Self-balancing thrust disk

Information

  • Patent Grant
  • 11499563
  • Patent Number
    11,499,563
  • Date Filed
    Monday, August 24, 2020
    4 years ago
  • Date Issued
    Tuesday, November 15, 2022
    2 years ago
Abstract
A thrust balancing apparatus for a pump includes a housing, a balancing chamber, a connecting tube, a balancing disk, a bushing, a washer, and a pair of upthrust washers. The balancing chamber defines an upper cavity and a lower cavity. The connecting tube is configured to establish fluid communication between the balancing chamber and an exterior of the housing. A first portion of the balancing disk is disposed within the upper cavity. A second portion of the balancing disk passes through the lower cavity. A third portion of the balancing disk is external to the balancing chamber. The washer is disposed between the balancing disk and the bushing. The pair of upthrust washers are disposed between the balancing disk and the balancing chamber.
Description
TECHNICAL FIELD

This disclosure relates to rotating equipment, for example, rotating equipment used in wellbores.


BACKGROUND

Artificial lift can be employed in wells to boost production of fluid to the Earth's surface. Electric submersible pumps (ESPs) are commonly used to provide artificial lift. As components of an ESP rotate, axial loads are generated. In some cases, ESPs include a protector that can support the thrust loads of the ESP. The protector can also provide other various functions, such as protecting a motor from well fluid, pressure equalization between the motor and the wellbore, and transmitting power from the motor to the ESP.


SUMMARY

Certain aspects of the subject matter described can be implemented as a thrust balancing apparatus for a pump. The apparatus includes a housing, a balancing chamber, a connecting tube, a balancing disk, a bushing, a washer, and a pair of upthrust washers. The balancing chamber is coupled to and disposed within the housing. The balancing chamber defines an upper cavity and a lower cavity. The connecting tube is coupled to the balancing chamber and the housing. The connecting tube is configured to establish fluid communication between the balancing chamber and an exterior of the housing, such that an interior of the balancing chamber is exposed to fluid surrounding the housing. The balancing disk is coupled to and surrounds a rotatable shaft of the pump. The rotatable shaft passes through the balancing chamber. A first portion of the balancing disk is disposed within the upper cavity of the balancing chamber. A second portion of the balancing disk passes through the lower cavity of the balancing chamber. A third portion of the balancing disk is external to the balancing chamber. The bushing is disposed within the housing and surrounds the rotatable shaft. The washer surrounds the rotatable shaft. The washer is disposed within the housing between the third portion of the balancing disk and the bushing. The pair of upthrust washers surrounds the third portion of the balancing disk. The pair of upthrust washers is disposed within the housing between the third portion of the balancing disk and the balancing chamber.


This, and other aspects, can include one or more of the following features.


In some implementations, the pump is an electric submersible pump that operates free of a protector. In some implementations, the housing is positioned downstream of a pump stage of the electric submersible pump.


In some implementations, the first portion of the balancing disk includes a first disk. In some implementations, the second portion of the balancing disk is tubular. In some implementations, the third portion of the balancing disk includes a second disk.


In some implementations, the washer is axially disposed between the bushing and the second disk of the third portion of the balancing disk. In some implementations, the pair of upthrust washers is axially disposed between the balancing chamber and the second disk of the third portion of the balancing disk.


In some implementations, the connecting tube is coupled to the upper cavity of the balancing chamber.


In some implementations, the upper cavity and the lower cavity of the balancing chamber are partitioned by a ring lining an inner circumferential wall of the balancing chamber. In some implementations, the second portion of the balancing disk passes through the ring.


In some implementations, a first spacing is defined between the ring and the first disk of the first portion of the balancing disk. In some implementations, a second spacing is defined between the pair of upthrust washers. In some implementations, the first spacing and the second spacing are adjustable to balance a thrust load of the rotatable shaft.


In some implementations, the apparatus includes a seal surrounding the rotatable shaft. In some implementations, the seal is radially disposed between the rotatable shaft and the balancing chamber. In some implementations, the seal is configured to prevent fluid flow between the upper cavity of the balancing chamber and an interior of the housing.


Certain aspects of the subject matter described can be implemented as a system. The system includes an electric submersible pump (ESP) and a thrust balancing apparatus. The ESP is independent of a protector. The ESP includes multiple pump stages and a rotatable shaft. The thrust balancing apparatus is located downstream of the pump stages of the ESP. The thrust balancing apparatus includes a housing, a balancing chamber, a connecting tube, a balancing disk, a bushing, a washer, and a pair of upthrust washers. The balancing chamber is coupled to and disposed within the housing. The balancing chamber defines an upper cavity and a lower cavity. The connecting tube is coupled to the balancing chamber and the housing. The connecting tube is configured to establish fluid communication between the balancing chamber and an exterior of the housing, such that an interior of the balancing chamber is exposed to fluid surrounding the housing. The balancing disk is coupled to and surrounds the rotatable shaft. The rotatable shaft passes through the balancing chamber. A first portion of the balancing disk is disposed within the upper cavity of the balancing chamber. A second portion of the balancing disk passes through the lower cavity of the balancing chamber. A third portion of the balancing disk is external to the balancing chamber. The bushing is disposed within the housing and surrounds the rotatable shaft. The washer surrounds the rotatable shaft. The washer is disposed within the housing between the third portion of the balancing disk and the bushing. The pair of upthrust washers surrounds the third portion of the balancing disk. The pair of upthrust washers is disposed within the housing between the third portion of the balancing disk and the balancing chamber.


This, and other aspects, can include one or more of the following features.


In some implementations, the first portion of the balancing disk includes a first disk. In some implementations, the second portion of the balancing disk is tubular. In some implementations, the third portion of the balancing disk includes a second disk.


In some implementations, the washer is axially disposed between the bushing and the second disk of the third portion of the balancing disk. In some implementations, the pair of upthrust washers is axially disposed between the balancing chamber and the second disk of the third portion of the balancing disk.


In some implementations, the connecting tube is coupled to the upper cavity of the balancing chamber.


In some implementations, the upper cavity and the lower cavity of the balancing chamber are partitioned by a ring lining an inner circumferential wall of the balancing chamber. In some implementations, the second portion of the balancing disk passes through the ring.


In some implementations, a first spacing is defined between the ring and the first disk of the first portion of the balancing disk. In some implementations, a second spacing is defined between the pair of upthrust washers. In some implementations, the first spacing and the second spacing are adjustable to balance a thrust load of the rotatable shaft.


In some implementations, the thrust balancing apparatus includes a seal surrounding the rotatable shaft. In some implementations, the seal is radially disposed between the rotatable shaft and the balancing chamber. In some implementations, the seal is configured to prevent fluid flow between the upper cavity of the balancing chamber and an interior of the housing.


Certain aspects of the subject matter described can be implemented as a method. Fluid communication between a balancing chamber and an exterior of a housing is established by a connecting tube coupled to the balancing chamber and the housing, thereby exposing an interior of the balancing chamber to fluid surrounding the housing. The balancing chamber is coupled to and disposed within the housing. The balancing chamber defines an upper cavity and a lower cavity. Pressure within the balancing chamber is balanced by adjusting a first spacing. A balancing disk is coupled to and surrounds a rotatable shaft passing through the balancing chamber. A ring lining an inner circumferential wall of the balancing chamber partitions the balancing chamber into the upper cavity and the lower cavity. The first spacing is defined between the balancing disk and the ring. Pressure between the balancing chamber and the housing is balanced by adjusting a second spacing. A pair of upthrust washers surrounds the balancing disk and is disposed within the housing between the balancing disk and the balancing chamber. The second spacing is defined between the pair of upthrust washers. Balancing pressure within the balancing chamber and balancing pressure between the balancing chamber and the housing results in balancing a thrust load of the rotatable shaft while the rotatable shaft rotates.


This, and other aspects, can include one or more of the following features.


In some implementations, the balancing disk includes a first portion, a second portion, and a third portion. In some implementations, the first portion includes a first disk disposed within the upper cavity of the balancing chamber. In some implementations, the second portion is tubular and passes through the lower cavity of the balancing chamber. In some implementations, the third portion includes a second disk that is external to the balancing chamber. In some implementations, the pair of upthrust washers is disposed axially in between the balancing chamber and the second disk of the third portion of the balancing disk. In some implementations, adjusting the second spacing includes adjusting an axial spacing between the pair of upthrust washers.


In some implementations, the connecting tube is coupled to the upper cavity of the balancing chamber. In some implementations, establishing fluid communication between the balancing chamber and the exterior of the housing includes establishing fluid communication between the upper cavity of the balancing chamber and the exterior of the housing.


In some implementations, fluid flow is prevented between the upper cavity of the balancing chamber and an interior of the housing by a seal that surrounds the rotatable shaft and is radially disposed between the rotatable shaft and the balancing chamber.


The details of one or more implementations of the subject matter of this disclosure are set forth in the accompanying drawings and the description. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.





DESCRIPTION OF DRAWINGS


FIG. 1 is a schematic diagram of an example well.



FIG. 2A is a schematic diagram of an example system that can be implemented in the well of FIG. 1.



FIG. 2B is a schematic diagram of an example apparatus that can be implemented in the system of FIG. 2A.



FIG. 2C is a radial cross-section of the apparatus of FIG. 2B.



