1. Field of the Invention
This invention relates generally to sliding doors, and more specifically to top guides for guiding sliding doors along top tracks.
2. Description of Related Art
Sliding panel doors, such as those used in closets, are constructed from thin panels that gain rigidity from the application of a perimeter frame formed by two side, one top, and one bottom roll formed or extruded metal sections that are mechanically joined at each corner by means of a metal or plastic joining plate. The weight of the panel door is typically supported by a bottom track, and the door is provided with wheels or other slidable elements that can slide or roll within the bottom track. The top portion of the door is often retained and guided in a top “E” section track, which provides downwardly depending leg portions defining vertical surfaces in which the upper portion of the panel door is retained and guided. Particularly, the upper portion of the panel door is typically provided by a top guide assembly that is attached to the metal or plastic frame joining plate at each top corner of the door. The top guide assembly typically includes a pair of top guide wheels (or rollers or other slidable elements) each rotatable about a vertical axis. As the door travels along the bottom and top tracks, the top guide wheels rotate against the inside parallel vertical edges of the E track and keep the sliding door positioned centrally within the track cavity. U.S. Pat. No. 6,449,906 illustrates one such conventional top guide and is incorporated herein by reference in its entirety.
When the top and bottom tracks are perfectly parallel and the top guide assemblies are properly mounted to the sliding door, the top guide wheel axes are perfectly perpendicular to the direction of travel of the sliding door, and the top guide wheels roll smoothly along the inside parallel vertical edges of the top E track. However, in some installations, the top and bottom tracks are not perfectly parallel to each other (i.e., the top and bottom tracks angle toward each other) due to variations and imperfections in the floor, ceiling, or other substrate onto which the tracks are mounted. These imperfections may occur over time with the settling of the building or structure. When the top and bottom tracks are so skewed, the top guide wheel axes will not be perpendicular to the direction of travel of the sliding door, which follows the bottom track. Such a misalignment of the top guide wheel axis relative to the direction of travel of the sliding door may also result from a misaligned attachment of the top guide assembly to the sliding door. Consequently, the natural rolling path of the top guide wheels will be skewed relative to the actual direction of travel of the sliding door. The skewed path over which the top guide wheels roll causes the top guide wheels to vibrate or jitter as they attempt to follow their natural path, but are forced to follow the actual path of the sliding door. This vibration often generates noise.
Accordingly, one aspect of one or more embodiments of this invention provides a top guide assembly that operates quietly, smoothly, and effectively, even when the top and bottom tracks are not parallel to each other or the top guide is not perfectly positioned on the sliding door.
Another aspect of one or more embodiments of the present invention provides a sliding door assembly that includes a sliding door panel and a guide arm movably connected to an upper portion of the sliding door panel. The guide arm is movable relative to the sliding door panel in a vertical direction. The sliding door assembly also includes a top guide wheel pivotally connected to the guide arm at a top guide wheel axis. The guide wheel moves with the guide arm relative to the sliding door panel.
According to a further aspect of one or more of these embodiments, the movable connection between the guide arm and the sliding door panel is a pivotal connection that defines a guide arm axis. The guide arm axis is spaced from the top guide wheel axis. The top guide wheel axis extends in a lateral, horizontal direction relative to the sliding door panel. The top guide wheel axis and guide arm axis are parallel to each other. An interference between the guide arm and the sliding door panel limits the range of the pivotal movement of the guide arm relative to the sliding door panel.
The sliding door assembly may further include a top guide base mounted to the upper portion of the sliding door panel. The guide arm pivotally connects to the sliding door panel by way of a pivotal connection between the guide arm and the top guide base.
According to a further aspect of one or more embodiments, the sliding door assembly also includes a spring operatively extending between the top guide base or the sliding door panel and the guide arm to bias the guide arm and top guide wheel upwardly away from the sliding door panel.
The assembly may also include an elongated top track adapted to be mounted to a substrate. The top track has an elongated guide wheel channel. The top guide wheel extends into the channel so that the channel guides the movement of the guide wheel along the top track. The channel has opposing sides that provide lateral support to the sliding door panel by way of the top guide wheel.
An additional aspect of one or more embodiments of the present invention provides a top guide assembly for mounting a sliding door panel to a top track. The top guide assembly includes a top guide base adapted to be mounted to an upper portion of the sliding door panel. The top guide assembly also includes a guide arm movably connected to the top guide base. The guide arm is movable relative to the top guide base in a vertical direction. The top guide assembly also includes a top guide wheel pivotally connected to the guide arm at a top guide wheel axis. The guide wheel moves with the guide arm relative to the top guide base.
According to a further aspect of one or more embodiments of this invention, an interference between the guide arm and the top guide base limits the pivotal movement of the guide arm relative to the top guide base.
According to a further aspect of one or more of these embodiments, the guide arm pivots about a first axis and the top guide wheel axis is spaced from the first axis.
According to a further aspect of one or more of these embodiments, the movable connection between the guide arm and the sliding door panel allows the guide arm to move in a linear, vertical direction relative to the sliding door panel.
Additional and/or alternative advantages and salient features of the invention will become apparent from the following detailed description, which, taken in conjunction with the annexed drawings, disclose preferred embodiments of the invention.
