The present invention relates generally to a corner bead for cementitious fireproofing of structural steel members and, more particularly, to a device that is self-aligning in installation and allows the accurate gauging of the thickness of the fireproofing material along two surfaces.
In the art of a corner bead for fireproofing structural steel, prior approaches conventionally comprise a v-bend “plastic nose corner bead” having adjustable legs (flanges). This type of corner bead is mostly used in the plastering and stucco trades. The previously utilized corner bead is constructed of wires welded into a lattice that is v-shaped in section as shown in
In installation, the longitudinal base wires of the v-shaped corner bead are attached with a tie wire either onto a metal lath or onto a wire mesh, and further attached to the steel member to be fireproofed as shown in
Accordingly, the need exists for an improved corner bead to avoid inaccuracy in gauging the thickness of the fireproofing material and to allow easy installation. The improved corner bead is inexpensive to manufacture and easy to install.
The aim of the present invention is to provide a self-aligning corner bead which allows to make, in an accurate and quick manner, corners of the fireproofing material around structural steel members, said fireproofing material having uniform thickness around the structural steel. This aim is achieved owing to the fact that a strip of welded wire fabric having pre-determined width is bent along its longitudinal axis forming two wings of the desired width. The width of the second wing as well as the angle at which the two wings meet along the longitudinal axis determine the thickness of the fireproofing material strip disposed around the structural steel member along two surfaces. The uniformity in thickness of the fireproofing material distributed around the structural steel member is achieved by using the same width of the second wing bent at the same angle in relation to the first wing for all utilized corner beads, whether in a contour or a hollow-box type application.
It is further an object of the present invention to provide an improved corner bead for fireproofing structural steel without the need of adjusting the legs.
Another object of the present invention is to provide novel means of installation of the corner bead by easier attachment to the structural steel.
Another object of the present invention is to provide an improved technique for application of accurate thickness of fireproofing material along two surfaces under any construction condition for making said fireproofing of structural steel members.
A further object of the present invention is to provide a dam to form a roughened surface on the first application of fireproofing material until it hardens.
In satisfaction of these and related objectives, applicant's present invention provides an improved corner bead for fireproofing structural steel which is very competitive from a mere economic standpoint. The corner bead of the present invention consists of a strip of welded wire fabric cut to the appropriate width for the fireproofing thickness and bent longitudinally to form an obtuse V-shaped device.
In accordance with the present invention, the corner bead includes an elongated strip of welded wire fabric of pre-determined width, said strip bent along its longitudinal axis to define a pair of laterally extending wings, said wings comprising a flexible mesh strip.
According to one embodiment of the present invention, the improved corner bead allows each wing of the corner bead to perform different functions that are essential for the successful completion of the fireproofing process along two surfaces.
The width of the first wing provides a flat portion of metal grid (mesh) through which pneumatic or screw type fasteners attach the mesh to the lathe disposed over the structural steel at the appropriate location. This easy application establishes automatic alignment and eliminates the cumbersome process of shrinking or expanding the distance between the legs of the traditional bead.
The width of the second wing and/or the angle at which the first and the second wing meet determines the thickness of the fireproofing material along two surfaces. The location of the rigid screed edge along the plastic nosing allows the correct amount of material to be distributed alongside the corner bead creating a leveled application throughout the surface.
The width of the second wing also provides a dam to form a roughened surface on the first application of the fireproofing material until it hardens. This forming action allows successive application of the cement material to the adjacent surface.
In another aspect, the present invention resides in a method of manufacturing an improved corner bead for fireproofing structural steel comprising a strip of welded wire fabric cut to the appropriate width for the fireproofing thickness and bent along the longitudinal axis to form an obtuse V-shaped device, said longitudinal axis to define a pair of wings extending laterally therefrom at an angle of approximately more than 90 disagrees but less than approximately 180 degrees relative to each other and, wherein said first wing is secured to a structural steel member through a lath, said lath disposed around the structural steel member to hold the fireproofing material to said structural steel member, and a second wing configured to establish a desired thickness of the fireproofing material along two surfaces by providing a rigid screed edge along the plastic nosing.
In a further aspect, the present invention resides in a method of finishing the corners for cementitious fireproofing (whether in a hollow box or a contour application) of structural steel members, the method comprising: selecting a corner bead comprising a strip of welded wire fabric cut to the appropriate width for the fireproofing thickness and bent along its longitudinal axis to form an obtuse V-shaped device, said longitudinal axis to define a pair of wings extending laterally therefrom at an angle of approximately more than 90 degrees but less than approximately 180 degrees relative to each other; said first wing attached by joining means (attachment means) for securing said corner bead's first wing to a lath or mesh previously attached to a structural steel member and a second wing configured to establish a desired thickness of the fireproofing material along two surfaces by providing a rigid screed edge along the plastic nosing; attaching said first wing through said lath to the structural steel member; and applying successive layers of the fireproofing material to allow creation of the roughened cementitious surface, and tapering to the outward extending width of the second wing.
Applicant's approach to the problem described above is certainly simple, but it is equally unobvious. With over twenty years of experience in the field of fireproofing services, applicant is well educated on the challenges involved such as the difficulty of properly adjusting the traditional corner bead to the adjacent surface, the uneven application of fireproofing material, and the lack of dam for the wet cement material. Despite these well-known and long-existing problems, and a readily apparent market for a solution, no one has presented a viable, cost-effective solution such as applicant here provides.
As further shown in
In general, two methods of enveloping the structural steel member with the fireproofing material may be utilized. As shown in
As shown in
As can be seen most clearly in
In a further development of the subject matter described with reference to
In a shop application (i.e., fireproofing is applied in a facility of the applicant to individual steel members), the cementitious composition is sprayed or poured one at a time on one horizontal surface 32 of lathe 28 as shown in
In a field application (outside of applicant's facility), where the members are erected into a structure prior to fireproofing, all surfaces of the steel member may be sprayed or troweled onto the lath surfaces at the same time (not shown). The process is similar regardless of whether the contour or hollow-box application is utilized.
It will be appreciated that the invention is not restricted to the particular embodiment that has been described, and that variations may be made therein without departing from the scope of the invention as defined in the appended claims, as interpreted in accordance with principles of prevailing law, including the doctrine of equivalents or any other principle that enlarges the enforceable scope of a claim beyond its literal scope. Unless the context indicates otherwise, a reference in a claim to the number of instances of an element, be it a reference to one instance or more than one instance, requires at least the stated number of instances of the element but is not intended to exclude from the scope of the claim a structure or method having more instances of that element than stated. The word “comprise ” or a derivative thereof, when used in a claim, is used in a nonexclusive sense that is not intended to exclude the presence of other elements or steps in acclaimed structure or method.
This application claims priority to co-pending U.S. Provisional Patent Application No. 61/830,257, entitled “SELF-ALIGNING CORNER BEAD FOR FIREPROOFING STRUCTURAL STEEL AND METHOD THEREOF,” filed Jun. 3, 2013, the disclosure of which is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61830257 | Jun 2013 | US |