FIG. 2D is a schematic diagram of the apparatus of FIG. 2B coupled to a portion of the system of FIG. 2A.



FIG. 3 is a flow chart of an example method that can be implemented by the apparatus of FIG. 2B.





DETAILED DESCRIPTION

This disclosure describes technologies relating to balancing thrust loads in rotating equipment, and in particular, in protector-less electric submersible pumps (ESPs). ESP systems typically include a centrifugal pump, a protector, a power delivery cable, a motor, and a monitoring tool. The pump can transfer fluid from one location to another. For example, the pump provides artificial lift in a well to boost fluid production from the well. The pump can include multiple pump stages which include impellers and diffusers. The rotating impeller can provide energy to the well fluid, and the stationary diffuser can convert the kinetic energy of the fluid into head (pressure) to facilitate fluid flow. In some cases, pump stages are stacked in series to form a multi-stage pump that is housed within a pump housing. The motor can provide mechanical power to drive a rotatable shaft of the pump. The power delivery cable can supply electrical power to the motor from the surface. The protector can support thrust loads from the pump, transmit power from the motor to the pump, equalize pressure (for example, between the motor and the wellbore within which the ESP resides), provide motor oil to or receive motor oil from the motor according to changes in operating temperature, and prevent well fluid from entering the motor. The monitoring tool can be installed on the motor to measure parameters, such as pump intake and discharge pressures, motor oil and winding temperatures, and vibration. The monitoring tool can transmit measured data to the surface, for example, via the power delivery cable.


In some cases, however, it can be desirable to remove the protector from the artificial lift system because the protector can be prone to various problems that may lead to frequent operational failures of the artificial lift system. The subject matter described in this disclosure can be implemented in particular implementations, so as to realize one or more of the following advantages. The artificial system is configured to operate without the use of a protector. The thrust balancing apparatus included in the artificial lift can fully support the thrust loads of the ESP (that is, develop zero residual thrust) at a range of operating conditions (for example, a range of operating speeds and flow rates) as opposed to a single design point. In contrast, conventional thrust balancing disks can provide full support of the thrust loads of the ESP at a particular design point, and auxiliary components help support residual thrust loads whenever the ESP operates away from the design point. The thrust balancing apparatus described can have similar or the same outer dimensions of a pump stage of an ESP. The thrust balancing apparatus described can be implemented in artificial lift systems in which solid and/or abrasive particles are expected in the well fluid without detrimental effect on functionality of the artificial system. The thrust balancing apparatus described can operate free of lubrication. The thrust balancing apparatus described can improve reliability and extend operating life of artificial lift systems.



FIG. 1 depicts an example well 100 constructed in accordance with the concepts herein. The well 100 extends from the surface 106 through the Earth 108 to one more subterranean zones of interest 110 (one shown). The well 100 enables access to the subterranean zones of interest 110 to allow recovery (that is, production) of fluids to the surface 106 (represented by flow arrows in FIG. 1) and, in some implementations, additionally or alternatively allows fluids to be placed in the Earth 108. In some implementations, the subterranean zone 110 is a formation within the Earth 108 defining a reservoir, but in other instances, the zone 110 can be multiple formations or a portion of a formation. The subterranean zone can include, for example, a formation, a portion of a formation, or multiple formations in a hydrocarbon-bearing reservoir from which recovery operations can be practiced to recover trapped hydrocarbons. In some implementations, the subterranean zone includes an underground formation of naturally fractured or porous rock containing hydrocarbons (for example, oil, gas, or both). In some implementations, the well can intersect other types of formations, including reservoirs that are not naturally fractured. For simplicity's sake, the well 100 is shown as a vertical well, but in other instances, the well 100 can be a deviated well with a wellbore deviated from vertical (for example, horizontal or slanted), the well 100 can include multiple bores forming a multilateral well (that is, a well having multiple lateral wells branching off another well or wells), or both.


In some implementations, the well 100 is a gas well that is used in producing hydrocarbon gas (such as natural gas) from the subterranean zones of interest 110 to the surface 106. While termed a “gas well,” the well need not produce only dry gas, and may incidentally or in much smaller quantities, produce liquid including oil, water, or both. In some implementations, the well 100 is an oil well that is used in producing hydrocarbon liquid (such as crude oil) from the subterranean zones of interest 110 to the surface 106. While termed an “oil well,” the well not need produce only hydrocarbon liquid, and may incidentally or in much smaller quantities, produce gas, water, or both. In some implementations, the production from the well 100 can be multiphase in any ratio. In some implementations, the production from the well 100 can produce mostly or entirely liquid at certain times and mostly or entirely gas at other times. For example, in certain types of wells it is common to produce water for a period of time to gain access to the gas in the subterranean zone. The concepts herein, though, are not limited in applicability to gas wells, oil wells, or even production wells, and could be used in wells for producing other gas or liquid resources or could be used in injection wells, disposal wells, or other types of wells used in placing fluids into the Earth.


The wellbore of the well 100 is typically, although not necessarily, cylindrical. All or a portion of the wellbore is lined with a tubing, such as casing 112. The casing 112 connects with a wellhead at the surface 106 and extends downhole into the wellbore. The casing 112 operates to isolate the bore of the well 100, defined in the cased portion of the well 100 by the inner bore 116 of the casing 112, from the surrounding Earth 108. The casing 112 can be formed of a single continuous tubing or multiple lengths of tubing joined (for example, threadedly) end-to-end. In FIG. 1, the casing 112 is perforated in the subterranean zone of interest 110 to allow fluid communication between the subterranean zone of interest 110 and the bore 116 of the casing 112. In some implementations, the casing 112 is omitted or ceases in the region of the subterranean zone of interest 110. This portion of the well 100 without casing is often referred to as “open hole.”


The wellhead defines an attachment point for other equipment to be attached to the well 100. For example, FIG. 1 shows well 100 being produced with a Christmas tree attached to the wellhead. The Christmas tree includes valves used to regulate flow into or out of the well 100. The well 100 also includes a system 200 residing in the wellbore, for example, at a depth that is nearer to subterranean zone 110 than the surface 106. The system 200, being of a type configured in size and robust construction for installation within a well 100, can include any type of rotating equipment that can assist production of fluids to the surface 106 and out of the well 100 by creating an additional pressure differential within the well 100. For example, the system 200 can include a pump, compressor, blower, or multi-phase fluid flow aid.


In particular, casing 112 is commercially produced in a number of common sizes specified by the American Petroleum Institute (the “API”), including 4½, 5, 5½, 6, 6⅝, 7, 7⅝, 7¾, 8⅝, 8¾, 9⅝, 9¾, 9⅞, 10¾, 11¾, 11⅞, 13⅜, 13½, 13⅝, 16, 18⅝, and 20 inches, and the API specifies internal diameters for each casing size. The system 200 can be configured to fit in, and (as discussed in more detail below) in certain instances, seal to the inner diameter of one of the specified API casing sizes. Of course, the system 200 can be made to fit in and, in certain instances, seal to other sizes of casing or tubing or otherwise seal to a wall of the well 100.


Additionally, the construction of the components of the system 200 are configured to withstand the impacts, scraping, and other physical challenges the system 200 will encounter while being passed hundreds of feet/meters or even multiple miles/kilometers into and out of the well 100. For example, the system 200 can be disposed in the well 100 at a depth of up to 20,000 feet (6,096 meters). Beyond just a rugged exterior, this encompasses having certain portions of any electronics being ruggedized to be shock resistant and remain fluid tight during such physical challenges and during operation. Additionally, the system 200 is configured to withstand and operate for extended periods of time (for example, multiple weeks, months or years) at the pressures and temperatures experienced in the well 100, which temperatures can exceed 400 degrees Fahrenheit (° F.)/205 degrees Celsius (° C.) and pressures over 2,000 pounds per square inch gauge (psig), and while submerged in the well fluids (gas, water, or oil as examples). Finally, the system 200 can be configured to interface with one or more of the common deployment systems, such as jointed tubing (that is, lengths of tubing joined end-to-end), a sucker rod, coiled tubing (that is, not-jointed tubing, but rather a continuous, unbroken and flexible tubing formed as a single piece of material), or wireline with an electrical conductor (that is, a monofilament or multifilament wire rope with one or more electrical conductors, sometimes called e-line) and thus have a corresponding connector (for example, a jointed tubing connector, coiled tubing connector, or wireline connector).


A seal system 126 is integrated or provided separately with a downhole system, as shown with the system 200, divides the well 100 into an uphole zone 130 above the seal system 126 and a downhole zone 132 below the seal system 126. In some implementations, the seal system 126 is integrated with a tubing (such as tubing 128) uphole of the system 200. FIG. 1 shows the system 200 positioned in the open volume of the bore 116 of the casing 112, and connected to a production string of tubing (also referred as production tubing 128) in the well 100. The wall of the well 100 includes the interior wall of the casing 112 in portions of the wellbore having the casing 112, and includes the open hole wellbore wall in uncased portions of the well 100. Thus, the seal system 126 is configured to seal against the wall of the wellbore, for example, against the interior wall of the casing 112 in the cased portions of the well 100 or against the interior wall of the wellbore in the uncased, open hole portions of the well 100. In certain instances, the seal system 126 can form a gas- and liquid-tight seal at the pressure differential the system 200 creates in the well 100. For example, the seal system 126 can be configured to at least partially seal against an interior wall of the wellbore to separate (completely or substantially) a pressure in the well 100 downhole of the seal system 126 from a pressure in the well 100 uphole of the seal system 126. Although not shown in FIG. 1, additional components, such as a surface compressor, can be used in conjunction with the system 200 to boost pressure in the well 100.


