. 24, 2013.
PCT/US2012/071482 International Search Report and Written Opinion Mailed May 23, 2013.
PCT/US2013/022140 International Search Report and Written Opinion Mailed May 2, 2013.
Poghossian, A. et al., “Functional testing and characterization of ISFETs on wafer level by means of a micro-droplet cell”, Sensors, vol. 6, 2006, pp. 397-404.
Pollack, J. et al., “Genome-Wide Analysis of DNA copy-number changes using cDNA Microarrays”, Nature Genetics, vol. 23, 1999, pp. 41-46.
Pourmand, N. et al., “Direct electrical detection of DNA synthesis”, PNAS, vol. 103(17), 2006, pp. 6466-6470.
Pouthas, F. et al., “Spatially resolved electronic detection of biopolymers”, Phys Rev, vol. 70, 2004, pp. 031906-1-031906-8.
Premanode, B. et al., “A composite ISFED readout circuit employing current feedback”, Sensors Actuators B, vol. 127, 2007, pp. 486-490.
Premanode, B. et al., “A novel, low power biosensor for real time monitoring of creatine and urea in peritoneal dialysis”, Sensors Actuators B, vol. 120, 2007, pp. 732-735.
Premanode, B. et al., “Ultra-low power precision ISFET readout using global current feedback”, Electronic Lett, vol. 42(22), 2006, pp. 1264-1265.
Purushothaman, S. et al., “Protons and single nucleotide polymorphism detection: A simple use for the Ion Sensitive Field Effect Transistor”, Sensors and Actuators B Chemical, vol. 114(2), 2006, pp. 964-968.
Purushothaman, S. et al., “Towards Fast Solid State DNA Sequencing”, IEEE ISCAS 2002 Proceedings, Circuits and Systems, vol. 4, 2002, pp. IV-169-IV-172.
Rodriguez-Villegas, E., “Solution to trapped charge in FGMOS transistors”, Electronics Letters, vol. 39(19), 2003.
Sakata, T. et al., “Cell-based field effect devices for cell adhesion analysis”, Intl. Conf. of Microtechnologies in Medicine and Biology, May 9-12, 2006, Okinawa, Japan, pp. 177-179.
Sakata, T. et al., “Detection of DNA recognition events using multi-well field effect transistor”, Biosensors and Bioelectronics vol. 21, 2005, pp. 827-832.
Sakata, T. et al., “Detection sensitivity of genetic field effect transistor combined with charged nanoparticle-DNA conjugate”, Proc. of 2006 Intl. Conf. on Microtechnologies in Medicine and Biology, May 9-12, 2006, Okinawa, Japan, pp. 97-100.
Sakata, T. et al., “Direct detection of single nucleotide polymorphism using genetic field effect transistor”, Digest of Papers Microprocesses and Nanotechnology 2004, Osaka, Japan, 2004 International Microprocesses and Nanotechnology Conference, 2004, pp. 226-227.
Sakata, T. et al., “Direct Detection of Single-Base Extension Reaction Using Genetic Field Effect Transistor”, Proc. of 3rd Ann. Intl. IEEE EMBS Special Topic Conf. on Microtechnologies in Medicine and Biology, Kahuku, Oahu, HI, May 12-15, 2005, pp. 219-222.
Sakata, T. et al., “Direct transduction of allele-specific primer extension into electrical signal using genetic field effect transistor”, Biosensors and Bioelectronics, vol. 22, 2007, pp. 1311-1316.
Sakata, T. et al., “DNA Analysis Chip Based on Field-Effect Transistors”, Japanese Journal of Applied Physics, vol. 44(4B), 2005, pp. 2854-2859.
Sakata, T. et al., “DNA Sequencing Based on Intrinsic Molecular Charges”, Angewandte Chemie International Edition 2006, vol. 118, 2006, pp. 2283-2286.
Sakata, T. et al., “DNA Sequencing Based on Intrinsic Molecular Charges”, Angewandte Chemie International Edition 2006, vol. 45, 2006, pp. 2225-2228.
Sakata, T. et al., “DNA Sequencing Using Genetic Field Effect Transistor”, Solid-State Sensors, Actuators and Microsystems, vol. 2, 2005, pp. 1676-1679.
Sakata, T. et al., “Immobilization of oligonucleotide probes on Si3N4 surface and its application to genetic field effect transistor”, Materials Science and Engineering: C, vol. 24, 2004, pp. 827-832.
Sakata, T. et al., “Potential Behavior of Biochemically Modified Gold Electrode for Extended-Gate Field-Effect Transistor”, Japanese Journal of Applied Physics, vol. 44(4B), 2005, pp. 2860-2863.
Sakata, T. et al., “Potential Response of Genetic Field Effect Transistor to Charged Nanoparticle-DNA Conjugate”, Digest of Papers Microprocesses and Nanotechnology 2005, Tokyo, Japan, 2005 Intl Microprocesses and Nanotech Conf., Hotel Bellclassic, 2005, pp. 42-43.
