Photovoltaics is a technology that may convert light directly into electricity. Due to the growing need for solar energy, the manufacture of solar cells and solar photovoltaic array has expanded over time. One example application of photovoltaics is generation of solar power by using solar cells packaged in photovoltaic modules. Photovoltaic modules may be electrically connected in solar photovoltaic arrays to convert energy from the sun into electricity. To explain the photovoltaic solar panel more simply, photons from sunlight knock electrons into a higher state of energy, creating electricity.
Solar cells produce direct current electricity from light, which can be used to power equipment or to recharge a battery. Example applications of photovoltaics ranges from powering orbiting satellites (or other spacecraft) to powering pocket calculators. Photovoltaic modules may also be used for grid connected power generation. Photovoltaic may be also be used in off-grid power generation for remote dwellings, roadside emergency telephones, remote sensing, and cathodic protection of pipelines.
Rigid photovoltaic cells may require protection from the environment (e.g. glass protective covers). When more power is required than a single cell can deliver, cells may be electrically connected together to form photovoltaic modules, or solar panels. A single module may be enough to power an emergency telephone, but for a house or a power plant the modules must be arranged in relatively large arrays. Due to the relatively high costs of manufacturing many types of solar cells (e.g. including photovoltaic cells), solar power may be uncompetitive for supplying grid electricity in many environments.
Accordingly, there may be practical limitations to the implementation of many types of photovoltaic devices because manufacturing costs are cost prohibitive. For example, because many types of photovoltaic devices are rigid (e.g. not flexible), the packaging of the photovoltaic devices (e.g. incorporation of glass protective cover) may incur significant expenses. As another example, many types of photovoltaic devices need to be manufactured in high temperature and/or high pressure conditions, which creates complications that increase the manufacturing costs.
Embodiments relate to an apparatus (and a method of making the apparatus) that includes a first electrode, self-assembled photovoltaic layer(s) formed over the first electrode, and a second electrode formed over the self-assembled photovoltaic layer(s). In embodiments, the self-assembled photovoltaic layer(s) is flexible (e.g. include polymer material and quantum dots). The self-assembled photovoltaic layer(s) may be formed at approximately room temperature.
Accordingly, in embodiments, self-assembled photovoltaic devices (e.g. solar panels) may be manufactured at a relatively low price. For example, because the self-assembled photovoltaic devices are flexible, packaging costs and/or incorporation into structures may be relatively easily accomplished, thus minimizing manufacturing costs. Further, since self-assembled photovoltaic devices may be manufactured at room temperatures, manufacturing processes may be relatively simple, thus minimizing manufacturing costs.
Example
Example
Example
Example
Example
Example
In embodiments, self-assembled photovoltaic layer(s) 12 include layers that are formed by self-assembly. U.S. patent application Ser. No. 10/774,683 (filed Feb. 10, 2004 and titled “RAPIDLY SELF-ASSEMBLED THIN FILMS AND FUNCTIONAL DECALS”) is hereby incorporated by reference in its entirety. U.S. patent application Ser. No. 10/774,683 discloses self-assembly of linking agent material and/or nano-particles, in accordance with embodiments. Through self assembly, linking agent material (e.g. polymers) and/or nano-particles may be substantially uniformally and/or spatially dispersed during deposition to form a self assembled film, in accordance with embodiments. The self assembly of linking agent material and/or nano-particles may utilize electrostatic and/or covalent bonding of the linking agent material and/or individual nano-particles to a host layer or underlying layer. A host layer or underlying layer may be polarized in order to allow for the linking agent material and/or nano-particles to bond to the host layer or underlying layer, in accordance with embodiments.
U.S. patent application Ser. No. 10/774,683 (which is incorporated by reference above) discloses examples of linking agent materials. Linking agent material layer(s) may include polymer material. In embodiments, the polymer material may include poly(urethane), poly(etherurethane), poly(esterurethane), poly(urethane)-co-(siloxane), poly(dimethyl-co-methylhydrido-co-3-cyanopropyl, methyl) siloxane, and/or other similar materials. Linking agent material layer(s) may include materials that are polarized, in order for bonding with nano-particles and/or other (e.g. subsequent) linking agent material layer(s), in accordance with embodiments. In embodiments, linking agent materials may be conductive and/or semiconductive materials. In embodiments, linking agent material layer(s) may include a flexible material, an elastic material, and/or an elastomeric polymer.
Example
Although linking agent material 22 may not have photovoltaic properties, linking agent material may physically support the quantum dots 20. Linking agent material 22 may have properties that allow for self-assembly. Accordingly, quantum dots 20 bonded to linking agent material 22 may be effectively self-assembled. In embodiments, self-assembly may allow the quantum dots 20 to be dispersed in a photovoltaic layer in a relatively uniform and relatively predictable manner. Such uniformity and/or predictability allows for a photovoltaic device to be fabricated having predetermined properties and/or maximum efficiency.
In embodiments, linking agent material 22 may be a flexible material. Since quantum dots 20 may be substantially smaller in size (e.g. 10-50 nanometers) than linking agent material 22 (e.g. 200-500 nanometers), quantum dots may have a minimal effect on the overall structural attributes of a self-assembled layer. For example, the structural attributes (e.g. flexibility) of a self-assembled photovoltaic layer having a material structure illustrated in example
In embodiments, linking agent material may include at least one of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene], poly (3-hexylthiophene), poly(ethylene dioxythiophene) polystyrene sulfonic acid, polydimethyldidodecylammonia, and polyethyleneimine. In embodiments, linking agent material may include a conductive and/or semiconductive material. A conductive and/or semiconductive material in the linking agent material may allow for electrons generated by the quantum materials (in response to light) to efficiently move out of a photovoltaic area to electrodes, in accordance with embodiments. Electron efficiency may maximize the overall efficiency of a photovoltaic device.
In embodiments, self assembly of photovoltaic layers may be performed at room temperature (and room pressure). The ability to form photovoltaic layers at room temperature may minimize manufacturing complications, which may reduce overall costs.
Example
In embodiments, different types of quantum dots may have different diameters. The diameter of a quantum dot may contribute to the waveband of light to which a quantum dot is responds to generate electrons. In embodiments, the quantum dots include at least one of Si, Ge, TeCdHg, CdS, CdSe, CdTe, InP, InAs, ZnS, ZnSe, ZnTe, HgTe, GaN, GaP, GaAs, GaSb, InSb, PbTe, AlAs, AlSb, PbSe, and PbS. However, other materials for quantum dots may be implemented, in accordance with embodiments.
Example
Example
Although embodiments have been described herein, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
The present application claims priority to U.S. Provisional Patent Application No. 60/884,543 (filed Apr. 4, 2007), which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60884543 | Apr 2007 | US |