In some implementations, the system 200 can be implemented to alter characteristics of a wellbore by a mechanical intervention at the source. Alternatively, or in addition to any of the other implementations described in this specification, the system 200 can be implemented as a high flow, low pressure rotary device for gas flow in wells. Alternatively, or in addition to any of the other implementations described in this specification, the system 200 can be implemented in a direct well-casing deployment for production through the wellbore. Other implementations of the system 200 as a pump, compressor, or multiphase combination of these can be utilized in the well bore to effect increased well production.


The system 200 locally alters the pressure, temperature, flow rate conditions, or a combination of these of the fluid in the well 100 proximate the system 200. In certain instances, the alteration performed by the system 200 can optimize or help in optimizing fluid flow through the well 100. As described previously, the system 200 creates a pressure differential within the well 100, for example, particularly within the locale in which the system 200 resides. In some instances, the system 200 introduced to the well 100 adjacent the perforations can reduce the pressure in the well 100 near the perforations to induce greater fluid flow from the subterranean zone 110, increase a temperature of the fluid entering the system 200 to reduce condensation from limiting production, increase a pressure in the well 100 uphole of the system 200 to increase fluid flow to the surface 106, or a combination of these.


The system 200 moves the fluid at a first pressure downhole of the system 200 to a second, higher pressure uphole of the system 200. The system 200 can operate at and maintain a pressure ratio across the system 200 between the second, higher uphole pressure and the first, downhole pressure in the wellbore. The pressure ratio of the second pressure to the first pressure can also vary, for example, based on an operating speed of the system 200.


The system 200 can operate in a variety of downhole conditions of the well 100. For example, the initial pressure within the well 100 can vary based on the type of well, depth of the well 100, and production flow from the perforations into the well 100. In some examples, the pressure in the well 100 proximate a bottomhole location is sub-atmospheric, where the pressure in the well 100 is at or below about 14.7 pounds per square inch absolute (psia), or about 101.3 kiloPascal (kPa). The system 200 can operate in sub-atmospheric well pressures, for example, at well pressure between 2 psia (13.8 kPa) and 14.7 psia (101.3 kPa). In some examples, the pressure in the well 100 proximate a bottomhole location is much higher than atmospheric, where the pressure in the well 100 is above about 14.7 pounds per square inch absolute (psia), or about 101.3 kiloPascal (kPa). The system 200 can operate in above atmospheric well pressures, for example, at well pressure between 14.7 psia (101.3 kPa) and 5,000 psia (34,474 kPa).



FIG. 2A is a schematic diagram of an implementation of the system 200, which can provide artificial lift within a wellbore, such as within the wellbore of the well 100. The system 200 includes an ESP 210, a motor 220, and a thrust balancing apparatus 250. In some implementations, the system 200 includes a different rotating equipment from the ESP 210, such as a blower or a compressor. In some implementations, the ESP 210 includes a rotatable shaft 211 and multiple pump stages 213. Each pump stage includes an impeller and a diffuser that cooperate to generate head, thereby facilitating fluid flow. The impellers of the ESP 210 can be fixed or floating. The impellers of the ESP 210 can be radial flow impellers, axial flow impellers, or mixed flow impellers. In some implementations, the motor 220 is positioned upstream relative to the ESP 210. In some implementations, the thrust balancing apparatus 250 is positioned downstream relative to the ESP 210. For example, the thrust balancing apparatus 250 can be positioned downstream of the downstream-most pump stage 213 of the ESP 210. The thrust balancing apparatus 250 is also shown in FIG. 2B and described in more detail later. As used in this disclosure, the terms “upstream” and “downstream” are in relation to general direction of fluid flow during operation of the system 200. For example, when the system 200 is disposed in and operating within a vertical well, upstream can be synonymous with downhole, while downstream can be synonymous with uphole.


The system 200 is configured to operate without the use of a protector. Various components of the system 200 perform functions otherwise provided by a typical protector, such that a protector is not required in the system 200. For example, the motor 220 is sealed from the surrounding downhole environment, such that the interior of the motor 220 is not exposed to well fluid. For example, the motor 220 includes a pressure compensator, such as a diaphragm or piston, to equalize pressure between the motor 220 and the wellbore. For example, the motor 220 is coupled to the rotatable shaft 211 by a magnetic coupling, which transmits rotational motion from the motor 220 to the rotatable shaft 211. For example, the motor 220 includes a motor oil expansion chamber that compensates for changes in operating temperature. For example, the thrust balancing apparatus 250 can support thrust loads from the ESP 210. The concepts described here, however, can also be implemented in similar downhole-type systems that include a protector.



FIG. 2B is a schematic diagram of an implementation of the thrust balancing apparatus 250. The thrust balancing apparatus 250 includes a housing 251, a balancing chamber 253, a connecting tube 255, a balancing disk 257, a bushing 259, a washer 261, and upthrust washers 263a and 263b. Each component of the thrust balancing apparatus 250 can manufactured as a singular, continuous member or as multiple, separate components that are integrated together to form the respective component.


The housing 251 houses the other components of the thrust balancing apparatus 250. For example, the balancing chamber 253, the connecting tube 255, the balancing disk 257, the bushing 259, the washer 261, and the upthrust washers 263a and 263b are all disposed within the housing 251. In some implementations, the housing 251 is tubular and has an outer diameter that is the same as or similar to an outer diameter of the pump stages 213 of the ESP 210.


The balancing chamber 253 is coupled to and disposed within the housing 251. The balancing chamber 253 defines an upper cavity 253a and a lower cavity 253b. In some implementations, the balancing chamber 253 is fixed in position in relation to the housing 251. The balancing chamber 253 is made of a material that can withstand corrosion and abrasion during operation. In some implementations, the balancing chamber 253 is made of a similar or the same material as the impellers and/or diffusers of the ESP 210. In some implementations, the balancing chamber 253 is made of an austenitic cast iron alloy that includes nickel, such as Ni-Resist (standard or ductile). In some implementations, an outer diameter of the balancing chamber 253 is equal to or less than about 60% of the diameter of the impellers of the ESP 210. In some implementations, an outer diameter of the balancing chamber 253 is equal to or less than about 50% of the outer diameter of the housing 251. In some implementations, a longitudinal length of the balancing chamber 253 is equal to or less than a longitudinal length of a single pump stage 213 of the ESP 210,


In some implementations, a web structure 290 fixes the balancing chamber 253 in position within the housing 251. FIG. 2C is a cross-section of the thrust balancing apparatus 250 that shows an implementation of the web structure 290. The web structure 290 can provide structural rigidity to the balancing chamber 253 while also having sufficient flow area to prevent and/or mitigate choking flow through the apparatus 250. The web structure 290 can be sufficiently wide to accommodate the connecting tube 255.


The connecting tube 255 is coupled to the balancing chamber 253 and the housing 251. The connecting tube 255 is configured to establish fluid communication between the balancing chamber 253 and an exterior of the housing 251, such that an interior of the balancing chamber 253 is exposed to fluid surrounding the housing 251 (for example, well fluid). In some implementations, the connecting tube 255 is coupled to the upper cavity 253a of the balancing chamber 253 at one end and coupled to a perforation in the housing 251 at another end. The connecting tube 255 is made of a material that can withstand corrosion and abrasion during operation. In some implementations, the connecting tube 255 is made of similar or the same material as the web structure 290 that supports the balancing chamber 253 within the housing 251. In some implementations, the connecting tube 255 is made of an austenitic cast iron alloy that includes nickel, such as Ni-Resist (standard or ductile). In some implementations, the connecting tube 255 is a part of the web structure 290 that supports the balancing chamber 253 within the housing 251. In some implementations, an inner diameter of the connecting tube 255 is in a range of from about 1/16 inch to about ¼ inch. In some implementations, a longitudinal length of the connecting tube 255 is at least 25% of the inner diameter of the housing 251. Although shown in FIG. 2B as including one connecting tube 255, the thrust balancing apparatus 250 can include additional connecting tubes 255 (as shown in FIG. 2C). In some implementations, multiple connecting tubes 255 make up a part of the web structure 290 that supports the balancing chamber 253 within the housing 251.