Referring now to the drawings which from a part of this original disclosure:
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
While the pivotal connection between the top guide base 110 and guide arm 120 and the rotational connection between the guide arm 120 and the guide wheel 130 comprise axles that are press fit into slotted bores, a variety of other pivotal/rotational connections may alternatively be used. For example, a bolt could be used as an axle and fit through aligned bores in the top guide base and guide arm. A similar bolt axle could be used to pivotally connect the guide arm to the guide wheel. Various other rotational joints that would be known to those of ordinary skill in the art may alternatively be used without deviating from the scope of the present invention.
As shown in
The top guide base 110, guide arm 120, and guide wheel 130 are molded and machined parts that preferably comprise a strong light material such as acetal homopolymer, nylon, plastic, etc. The axles 400, 210 and bores 300, 370 are preferably polished so that the rotational joints facilitate smooth pivotal movement.
As shown in
Assembly of the top guide assembly 100 is described with reference to
The spring 150 is placed on the guide pin 140 and located within a channel formed in the guide arm 120. The spring 150 contacts the middle portion 360 of the guide arm 120 and the guide pin 140 extends through the slot 350 in the middle portion 360. The pin 140 is then secured to the slot 230 in the top guide base 110. As shown in
As shown in
The operation of the top guide assembly 100 is described with reference to
The top track 630 is identical to the top track 30 and includes a channel 640 like the channel 50 described above.
A round bore 650 is formed in an upper portion of the sliding door 610 and extends downwardly from a top edge of the sliding door 610. As shown in
In the illustrated embodiment, the round and square bores 650, 660 are formed directly in the sliding door 610. Alternatively, the round and square bores may be formed in a top guide base that mounts to a top or side of the sliding door.
As shown in
The guide wheel 690 rotationally mounts to an upper, U-shaped portion 730 of the guide arm 680 via the pin 710, which extends through aligned bores in the guide arm 680 and guide wheel 690. The pin 710 defines a guide wheel axis 720 about which the guide wheel 690 rotates. The guide wheel axis 720 extends in a generally horizontal direction that is perpendicular to a direction of travel of the sliding door 610. As in the previously described embodiment, the guide wheel 690 engages the channel 640 formed in the top track 630 to guide the sliding door 610 along the top track 630.
While the illustrated rotational joint between the guide wheel 690 and the guide arm 680 comprises a pin 720, the rotational joint may alternatively comprise any other rotational joint. For example, as in the previously described embodiment, an axle formed on the guide wheel 690 could rotationally engage a slotted bore in the guide arm 680.
The guide arm 680 includes an upper U-shaped portion 730 and a lower square pin 740 that extends downwardly from the U-shaped portion 730. The guide wheel 690 extends into the U-shaped portion 730. A shoulder 735 is defined by the U-shaped portion 730 at the intersection between the U-shaped portion 730 and the square pin 740.
The square pin 740 extends downwardly into the round and square bores 650, 660 in the sliding door 610. The square bore 660 is slightly wider that the square pin 740 so that the guide arm 680 can freely slide upwardly and downwardly in the bore 660, but cannot pivot about a vertical axis relative to the bore 660. While the illustrated embodiment utilizes a square pin 740 and a square bore 660, the pin 740 and bore 660 may alternatively comprise a variety of other mating cross-sectional shapes. For example, the pin 740 and bore 660 may have cross-sectional shapes such as rectangles, “+” signs, etc. that allow relative axial movement but prevent relative pivotal movement.
The compression spring 700 fits over the square pin 740 and has an inner diameter that is slightly larger than a diagonal width of the square pin 740. The spring 700 extends into the round bore 650 and has an outer diameter that is slightly smaller than the diameter of the round bore 650. An upper end of the spring 700 engages the shoulder 735 on the guide arm 680. A lower end of the spring 700 engages the shoulder 655 of the round bore 650. Consequently, the spring 700 biases the guide arm 680 and guide wheel 690 upwardly (in the direction of the arrow in
The top guide assembly 620 preferably includes a mechanism that limits the vertical movement of the guide arm 680 to prevent the guide arm 680 from disengaging from the sliding door 610 under the biasing force of the spring 700. For example, the mechanism may comprise a laterally extending pin that extends through a slot in the side of the sliding door 610 and into the square pin 740.
While the round bore 650 advantageously conceals part of the spring 700, the round bore 650 may be eliminated altogether without deviating from the scope of the present invention. In such an embodiment, the lower end of the spring 700 would abut the top edge of the sliding door 610.
The foregoing description is included to illustrate the operation of the preferred embodiments and is not meant to limit the scope of the invention. To the contrary, those skilled in the art should appreciate that varieties may be constructed and employed without departing from the scope of the invention, aspects of which are recited by the claims appended hereto.
This application claims priority to U.S. Provisional Application No. 60/547,424, filed Feb. 26, 2004, the entire contents of which are incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2827957 | Haws | Mar 1958 | A |
3397487 | Hunt et al. | Aug 1968 | A |
3416183 | Martin | Dec 1968 | A |
3722028 | Schoenbrod | Mar 1973 | A |
3826044 | Armstrong | Jul 1974 | A |
4014378 | Kochanowski | Mar 1977 | A |
4064593 | Helmick | Dec 1977 | A |
5860189 | An | Jan 1999 | A |
6449906 | Jacobs | Sep 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20050246962 A1 | Nov 2005 | US |
Number | Date | Country | |
---|---|---|---|
60547424 | Feb 2004 | US |