Sakata, T. et al., “Potentiometric Detection of Allele Specific Oligonucleotide Hybridization Using Genetic Field Effect Transistor”, Micro Total Analysis Systems, 8th Intl. Conf. on Miniaturized Systems for Chemistry and Life Sciences, 2004, pp. 300-302.
Sakata, T. et al., “Potentiometric detection of DNA molecules hybridization using gene field effect transistor and intercalator” Materials Research Society Symposium Proceedings, vol. 782, 2004, pp. 393-400.
Sakata, T. et al., “Potentiometric Detection of DNA Using Genetic Transistor”, Denki Gakkai Kenkyukai Shiryo Chemical Sensor Kenkyukai, CHS-03-51-55, 2003, pp. 1-5.
Sakata, T. et al., “Potentiometric Detection of Single Nucleotide Polymorphism by Using a Genetic Field-effect transistor”, ChemBioChem, vol. 6, 2005, pp. 703-710.
Sakurai, T. et al., “Real-Time Monitoring of DNA Polymerase Reactions by a Micro ISFET pH Sensor”, Anal Chem, vol. 64(17), 1992, pp. 1996-1997.
Salama, K., “CMOS luminescence detection lab-on-chip: modeling, design, and characterization”, Thesis, Presented at Stanford University, 2005, pp. ii-78.
Salama, K., “Modeling and simulation of luminescence detection platforms”, Biosensors & Bioelectronics, 2004, pp. 1377-1386.
Sawada, K. et al., “A novel fused sensor for photo- and ion-sensing”, Sensors Actuators B, vol. 106, 2005, pp. 614-618.
Schasfoort, R. et al., “A new approach to immunoFET operation”, Biosensors & Bioelectronics, vol. 5, 1990, pp. 103-124.
Schasfoort, R. et al., “Field-effect flow control for microfabricated fluidic networks”, Science, vol. 286(5441), 1999, pp. 942-945.
Schoning, M. et al., “Bio FEDs (Field-Effect Devices): State-of-the-Art and New Directions”, Electroanalysis, vol. 18(19-20), 2006, pp. 1893-1900.
SG200903992-6 Search and Examination Report Mailed Jan. 20, 2011.
Shah, N., “Microfabrication of a parellel-array DNA pyrosequencing chip”, NNIN REU Research Accomplishments, 2005, pp. 130-131.
Shepherd, L. et al., “A biochemical translinear principle with weak inversion ISFETs”, IEEE Trans Circuits Syst-I, vol. 52(12), 2005, pp. 2614-2619.
Shepherd, L. et al., “A novel voltage-clamped CMOS ISFET sensor interface”, IEEE, 2007, pp. 3331-3334.
Shepherd, L. et al., “Towards direct biochemical analysis with weak inversion ISFETS”, Intl Workshop on Biomedical, 2004, S1.5-5-S1.5-8.
Shepherd, L. et al., “Weak inversion ISFETs for ultra-low power biochemical sensing and real-time analysis”, Sensors Actuators B, vol. 107, 2005, pp. 468-473.
Shi, Y. et al., “Radical Capillary Array Electrophoresis Microplace and Scanner for High-Performance Nucleic Acid Analysis”, Anal. Chem., vol. 71(23), 1999, pp. 5354-5361.
Simonian, A. L. et al., “FET based biosensors for the direct detection of organophosphate neurotoxins”, Electroanalysis, vol. 16(22), 2004, pp. 1896-1906.
Souteyrand, E. et al., “Direct detection of the hybridization of synthetic homo-oligomer DNA sequences by field effect”, J Phys Chem B, vol. 101(15), 1997, pp. 2980-2985.
Starodub, N. et al., “Immunosensor for the determination of the herbicide simazine based on an ion-selective field-effect transistor”, Analytica Chimica Acta, vol. 424, 2000, pp. 37-43.
Takenaka, S. et al., “DNA Sensing on a DNA Probe-Modified Electrode Using Ferrocenylnaphthalene Dimide as the Electrochemically Active Ligand”, Anal. Chem., vol. 72(6), 2000, pp. 1334-1341.
Tomaszewski, D. et al., “Electrical characterization of ISFETs”, J Telecomm Info Technol, 2007, pp. 55-60.
Toumazou, C. et al., “Using transistors to linearase biochemistry”, Elect Let, vol. 43(2), 2007, p. 3.
Truman, P. et al. “Monitoring liquid transport and chemical composition in lab on a chip systems using ion sensitive FET devices”, Lab on a Chip, vol. 6, 2006, pp. 1220-1228.
Uslu, F. et al., “Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device”, Biosens & Bioelectron, vol. 19(12), 2004, pp. 1723-1731.
Van Der Wouden, E. et al., “Directional flow induced by synchronized longitudinal and zeta-potential controlling AC-electrical fields”, Lab Chip, vol. 6(10), 2006, pp. 1300-1305.