Referring back to FIG. 2B, the balancing disk 257 is coupled to and surrounds the rotatable shaft 211 of the ESP 210. The rotatable shaft 211 passes through the balancing chamber 253. In some implementations, the balancing disk 257 is fixed in position in relation to the rotatable shaft 211 and rotates with the rotatable shaft 211. The balancing disk 257 includes a first portion 257a, a second portion 257b, and a third portion 257c. The first portion 257a is disposed within the upper cavity 253a of the balancing chamber 253. The second portion 257b passes through the lower cavity 253b of the balancing chamber 253. The third portion 257c is external to the balancing chamber 253. In some implementations, the first portion 257a includes a first disk, the second portion 257b is tubular, and the third portion 257c includes a second disk. The outer diameter of the first portion 257a is less than an inner diameter of the upper cavity 253a of the balancing chamber 253. The balancing chamber 253 defines an opening through which the second portion 257b passes. An inner diameter of the opening defined by the balancing chamber 253 is greater than the outer diameter of the second portion 257b of the balancing disk 257 but less than the outer diameters of the first portion 257a and the third portion 257c of the balancing disk 257. The clearance between the opening defined by the balancing chamber 253 and the second portion 257b of the balancing disk 257 can be designed to prevent and/or mitigate debris migration across the balancing chamber 253 and balancing disk 257. Similarly, the clearance between the inner diameter of the ring 265 and the second portion 257b of the balancing disk 257 can be designed to prevent and/or mitigate debris migration across the balancing chamber 253 and balancing disk 257. Similarly, the clearance between the opening defined by the inner diameter of the upper cavity 253a and the outer diameter of the first portion 257a can be designed to prevent and/or mitigate debris migration across the balancing chamber 253 and balancing disk 257.


The balancing disk 257 is made of a material that can withstand corrosion and abrasion during operation. In some implementations, the balancing disk 257 is made of similar or the same material as the balancing chamber 253. In some implementations, the balancing disk 257 is made of an austenitic cast iron alloy that includes nickel, such as Ni-Resist (standard or ductile).


The bushing 259 surrounds the rotatable shaft 211 of the ESP 210. The bushing 259 is disposed within the housing 251. In some implementations, a portion of the bushing 259 is tubular and a remaining portion of the bushing 259 is shaped like a disk. The bushing 259 is made of a material that can withstand corrosion and abrasion during operation. In some implementations, the bushing 259 is made of similar or the same material as the balancing chamber 253. In some implementations, the bushing 259 is made of austenitic cast iron alloy that includes nickel, such as Ni-Resist (standard or ductile). In some implementations, the bushing 259 is made of copper. In some implementations, the bushing 259 is made of ceramic material, such as zirconia, tungsten carbine, and silicon carbide. In some implementations, the bushing 259 is coupled to the housing 251. In some implementations, the bushing 259 has an outer diameter that is equal to or approximately equal to the outer diameter of the second disk of the third portion 257c of the balancing disk 257.


The washer 261 surrounds the rotatable shaft 211 of the ESP 210. The washer 261 is disposed within the housing 251 between the third portion 257c of the balancing disk 257 and the bushing 259. In some implementations, the washer 261 is axially disposed between the bushing 259 and the second disk of the third portion 257c of the balancing disk 257. In some implementations, the washer 261 is axially disposed between the disk-shaped portion of the bushing 259 and the second disk of the third portion 257c of the balancing disk 257. In such implementations, the washer 261 prevents physical contact between the balancing disk 257 and the bushing 259. The washer 261 can withstand material loss (for example, due to friction) during rotation of the balancing disk 257. In some implementations, the washer 261 is a phenolic washer. In some implementations, an outer diameter of the washer 261 is equal to or approximately equal to the outer diameter of the second disk of the third portion 257c of the balancing disk 257. In some implementations, an outer diameter of the washer 261 is equal to or approximately equal to the outer diameter of the bushing 259. In some implementations, the washer 261 has a thickness of at least 1/16 inch.


The upthrust washers 263a and 263b surround the third portion 257c of the balancing disk 257. The upthrust washers 263a and 263b are disposed within the housing 251 between the third portion 257c of the balancing disk 257 and the balancing chamber 253. In some implementations, the upthrust washers 263a and 263b are axially disposed between balancing chamber 253 and the second disk of the third portion 257c of the balancing disk 257. In such implementations, the upthrust washers 263a and 263b prevent physical contact between the balancing chamber 253 and the second disk of the third portion 257c of the balancing disk 257. In some implementations, the upthrust washer 263a is fixed to the exterior of the balancing chamber 253, and the upthrust washer 263b is fixed to the second disk of the third portion 257c of the balancing disk 257. In such implementations, the upthrust washer 263a remains stationary, while the upthrust washer 263b rotates with the rotatable shaft 211 during operation of the system 200. Similar to the washer 261, the upthrust washers 263a and 263b can withstand material loss (for example, due to friction) during counter-rotation with respect to each other and during rotation of the balancing disk 257. In some implementations, the upthrust washers 263a and 263b are phenolic washers. In some implementations, an outer diameter of the upthrust washers 263a and 263b is equal to or approximately equal to the outer diameter of the second disk of the third portion 257c of the balancing disk 257. In some implementations, the upthrust washers 263a and 263b have a thickness of at least 1/16 inch each.


In some implementations, the upper cavity 253a and the lower cavity 253b of the balancing chamber 253 are partitioned by a ring 265 that lines an inner circumferential wall of the balancing chamber 253. In such implementations, the second portion 257b (tubular portion) of the balancing disk 257 passes through the ring 265. In such implementations, a first spacing 267a is defined between the ring 265 and the first disk of the first portion 257a of the balancing disk 257, and a second spacing 267b is defined between the upthrust washer 263a and the upthrust washer 263b. The first spacing 267a and the second spacing 267b can be adjusted to balance a thrust load of the rotatable shaft 211 of the ESP 210.


In some implementations, the thrust balancing apparatus 250 includes a seal 269 that surrounds the rotatable shaft 211 and is radially disposed between the balancing chamber 253 and the rotatable shaft 211 of the ESP 210. In some implementations, the seal 269 is configured to prevent fluid flow between the upper cavity 253a of the balancing chamber 253 and an interior of the housing 251 while the rotatable shaft 211 rotates. The selection of the seal 269 can depend on various parameters, such as range of operating temperature, range of operating pressure, type of fluid that the seal 269 is expected to be exposed to, and acceptable leakage level. In some implementations, the seal 269 is a labyrinth-type seal, which is typically associated with insignificant mechanical losses and leakage power losses that do not significantly affect overall pumping efficiency.



FIG. 2D is a schematic diagram of the thrust balancing apparatus 250 coupled to a pump stage 213 of the ESP 210. The dotted arrows represent fluid flow through the system 200. In some implementations, as shown in FIG. 2D, the housing 251 of the thrust balancing apparatus 250 can be the same as or similar to the casing of the ESP 210. In some implementations, the washer 261 is omitted. In such implementations, the balancing disk 257 and the bushing 259 can be fixed to the rotatable shaft 211 of the ESP 210. In such implementations, the bushing 259 can be formed as a sleeve surrounding the rotatable shaft 211 of the ESP 210 and fixed in position with respect to the rotatable shaft 211 (for example, by way of a keyway slot formed in the shaft 211). In some implementations, the balancing disk 257 is fixed to the bushing 259. In some implementations, the bushing 259 is fixed to an impeller of the downstream-most pump stage 213 of the ESP 210. In such implementations, the bushing 259 can be formed as a sleeve surrounding the rotatable shaft 211 of the ESP 210 and fixed in position with respect to the impeller and the rotatable shaft 211 (for example, by way of a keyway slot formed in the shaft 211 or a portion of the impeller). In some implementations, the thrust balancing apparatus 250 includes a second pair of upthrust washers, where one upthrust washer is fixed to the first disk of the first portion 257a of the balancing disk 257 (rotates with rotatable shaft 211) and the other upthrust washer is fixed to the ring 265 (stationary). In such implementations, the first spacing 267a is defined between this second pair of upthrust washers.


Before operation of the ESP 210, the balancing disk 257 rests on top of the washer 261, which rests on top of the disk-shaped portion of the bushing 259. At the beginning of operation of the ESP 210, the pressure within the housing 251 (exterior to the balancing chamber 253) is the greatest pressure in the system thrust balancing apparatus 250. This pressure imposes a downward thrust on the rotatable shaft 211, resulting in a downward axial movement of the rotatable shaft 211 and the balancing disk 257, which is fixed to the rotatable shaft 211. This downward axial movement decreases the first spacing 267a (low-pressure orifice) and increases the second spacing 267b (high-pressure orifice). This downward axial movement also causes the pressure within the lower cavity 253b to increase, as more well fluid flows into the lower cavity 253b. The increase in pressure within the lower cavity 253b imparts an upward thrust on the balancing disk 257 and, in turn, on the rotatable shaft 211. The cross-sectional area of the first disk of the first portion of the balancing disk 257 can be designed to be sufficiently large to develop the upward thrust to lift the rotatable shaft 211. The upward thrust results in an upward axial movement of the rotatable shaft 211 and the balancing disk 257. The upward axial movement increases the first spacing 267a (low-pressure orifice) and decreases the second spacing 267b (high-pressure orifice). The decrease in the second spacing 267b increases the pressure drop across the second spacing 267b. The simultaneous increase in the first spacing 267a allows for the pressure within the lower cavity 253b to decrease. Both of these effects can reduce the effect of the upward thrust. This “push-and-pull” continues in the thrust balancing apparatus 250 until the balancing disk 257 reaches an equilibrium point that fully supports the thrust load of the ESP 210. The thrust balancing apparatus 250 is capable of reaching equilibrium points across a range of operating conditions of the ESP 210 (for example, different combinations of pumping speeds and flow rates).



