The present disclosure relates to micro LED (μLED) fabrication and more specifically to μLED fabrication using self-alignment.
Micro light-emitting diode (μLED) display are an emerging flat panel display technology that includes microscopic light-emitting diodes (LEDs) for displaying images. Compared to liquid crystal display (LCD) technology, μLED display devices offer improved contrast, faster response time, and lower energy consumption. However, as the size of μLEDs decreases, the alignment constraints for the μLEDs becomes more strict. Such strict alignment constrains, increases the difficulty in fabricating the μLEDs.
Embodiments relate to a micro light-emitting-diode (μLED) fabricated using a self-aligned process. To fabricate the μLED, a metal layer is deposited on a p-type semiconductor. The p-type semiconductor is on an n-type semiconductor and the n-type semiconductor is on a top side of a substrate. The metal layer is patterned to define a p-metal. The p-type semiconductor is etched using the p-metal as an etch mask. Similarly, the n-type semiconductor is etched using the p-metal and the p-type semiconductor as an etch mask.
A negative photoresist layer is deposited over the patterned p-metal and the p-type semiconductor. The negative photoresist is then exposed from the back side of the substrate, thus exposing the regions of the negative photoresist that are not masked by the p-metal. The negative photoresist is then developed to expose the p-metal.
The teachings of the embodiments can be readily understood by considering the following detailed description in conjunction with the accompanying drawings.
Figure (
The Figures (FIG.) and the following description relate to preferred embodiments by way of illustration only. It should be noted that from the following discussion, alternative embodiments of the structures and methods disclosed herein will be readily recognized as viable alternatives that may be employed without departing from the principles of the embodiments.
Reference will now be made in detail to several embodiments, examples of which are illustrated in the accompanying figures. It is noted that wherever practicable, similar or like reference numbers may be used in the figures and may indicate similar or like functionality. The figures depict embodiments for purposes of illustration only.
Embodiments relate to a process for fabricating micro light-emitting diodes (μLED). The fabrication process disclosed herein uses a self-aligned process to form p-electrodes on a p-doped semiconductor layer (e.g., Gallium Nitride) to form one or more μLEDs.
A “μLED” or “micro-LED” described herein refers to a particular type of LED having a small active light emitting area (e.g., less than 2,000 μm2), transparency or substantial transparency to emitted visible light (e.g., from another μLED of another display panel). In particular, the diameter of each μLED and the pitch, or spacing between μLEDs, is on the order of 0.1-10 μm.
The μLED 105 further include a p-electrode 115 over the p-type layer 120 and a contact 110 for connecting to the p-electrode 115. In some embodiments, multiple μLEDs share a single n-electrode 150. For instance, the n-electrode may be coupled to ground or a negative supply voltage. Moreover, each μLED may have a separate p-electrode, such that each μLED may be independently controlled. The μLED 105 may include additional layers such as a barrier layer not illustrated in
The stack 300A is etched 201 to expose the n-type layer 325, resulting in stack 300B illustrated in
Instead of a single quantum well as illustrated in
In other embodiments, if the etching method is not selective between the p-type layer 320 and the n-type layer 325, the amount of etching is controlled by calculating the time to etch the height of the p-type layer 320 and a predetermined height (e.g., 300 nm) of the s-type layer 325. The time is calculated based on an etching rate for the p-type layer and the re-type layer of the etching method being used.
P-metal 315 is deposited 203 on the p-type layer 320 resulting stack 300C illustrated in
The stack 300C is patterned 205 to form a μLED structure. To pattern the μLED structure, photoresist 345 is applied and patterned to form the stack 300D illustrated in
As a result, the p-metal is self-aligned onto the μLED structure as illustrated in
As shown in
In some embodiments, a dielectric layer (e.g., an oxide or nitride) 317 is deposited or grown and an opening is made on top of the p-metal 315 before applying the negative photoresist 355. The dielectric layer 317 covers the n-type layer 325, side walls of the quantum well 330 as well as sides and the top of the p-type layer 320. In an alternative embodiment, the negative photoresist 355 subsequently functions as a dielectric material (e.g., after annealing), and therefore, obviates the need to deposit a separate dielectric layer. Materials that function as both the negative photoresist and the dielectric material may include, among others SU-8 based material or benzocyclobutene (BCB).
The negative photoresist 355 is exposed 209 from the backside of the substrate 340. As such, p-metal 315 acts as a mask for the negative photoresist 355. Thus, as illustrated in
Then, the photoresist 355 is developed 211, as shown in
Then, N-metal 370 is deposited 213. In some embodiments, as show in
Bond metal 365 is deposited 215 as illustrated in
As such, the two alignment steps for aligning the p-metal 115 to the p-layer 120, and for exposing the p-metal are eliminated. Thus, the disclosed process allows the fabrication of a μLED with fewer alignment steps, reducing the complexity of the fabrication process.
Although only one μLED is illustrated in
The deposition tool 410 deposits layers of material onto a substrate. The deposition tool 410 may use techniques such as molecular beam epitaxy (MBE), chemical vapor deposition (CVD), physical vapor deposition (PVD) and atomic layer deposition (ALD) to deposit or grow layers of material onto a substrate.
The lithography tool 420 transfers geometric patterns from a photomask to a light-sensitive chemical photoresist. The lithography tool 420 may include tools to deposit or spin coat photoresist onto a substrate, align the photomask to the substrate, expose the photoresist, and develop the photoresist. In some embodiments, the lithography tool further includes tools to remove the photoresist from the substrate.
The etching tool 430 chemically or physically removes layers from the surface of a substrate. The etching tool 430 may include tools for performing wet etching and/or dry etching. The etching tool 430 may be configured to follow pre-determined recipes based on the type of material being etched.
The controller 460 controls the fabrication process of the μLEDs. The controller 460 includes a processor 470 and a memory 475. The memory 475 stores the sequence of steps and the recipes to be followed for fabricating the μLEDs. For instance, the memory 475 stores the steps illustrated in the flowchart of
Upon reading this disclosure, those of ordinary skill in the art will appreciate still additional alternative structural and functional designs through the disclosed principles of the embodiments. Thus, while particular embodiments and applications have been illustrated and described, it is to be understood that the embodiments are not limited to the precise construction and components disclosed herein and that various modifications, changes and variations which will be apparent to those skilled in the art may be made in the arrangement, operation and details of the method and apparatus disclosed herein without departing from the spirit and scope as defined in the appended claims.
This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional patent application No. 62/651,048 filed on Mar. 30, 2018, which is incorporated by reference herein in its entirety.
| Number | Name | Date | Kind |
|---|---|---|---|
| 20080194049 | Wuu | Aug 2008 | A1 |
| 20150349207 | Sogo | Dec 2015 | A1 |
| Number | Date | Country | |
|---|---|---|---|
| 62651048 | Mar 2018 | US |