Van Hal, R.E.G. et al., “A general model to describe the electrostatic potential at electrolyte oxide interfaces”, Advances in Colloid and Interface Science, vol. 69, 1996, pp. 31-62.
Van Kerkhof, J. et al., “ISFET Responses on a stepwise change in electrolyte concentration at constant pH”, Sensors Actuators B: Chemical, vol. 18-19, 1994, pp. 56-59.
Van Kerkhof, J. et al., “The ISFET based heparin sensor with a monolayer of protamine as affinity ligand”, Biosensors & Bioelectronics, vol. 10(3), 1995, pp. 269-282.
Van Kerkhof, J., “Development of an ISFET based heparin sensor using the ion-step measuring method”, Biosensors and Bioelectronics, 8 (9-10). pp. 463-472.
Wagner, T. et al., “All-in-one” solid-state device based on a light-addressable potentiometric sensor platform, Sensors and Actuators B, vol. 117, 2006, pp. 472-479.
Wang, W. et al., “Label-free detection of small-molecule-protein interactions by using nanowire nanosensors”, Proc. of the Natl. Acad.of Sciences (PNAS), vol. 102(9), 2005, pp. 3208-3212.
Woias, P. et al., “Slow pH response effects of silicon nitride ISFET sensors”, Sensors and Actuators B, vol. 48, 1998, pp. 501-504.
Woias, P., “Modeling the short time response of ISFET sensors”, Sensors and Actuators B, vol. 24-25, 1995, pp. 211-217.
Wu, P. et al., “DNA and protein microarray printing on silicon nitride waveguide surfaces”, Biosensens Bioelectron, vol. 21(7), 2006, pp. 1252-1263.
Xu, J. et al., “Analytical Aspects of FET-Based Biosensors”, Frontiers in Bioscience, vol. 10, 2005, pp. 420-430.
Yeow, T.C.W. et al., “A very large integrated pH-ISFET sensor array chip compatible with standard CMOS processes”, Sensor and Actuators B, vol. 44, 1997, pp. 434-440.
Yuqing, M. et al., “Ion sensitive field effect transducer-based biosensors”, Biotechnology Advances, vol. 21, 2003, pp. 527-534.
Zhang, X. et al., “32-Channel Full Customized CMOS Biosensor Chip for Extracellular neural Signal Recording”, Proc. of the 2nd Intl. IEEE EMBs Conf. on Neural Engineering, Arlington, Virginia, 2005, pp. v-viii.
Zhou, G. et al., “Quantitative detection of single nucleotide polymorphisms for a pooled sample by a bioluminometric assay coupled with modified primer extension reactions (BAMPER)”, Nuc. Acids Res., vol. 29(19), e93, 2001, pp. 1-11.
Bockelmann, U. et al., “Detecting DNA by field effect transistor arrays”, Proceedings of the 2006 IFIP International Conference on Very Large Scale Integration, 2006, 164-168.
EP11801439.8 EP Extended Search Report dated Mar. 7, 2014.
Tokuda, T. et al., “A CMOS image sensor with optical and potential dual imaging function for on-chip bioscientific applications”, Sensors and Actuators A, vol. 125, No. 2, 2006, 273-280.
Bousse, L. et al. “A process for the combined fabrication of ion sensors and CMOS circuits” IEEE Electron Device Ltrs, 1988, pp. 44-46.
EP13174555.6 EP Extended Search Report Dec. 12, 2013.
EP13174555.6 EP Search Report Nov. 21, 2013.
EP13177039.8 EP Search Report Nov. 21, 2013.
EP13177590.0 EP Search Report Nov. 20, 2013.
Hammond, et al., “Performance and System-On-Chip Integration of an Unmodified CMOS ISFET”, Science Direct, Sensors and Actuators vol. 111-112, 2005, pp. 254-258.
Ingebrandt, Sven et al. “Label-free Detection of DNA using Field-Effect Transistors”, Phys. stat. sol. (a) 203, No. 14, 2006, pp. 3399-3411.
Wood, et al. “Base composition-independent hybridization in tetramethylammonium chloride: a method for oligonucleotide screening of highly complex gene libraries” Proc. Nat. Acad. Sci., 1985, pp. 1585-1588.
EP14152861.2 EP Search Report date Jul. 7, 2014.
Palan, B. et al., “New ISFET sensor interface circuit for biomedical applications”, Sensors and Actuators B: Chemical: International Journal Devoted to Research and Development of Physical and Chemical Transducers, Elsevier S.A. Ch., vol. 57, No. 1-3, 1999, pp. 63-68.
PCT/US2013/022129 International Preliminary Report on Patentability dated Jul. 22, 2014.
PCT/US2013/022140 International Preliminary Report on Patentability dated Jul. 22, 2014.
Zhao, B. et al., “Floating-Gate Ion Sensitive Field-Effect Transistor for Chemical and Biological Sensing”, MRS Proceedings, vol. 828, 2004, pp. 349-354.
Related Publications (1)
Number Date Country
20140209982 A1 Jul 2014 US