FIG. 3 is a flow chart of an example method 300. The method 300 can be implemented, for example, by the thrust balancing apparatus 250. At step 302, fluid communication between a balancing chamber (for example, the balancing chamber 253) and an exterior of a housing (for example, the housing 251) is established by a connecting tube (for example, the connecting tube 255) that is coupled to the balancing chamber 253 and the housing 251. By establishing fluid communication between the balancing chamber 253 and the exterior of the housing 251 at step 302, an interior of the balancing chamber 253 is exposed to fluid surrounding the housing 251. As described previously, the balancing chamber 253 is coupled to and disposed within the housing 251, and the balancing chamber 253 defines an upper cavity 253a and a lower cavity 253b. In some implementations, establishing fluid communication between the balancing chamber 253 and the exterior of the housing 251 at step 302 includes establishing fluid communication between the upper cavity 253a of the balancing chamber 253 and the exterior of the housing 251.


At step 304, pressure within the balancing chamber 253 is balanced by adjusting a first spacing (for example, the first spacing 267a). The first spacing 267a can be increased or decreased at step 304. As described previously, the balancing disk 257 is coupled to and surrounds the rotatable shaft 211 (of the ESP 210), which passes through the balancing chamber 253. The ring 265 partitions the balancing chamber 253 into the upper cavity 253a and the lower cavity 253b. The first spacing 267a is defined between the balancing disk 257 and the ring 265.


At step 306, pressure between the balancing chamber 253 and the housing 251 is balanced by adjusting a second spacing (for example, the second spacing 267b). The second spacing 267b can be increased or decreased at step 306. As described previously, the upthrust washers 263a and 263b surround the balancing disk 257 and are disposed within the housing 251 between the balancing disk 257 and the balancing chamber 253. The second spacing 267b is defined between the upthrust washers 263a and 263b. Balancing pressure within the balancing chamber 253 and balancing pressure between the balancing chamber 253 and the housing 251 results in balancing a thrust load of the rotatable shaft 211 while the rotatable shaft 211 rotates. In some implementations, adjusting the second spacing 267b includes adjusting an axial spacing between the upthrust washers 263a and 263b.


In some implementations, fluid flow between the upper cavity 253a of the balancing chamber 253 and an interior of the housing 251 is prevented by a seal (for example, the seal 269). As described previously, the seal 269 can surround the rotatable shaft 211 and be radially disposed between the rotatable shaft 211 and the balancing chamber 253. Although shown in FIG. 3 as a progression from step 302 to step 304 to step 306, the various steps of method 300 can occur concurrently in parallel and do not necessarily need to be performed sequentially. For example, adjusting the first spacing 267a to balance pressure within the balancing chamber 253 at step 304 and adjusting the second spacing 267b to balance pressure between the balancing chamber 253 and the housing 251 at step 306 can occur simultaneously. Further, the various steps of method 300 can occur repeatedly and continuously, for example, throughout the operation of the ESP 210.


While this specification contains many specific implementation details, these should not be construed as limitations on the scope of what may be claimed, but rather as descriptions of features that may be specific to particular implementations. Certain features that are described in this specification in the context of separate implementations can also be implemented, in combination, in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations, separately, or in any sub-combination. Moreover, although previously described features may be described as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can, in some cases, be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.


As used in this disclosure, the terms “a,” “an,” or “the” are used to include one or more than one unless the context clearly dictates otherwise. The term “or” is used to refer to a nonexclusive “or” unless otherwise indicated. The statement “at least one of A and B” has the same meaning as “A, B, or A and B.” In addition, it is to be understood that the phraseology or terminology employed in this disclosure, and not otherwise defined, is for the purpose of description only and not of limitation. Any use of section headings is intended to aid reading of the document and is not to be interpreted as limiting; information that is relevant to a section heading may occur within or outside of that particular section.


As used in this disclosure, the term “about” or “approximately” can allow for a degree of variability in a value or range, for example, within 10%, within 5%, or within 1% of a stated value or of a stated limit of a range.


As used in this disclosure, the term “substantially” refers to a majority of, or mostly, as in at least about 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.9%, 99.99%, or at least about 99.999% or more.


Values expressed in a range format should be interpreted in a flexible manner to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. For example, a range of “0.1% to about 5%” or “0.1% to 5%” should be interpreted to include about 0.1% to about 5%, as well as the individual values (for example, 1%, 2%, 3%, and 4%) and the sub-ranges (for example, 0.1% to 0.5%, 1.1% to 2.2%, 3.3% to 4.4%) within the indicated range. The statement “X to Y” has the same meaning as “about X to about Y,” unless indicated otherwise. Likewise, the statement “X, Y, or Z” has the same meaning as “about X, about Y, or about Z,” unless indicated otherwise.


Particular implementations of the subject matter have been described. Other implementations, alterations, and permutations of the described implementations are within the scope of the following claims as will be apparent to those skilled in the art. While operations are depicted in the drawings or claims in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed (some operations may be considered optional), to achieve desirable results. In certain circumstances, multitasking or parallel processing (or a combination of multitasking and parallel processing) may be advantageous and performed as deemed appropriate.


Moreover, the separation or integration of various system modules and components in the previously described implementations should not be understood as requiring such separation or integration in all implementations, and it should be understood that the described components and systems can generally be integrated together or packaged into multiple products.


Accordingly, the previously described example implementations do not define or constrain the present disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of the present disclosure.

Claims
  • 1. A thrust balancing apparatus for a pump, the apparatus comprising: a housing;a balancing chamber coupled to and disposed within the housing, the balancing chamber defining an upper cavity and a lower cavity;a connecting tube coupled to the balancing chamber and the housing, the connecting tube configured to establish fluid communication between the balancing chamber and an exterior of the housing, such that an interior of the balancing chamber is exposed to fluid surrounding the housing;a balancing disk coupled to and surrounding a rotatable shaft of the pump passing through the balancing chamber, wherein a first portion of the balancing disk is disposed within the upper cavity of the balancing chamber, a second portion of the balancing disk passing through the lower cavity of the balancing chamber, and a third portion of the balancing disk is external to the balancing chamber;a bushing disposed within the housing and surrounding the rotatable shaft;a washer surrounding the rotatable shaft and disposed within the housing between the third portion of the balancing disk and the bushing; anda pair of upthrust washers surrounding the third portion of the balancing disk and disposed within the housing between the third portion of the balancing disk and the balancing chamber.
  • 2. The apparatus of claim 1, wherein the housing is configured to be positioned downstream of a pump stage of the pump.
  • 3. The apparatus of claim 1, wherein: the first portion of the balancing disk comprises a first disk;the second portion of the balancing disk is tubular; andthe third portion of the balancing disk comprises a second disk.
  • 4. The apparatus of claim 3, wherein the washer is axially disposed between the bushing and the second disk of the third portion of the balancing disk, and the pair of upthrust washers is axially disposed between the balancing chamber and the second disk of the third portion of the balancing disk.
  • 5. The apparatus of claim 4, wherein the connecting tube is coupled to the upper cavity of the balancing chamber.
  • 6. The apparatus of claim 5, wherein the upper cavity and the lower cavity of the balancing chamber are partitioned by a ring lining an inner circumferential wall of the balancing chamber, the second portion of the balancing disk passing through the ring.
  • 7. The apparatus of claim 6, wherein a first spacing is defined between the ring and the first disk of the first portion of the balancing disk, a second spacing is defined between the pair of upthrust washers, and the first spacing and the second spacing are adjustable to balance a thrust load of the rotatable shaft.
  • 8. The apparatus of claim 7, comprising a seal surrounding the rotatable shaft and radially disposed between the rotatable shaft and the balancing chamber, the seal configured to prevent fluid flow between the upper cavity of the balancing chamber and an interior of the housing.
  • 9. A system comprising: an electric submersible pump (ESP) independent of a protector, the ESP comprising a plurality of pump stages and a rotatable shaft; anda thrust balancing apparatus located downstream of the plurality of pump stages of the ESP, the thrust balancing apparatus comprising: a housing;a balancing chamber coupled to and disposed within the housing, the balancing chamber defining an upper cavity and a lower cavity;a connecting tube coupled to the balancing chamber and the housing, the connecting tube configured to establish fluid communication between the balancing chamber and an exterior of the housing, such that an interior of the balancing chamber is exposed to fluid surrounding the housing;a balancing disk coupled to and surrounding the rotatable shaft passing through the balancing chamber, wherein a first portion of the balancing disk is disposed within the upper cavity of the balancing chamber, a second portion of the balancing disk passing through the lower cavity of the balancing chamber, and a third portion of the balancing disk is external to the balancing chamber;a bushing disposed within the housing and surrounding the rotatable shaft;a washer surrounding the rotatable shaft and disposed within the housing between the third portion of the balancing disk and the bushing; anda pair of upthrust washers surrounding the third portion of the balancing disk and disposed within the housing between the third portion of the balancing disk and the balancing chamber.
  • 10. The system of claim 9, wherein: the first portion of the balancing disk comprises a first disk;the second portion of the balancing disk is tubular; andthe third portion of the balancing disk comprises a second disk.
  • 11. The system of claim 10, wherein the washer is axially disposed between the bushing and the second disk of the third portion of the balancing disk, and the pair of upthrust washers is axially disposed between the balancing chamber and the second disk of the third portion of the balancing disk.
  • 12. The system of claim 11, wherein the connecting tube is coupled to the upper cavity of the balancing chamber.
  • 13. The system of claim 12, wherein the upper cavity and the lower cavity of the balancing chamber are partitioned by a ring lining an inner circumferential wall of the balancing chamber, the second portion of the balancing disk passing through the ring.
  • 14. The system of claim 13, wherein a first spacing is defined between the ring and the first disk of the first portion of the balancing disk, a second spacing is defined between the pair of upthrust washers, and the first spacing and the second spacing are adjustable to balance a thrust load of the rotatable shaft.
  • 15. The system of claim 14, wherein the thrust balancing apparatus comprises a seal surrounding the rotatable shaft and radially disposed between the rotatable shaft and the balancing chamber, the seal configured to prevent fluid flow between the upper cavity of the balancing chamber and an interior of the housing.
  • 16. A method comprising: establishing, by a connecting tube coupled to a balancing chamber and a housing, fluid communication between the balancing chamber and an exterior of the housing, thereby exposing an interior of the balancing chamber to fluid surrounding the housing, the balancing chamber coupled to and disposed within the housing, the balancing chamber defining an upper cavity and a lower cavity;balancing pressure within the balancing chamber by adjusting a first spacing, wherein a balancing disk is coupled to and surrounding a rotatable shaft passing through the balancing chamber, a ring lining an inner circumferential wall of the balancing chamber partitions the balancing chamber into the upper cavity and the lower cavity, and the first spacing is defined between the balancing disk and the ring; andbalancing pressure between the balancing chamber and the housing by adjusting a second spacing, wherein a pair of upthrust washers surrounding the balancing disk is disposed within the housing between the balancing disk and the balancing chamber, the second spacing is defined between the pair of upthrust washers, and balancing the pressure within the balancing chamber and balancing the pressure between the balancing chamber and the housing results in balancing a thrust load of the rotatable shaft while the rotatable shaft rotates.
  • 17. The method of claim 16, wherein: the balancing disk comprises: a first portion comprising a first disk disposed within the upper cavity of the balancing chamber;a second portion that is tubular and passes through the lower cavity of the balancing chamber; anda third portion comprising a second disk that is external to the balancing chamber;the pair of upthrust washers is disposed axially in between the balancing chamber and the second disk of the third portion of the balancing disk; andadjusting the second spacing comprises adjusting an axial spacing between the pair of upthrust washers.
  • 18. The method of claim 17, wherein the connecting tube is coupled to the upper cavity of the balancing chamber, and establishing fluid communication between the balancing chamber and the exterior of the housing comprises establishing fluid communication between the upper cavity of the balancing chamber and the exterior of the housing.
  • 19. The method of claim 18, comprising preventing, by a seal surrounding the rotatable shaft and radially disposed between the rotatable shaft and the balancing chamber, fluid flow between the upper cavity of the balancing chamber and an interior of the housing.
US Referenced Citations (373)
Number Name Date Kind
335164 Vitalis Feb 1886 A
646887 Stowe et al. Apr 1900 A
1485504 Hollander Mar 1924 A
1559155 Bullock Oct 1925 A
1677093 Johnson Jul 1928 A
1912452 Hollander Jun 1933 A
1978277 Noble Oct 1934 A
2287027 Cummins Jun 1942 A
2556435 Moehrl Jun 1951 A
2625110 Haentjens et al. Jan 1953 A
2641191 Alfred Jun 1953 A
2782720 Dochterman Feb 1957 A
2845869 Herbenar Aug 1958 A
2866417 Otto Dec 1958 A
2931384 Clark Apr 1960 A
3007418 Brundage et al. Nov 1961 A
3034484 Stefancin May 1962 A
3038698 Troyer Jun 1962 A
3123010 Witt et al. Mar 1964 A
3129875 Cirillo Apr 1964 A
3139835 Wilkinson Jul 1964 A
3158415 Garnder Nov 1964 A
3171355 Harris et al. Mar 1965 A
3175403 Nelson Mar 1965 A
3251226 Cushing May 1966 A
3272130 Mosbacher Sep 1966 A
3413925 Campolong Dec 1968 A
3516765 Boyadjieff Jun 1970 A
3638732 Huntsinger et al. Feb 1972 A
3680989 Brundage Aug 1972 A
3724503 Cooke Apr 1973 A
3746461 Yokota Jul 1973 A
3771910 Laing Nov 1973 A
3795145 Miller Mar 1974 A
3814486 Schurger Jun 1974 A
3839914 Modisette et al. Oct 1974 A
3874812 Hanagarth Apr 1975 A
3961758 Morgan Jun 1976 A
3975117 Carter Aug 1976 A
4025244 Sato May 1977 A
4096211 Rameau Jun 1978 A
4139330 Neal Feb 1979 A
4154302 Cugini May 1979 A
4181175 McGee et al. Jan 1980 A
4226275 Frosch Oct 1980 A
4266607 Halstead May 1981 A
4289199 McGee Sep 1981 A
4336415 Walling Jun 1982 A
4374530 Walling Feb 1983 A
4387685 Abbey Jun 1983 A
4417474 Elderton Nov 1983 A
4425965 Bayh, III et al. Jan 1984 A
4440221 Taylor et al. Apr 1984 A
4476923 Walling Oct 1984 A
4491176 Reed Jan 1985 A
4497185 Shaw Feb 1985 A
4576043 Nguyen Mar 1986 A
4580634 Cruise Apr 1986 A
4582131 Plummer et al. Apr 1986 A
4586854 Newman et al. May 1986 A
4619323 Gidley Oct 1986 A
4627489 Reed Dec 1986 A
4632187 Bayh, III et al. Dec 1986 A
4658583 Shropshire Apr 1987 A
4662437 Renfro May 1987 A
4665981 Hayatdavoudi May 1987 A
4741668 Bearden et al. May 1988 A
4757709 Czernichow Jul 1988 A
RE32866 Cruise Feb 1989 E
4838758 Sheth Jun 1989 A
4850812 Voight Jul 1989 A
4856344 Hunt Aug 1989 A
4867633 Gravelle Sep 1989 A
4969364 Masuda Nov 1990 A
4986739 Child Jan 1991 A
5033937 Wilson Jul 1991 A
5094294 Bayh, III et al. Mar 1992 A
5158440 Cooper et al. Oct 1992 A
5169286 Yamada Dec 1992 A
5180014 Cox Jan 1993 A
5195882 Freeman Mar 1993 A
5201848 Powers Apr 1993 A
5209650 Lemieux May 1993 A
5261796 Niemiec et al. Nov 1993 A
5269377 Martin Dec 1993 A
5285008 Sas-Jaworsky et al. Feb 1994 A
5323661 Cheng Jun 1994 A
5334801 Mohn Aug 1994 A
5335542 Ramakrishnan et al. Aug 1994 A
5337603 McFarland et al. Aug 1994 A
5358378 Holscher Oct 1994 A
5482117 Kolpak Jan 1996 A
5494413 Campen et al. Feb 1996 A
5591922 Segeral et al. Jan 1997 A
5605193 Bearden et al. Feb 1997 A
5613311 Burtch Mar 1997 A
5620048 Beauquin Apr 1997 A
5641915 Ortiz Jun 1997 A
5649811 Krol, Jr. et al. Jul 1997 A
5653585 Fresco et al. Aug 1997 A
5693891 Brown Dec 1997 A
5736650 Hiron et al. Apr 1998 A
5755288 Bearden et al. May 1998 A
5834659 Ortiz Nov 1998 A
5845709 Mack et al. Dec 1998 A
5848642 Sola Dec 1998 A
5880378 Behring Mar 1999 A
5886267 Ortiz et al. Mar 1999 A
5905208 Ortiz et al. May 1999 A
5908049 Williams et al. Jun 1999 A
5921285 Quigley et al. Jul 1999 A
5954305 Calabro Sep 1999 A
6113675 Branstetter Sep 2000 A
6129507 Ganelin Oct 2000 A
6148866 Quigley et al. Nov 2000 A
6155102 Toma Dec 2000 A
6164308 Butler Dec 2000 A
6167965 Bearden et al. Jan 2001 B1
6176323 Weirich Jan 2001 B1
6179269 Kobylinski et al. Jan 2001 B1
6192983 Neuroth et al. Feb 2001 B1
6257332 Vidrine et al. Jul 2001 B1
6264440 Klein et al. Jul 2001 B1
6286558 Quigley et al. Sep 2001 B1
6289990 Dillon et al. Sep 2001 B1
6298917 Kobylinski et al. Oct 2001 B1
6325143 Scarsdale Dec 2001 B1
6357485 Quigley et al. Mar 2002 B2
6361272 Bassett Mar 2002 B1
6413065 Dass Jul 2002 B1
6414239 Gasque, Jr. Jul 2002 B1
6427778 Beall et al. Aug 2002 B1
6454010 Thomas et al. Sep 2002 B1
6463810 Liu Oct 2002 B1
6530211 Holtzapple et al. Mar 2003 B2
6544013 Kato et al. Apr 2003 B2
6546812 Lewis Apr 2003 B2
6547519 deBlanc et al. Apr 2003 B2
6550327 Van Berk Apr 2003 B1
6557642 Head May 2003 B2
6601460 Materna Aug 2003 B1
6601651 Grant Aug 2003 B2
6604550 Quigley et al. Aug 2003 B2
6629564 Ramakrishnan et al. Oct 2003 B1
6679692 Feuling et al. Jan 2004 B1
6681894 Fanguy Jan 2004 B1
6726449 James et al. Apr 2004 B2
6733249 Maier et al. May 2004 B2
6741000 Newcomb May 2004 B2
6755609 Preinfalk Jun 2004 B2
6776054 Stephenson Aug 2004 B1
6807857 Storm, Jr. Oct 2004 B2
6808371 Niwatsukino et al. Oct 2004 B2
6811382 Buchanan et al. Nov 2004 B2
6848539 Lee et al. Feb 2005 B2
6856132 Appel et al. Feb 2005 B2
6857452 Quigley et al. Feb 2005 B2
6863137 Terry et al. Mar 2005 B2
6935189 Richards Aug 2005 B2
6993979 Segeral Feb 2006 B2
7017681 Ivannikov et al. Mar 2006 B2
7021905 Torrey et al. Apr 2006 B2
7032662 Malone et al. Apr 2006 B2
7086294 DeLong Aug 2006 B2
7093665 Dass Aug 2006 B2
7107860 Jones Sep 2006 B2
7226279 Andoskin et al. Jun 2007 B2
7259688 Hirsch et al. Aug 2007 B2
7262532 Seidler et al. Aug 2007 B2
7275592 Davis Oct 2007 B2
7275711 Flanigan Oct 2007 B1
7338262 Gozdawa Mar 2008 B2
7377312 Davis May 2008 B2
7647948 Quigley et al. Jan 2010 B2
7670122 Phillips et al. Mar 2010 B2
7670451 Head Mar 2010 B2
7699099 Bolding et al. Apr 2010 B2
7730937 Head Jun 2010 B2
7762715 Gordon et al. Jul 2010 B2
7770650 Young et al. Aug 2010 B2
7775763 Johnson et al. Aug 2010 B1
7819640 Kalavsky et al. Oct 2010 B2
7841395 Gay et al. Nov 2010 B2
7841826 Phillips Nov 2010 B1
7849928 Collie Dec 2010 B2
7905295 Mack Mar 2011 B2
8013660 Fitzi Sep 2011 B2
8016545 Oklejas et al. Sep 2011 B2
8066033 Quigley et al. Nov 2011 B2
8067865 Savant Nov 2011 B2
8197602 Baron Jun 2012 B2
8235126 Bradley Aug 2012 B2
8261841 Bailey et al. Sep 2012 B2
8302736 Olivier Nov 2012 B1
8337142 Eslinger et al. Dec 2012 B2
8419398 Kothnur et al. Apr 2013 B2
8506257 Bottome Aug 2013 B2
8568081 Song et al. Oct 2013 B2
8579617 Ono et al. Nov 2013 B2
8771499 McCutchen et al. Jul 2014 B2
8821138 Holtzapple et al. Sep 2014 B2
8905728 Blankemeier et al. Dec 2014 B2
8936430 Bassett Jan 2015 B2
8950476 Head Feb 2015 B2
8960309 Davis Feb 2015 B2
8973433 Mulford Mar 2015 B2
9080336 Yantis Jul 2015 B1
9133709 Huh et al. Sep 2015 B2
9157297 Williamson, Jr. Oct 2015 B2
9200932 Sittler Dec 2015 B2
9203277 Kori et al. Dec 2015 B2
9234529 Meuter Jan 2016 B2
9353614 Roth et al. May 2016 B2
9383476 Trehan Jul 2016 B2
9500073 Alan et al. Nov 2016 B2
9540908 Olivier Jan 2017 B1
9574438 Flores Feb 2017 B2
9587456 Roth Mar 2017 B2
9593561 Xiao et al. Mar 2017 B2
9631482 Roth et al. Apr 2017 B2
9677560 Davis et al. Jun 2017 B1
9759025 Vavik Sep 2017 B2
9759041 Osborne Sep 2017 B2
9915134 Xiao et al. Mar 2018 B2
9932806 Stewart Apr 2018 B2
9951598 Roth et al. Apr 2018 B2
9964533 Ahmad May 2018 B2
9982519 Melo May 2018 B2
10100596 Roth et al. Oct 2018 B2
10138885 Ejim et al. Nov 2018 B2
10151194 Roth et al. Dec 2018 B2
10253610 Roth et al. Apr 2019 B2
10273399 Cox et al. Apr 2019 B2
10287853 Ejim et al. May 2019 B2
10308865 Cox et al. Jun 2019 B2
10323644 Shakirov et al. Jun 2019 B1
10337302 Roth et al. Jul 2019 B2
10337312 Xiao et al. Jul 2019 B2
10378322 Ejim et al. Aug 2019 B2
10465477 Abdelaziz et al. Nov 2019 B2
10465484 Turner et al. Nov 2019 B2
10487259 Cox et al. Nov 2019 B2
10501682 Cox et al. Dec 2019 B2
10533558 Melo et al. Jan 2020 B2
10578111 Xiao et al. Mar 2020 B2
20020074742 Quoiani Jun 2002 A1
20020079100 Simpson Jun 2002 A1
20020109080 Tubel et al. Aug 2002 A1
20020121376 Rivas Sep 2002 A1
20020153141 Hartman Oct 2002 A1
20030079880 Deaton et al. May 2003 A1
20030141071 Hosie Jul 2003 A1
20030161739 Chu et al. Aug 2003 A1
20030185676 James Oct 2003 A1
20030226395 Storm et al. Dec 2003 A1
20040060705 Kelley Apr 2004 A1
20050098349 Krueger et al. May 2005 A1
20050166961 Means Aug 2005 A1
20050217859 Hartman Oct 2005 A1
20050254943 Fukuchi Nov 2005 A1
20060076956 Sjolie et al. Apr 2006 A1
20060096760 Ohmer May 2006 A1
20070193749 Folk Aug 2007 A1
20080093084 Knight Apr 2008 A1
20080187434 Neiszer Aug 2008 A1
20080236842 Bhavsar et al. Oct 2008 A1
20080262737 Thigpen et al. Oct 2008 A1
20080264182 Jones Oct 2008 A1
20080290876 Ameen Nov 2008 A1
20080292454 Brunner Nov 2008 A1
20090001304 Hansen et al. Jan 2009 A1
20090016899 Davis Jan 2009 A1
20090090513 Bissonnette Apr 2009 A1
20090110579 Amburgey Apr 2009 A1
20090151928 Lawson Jun 2009 A1
20090151953 Brown Jun 2009 A1
20090255669 Ayan et al. Oct 2009 A1
20090289627 Johansen et al. Nov 2009 A1
20090293634 Ong Dec 2009 A1
20100040492 Eslinger et al. Feb 2010 A1
20100122818 Rooks May 2010 A1
20100206577 Martinez Aug 2010 A1
20100236794 Duan Sep 2010 A1
20100244404 Bradley Sep 2010 A1
20100258306 Camilleri Oct 2010 A1
20100288493 Fielder et al. Nov 2010 A1
20100300413 Ulrey et al. Dec 2010 A1
20110017459 Dinkins Jan 2011 A1
20110024107 Sunyovszky et al. Feb 2011 A1
20110024231 Wurth et al. Feb 2011 A1
20110036568 Barbosa Feb 2011 A1
20110036662 Smith Feb 2011 A1
20110155390 Lannom et al. Jun 2011 A1
20110162832 Reid Jul 2011 A1
20110185805 Roux et al. Aug 2011 A1
20110203848 Krueger et al. Aug 2011 A1
20110278094 Gute Nov 2011 A1
20110296911 Moore Dec 2011 A1
20110300008 Fielder et al. Dec 2011 A1
20120012327 Plunkett et al. Jan 2012 A1
20120282119 Floyd Nov 2012 A1
20130019673 Sroka Jan 2013 A1
20130300833 Perkins Jan 2013 A1
20130048302 Gokdag et al. Feb 2013 A1
20130051977 Song Feb 2013 A1
20130066139 Wiessler Mar 2013 A1
20130068454 Armistead Mar 2013 A1
20130073208 Dorovsky Mar 2013 A1
20130081460 Xiao et al. Apr 2013 A1
20130175030 Ige Jul 2013 A1
20130189123 Stokley Jul 2013 A1
20130213663 Lau et al. Aug 2013 A1
20130248429 Dahule Sep 2013 A1
20130255370 Roux et al. Oct 2013 A1
20130259721 Noui-Mehidi Oct 2013 A1
20140012507 Trehan Jan 2014 A1
20140014331 Crocker Jan 2014 A1
20140027546 Kean et al. Jan 2014 A1
20140037422 Gilarranz Feb 2014 A1
20140041862 Ersoz Feb 2014 A1
20140116720 He et al. May 2014 A1
20140144706 Bailey et al. May 2014 A1
20140209291 Watson et al. Jul 2014 A1
20140265337 Harding et al. Sep 2014 A1
20140341714 Casa Nov 2014 A1
20140343857 Pfutzner Nov 2014 A1
20140377080 Xiao et al. Dec 2014 A1
20150068769 Xiao et al. Mar 2015 A1
20150071795 Vazquez et al. Mar 2015 A1
20150192141 Nowitzki et al. Jul 2015 A1
20150204336 McManus Jul 2015 A1
20150233228 Roth Aug 2015 A1
20150308245 Stewart et al. Oct 2015 A1
20150308444 Trottman Oct 2015 A1
20150330194 June et al. Nov 2015 A1
20150354308 June et al. Dec 2015 A1
20150354590 Kao Dec 2015 A1
20150376907 Nguyen Dec 2015 A1
20160010451 Melo Jan 2016 A1
20160016834 Dahule Jan 2016 A1
20160169231 Michelassi et al. Jun 2016 A1
20160305447 Dreiss et al. Oct 2016 A1
20160332856 Steedley Nov 2016 A1
20170058664 Xiao et al. Mar 2017 A1
20170074082 Palmer Mar 2017 A1
20170122046 Vavik May 2017 A1
20170138189 Ahmad et al. May 2017 A1
20170159668 Nowitzki et al. Jun 2017 A1
20170167498 Chang Jun 2017 A1
20170175752 Hofer et al. Jun 2017 A1
20170183942 Veland Jun 2017 A1
20170194831 Marvel Jul 2017 A1
20170292533 Zia Oct 2017 A1
20170321695 Head Nov 2017 A1
20170328151 Dillard Nov 2017 A1
20170350399 Eslinger Dec 2017 A1
20180058157 Melo et al. Mar 2018 A1
20180066671 Murugan Mar 2018 A1
20180171763 Malbrel et al. Jun 2018 A1
20180171767 Huynh et al. Jun 2018 A1
20180172020 Ejim Jun 2018 A1
20180226174 Rose Aug 2018 A1
20180238152 Melo Aug 2018 A1
20180306199 Reed Oct 2018 A1
20180320059 Cox et al. Nov 2018 A1
20180340389 Wang Nov 2018 A1
20180363660 Klahn Dec 2018 A1
20190032667 Ifrim et al. Jan 2019 A1
20190040863 Davis et al. Feb 2019 A1
20190271217 Radov et al. Sep 2019 A1
20190368291 Xiao et al. Dec 2019 A1
20200056462 Xiao et al. Feb 2020 A1
20200056615 Xiao et al. Feb 2020 A1
Foreign Referenced Citations (84)
Number Date Country
1226325 Sep 1987 CA
2629578 Oct 2009 CA
2168104 Jun 1994 CN
1507531 Jun 2004 CN
101328769 Dec 2008 CN
101842547 Sep 2010 CN
202851445 Apr 2013 CN
103185025 Jul 2013 CN
203420906 Feb 2014 CN
104141633 Nov 2014 CN
104533797 Apr 2015 CN
103835988 Jan 2016 CN
105239963 Jan 2016 CN
103717901 Jun 2016 CN
2260678 Jun 1974 DE
3022241 Dec 1981 DE
3444859 Jun 1985 DE
3520884 Jan 1986 DE
19654092 Jul 1998 DE
10307887 Oct 2004 DE
10346647 May 2005 DE
102007005426 May 2008 DE
102008001607 Nov 2009 DE
102008054766 Jun 2010 DE
102012215023 Jan 2014 DE
102012022453 May 2014 DE
102013200450 Jul 2014 DE
102012205757 Aug 2014 DE
0579981 Jan 1994 EP
0637675 Feb 1995 EP
1101024 May 2001 EP
1143104 Oct 2001 EP
1270900 Jan 2003 EP
1369588 Dec 2003 EP
2801696 Dec 2014 EP
2893301 May 2018 EP
3527830 Aug 2019 EP
670206 Apr 1952 GB
2173034 Oct 1986 GB
2226776 Jul 1990 GB
2283035 Apr 1995 GB
2348674 Oct 2000 GB
2477909 Aug 2011 GB
2504104 Jan 2014 GB
4019375 Jan 1992 JP
2005076486 Mar 2005 JP
2013110910 Jun 2013 JP
98500 Oct 2010 RU
122531 Nov 2012 RU
178531 Apr 2018 RU
WO 1995004869 Feb 1995 WO
WO 1998046857 Oct 1998 WO
WO 1999027256 Jun 1999 WO
WO 2002072998 Sep 2002 WO
WO 2005066502 Jul 2005 WO
WO 2009113894 Sep 2009 WO
WO 2009129607 Oct 2009 WO
WO 2011066050 Jun 2011 WO
WO 2011101296 Aug 2011 WO
WO 2011133620 Oct 2011 WO
WO 2011135541 Nov 2011 WO
WO 2012058290 May 2012 WO
WO 2012166638 Dec 2012 WO
WO 2013089746 Jun 2013 WO
WO 2013171053 Nov 2013 WO
WO 2014127035 Aug 2014 WO
WO 2014147645 Sep 2014 WO
WO 2015034482 Mar 2015 WO
WO 2015041655 Mar 2015 WO
WO 2015084926 Jun 2015 WO
WO 2015123236 Aug 2015 WO
WO 2016003662 Jan 2016 WO
WO 2016012245 Jan 2016 WO
WO 2016050301 Apr 2016 WO
WO 2016081389 May 2016 WO
WO 2016089526 Jun 2016 WO
WO 2016160016 Oct 2016 WO
WO 2016195643 Dec 2016 WO
WO 2017021553 Feb 2017 WO
WO 2018022198 Feb 2018 WO
WO 2018096345 May 2018 WO
WO 2019243789 Dec 2019 WO
WO 2020165046 Aug 2020 WO
WO-2020165046 Aug 2020 WO
Non-Patent Literature Citations (40)
Entry
PCT International Search Report and Written Opinion in International Appln. No. PCT/US2021/046862, dated Dec. 10, 2021, 15 pages.
Abelsson et al., “Development and Testing of a Hybrid Boosting Pump,” OTC 21516, Offshore Technology Conference (OTC), presented at the Offshore Technology Conference, May 2-5, 2011, 9 pages.
Alhanati et al., “ESP Failures: Can we talk the same language?” Society of Petroleum Engineers (SPE), SPE paper, SPE ESP Workshop held in Houston, Apr. 25-27, 2001, 11 page.
Alhasan et al., “Extending mature field production life using a multiphase twin screw pump,” BHR Group Multiphase 15, 2011, 11 pages.
BakerHughes.com, [online], “Multiphase Pump: Increases Efficiency and Production in Wells with High Gas Content,” Brochure overview, retrieved from URL <https://assets.www.bakerhughes.com/system/69/00d970d9dd11e3a411ddf3c1325ea6/28592.MVP_ Overview.pdf>, 2014, 2 pages.
Blunt, “Effects of heterogeneity and wetting on relative permeability using pore level modeling,” SPE 36762, Society of Petroleum Engineers (SPE), SPE Journal 2:01 (70-87), Mar. 1997, 19 pages.
Bryant and Blunt, “Prediction of relative permeability in simple porous media,” Physical Review A 46:4, Aug. 1992, 8 pages.
Champion et al., “The application of high-power sound waves for wellbore cleaning,” SPE 82197, Society of Petroleum Engineers International (SPE), presented at the SPE European Formation Damage Conference, May 13-14, 2003, 10 pages.
Chappell and Lancaster, “Comparison of methodological uncertainties within permeability measurements,” Wiley InterScience, Hydrological Processes 21:18 (2504-2514), Jan. 2007, 11 pages.
Cramer et al., “Development and Application of a Downhole Chemical Injection Pump for Use in ESP Applications,” SPE 14403, Society of Petroleum Engineers (SPE), presented at the 66th Annual Technical Conference and Exhibition, Sep. 22-25, 1985, 6 page.
Danfoss, “Facts Worth Knowing about Frequency Converters,” Handbook VLT Frequency Converters, Danfoss Engineering Tomorrow, 180 pages.
DiCarlo et al., “Three-phase relative permeability of water-wet, oil-wet, and mixed-wet sandpacks,” SPE 60767, Society of Petroleum Engineers (SPE), presented at the 1998 SPE Annual Technical Conference and Exhibition, Sep. 27-30, 1998, SPE Journal 5:01 (82-91), Mar. 2000, 10 pages.
Dixit et al., “A pore-level investigation of relative permeability hysteresis in water-wet systems,” SPE 37233, Society of Petroleum Engineers (SPE), presented at the 1997 SPE International Symposium on Oilfield Chemistry, Feb. 18-21, 1997, SPE Journal 3:02 (115-123), Jun. 1998, 9 pages.
ejprescott.com [online], “Water, Sewer and Drain Fittings B-22, Flange Adaptors,” retrieved from URL <https://www.ejprescott.com/media/reference/FlangeAdaptorsB-22.pdf> retrieved on Jun. 15, 2020, available on or before Nov. 2010 via wayback machine URL <http://web.archive.org/web/20101128181255/https://www.ejprescott.com/media/reference/FlangeA daptorsB-22.pdf>, 5 pages.
Fatt, “The network model of porous media,” SPE 574-G, Society of Petroleum Engineers (SPE), I. Capillary Pressure Characteristics, AIME Petroleum Transactions 207: 144-181, Dec. 1956, 38 pages.
Geary et al., “Downhole Pressme Boosting in Natural Gas Wells: Results from Prototype Testing,” SPE 11406, Society of Petroleum Engineers International (SPE), presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, Oct. 20-22, 2008, 13 pages.
Godbole et al., “Axial Thrust in Centrifugal Pumps—Experimental Analysis,” Paper Ref: 2977, presented at the 15th International Conference on Experimental Mechanics, ICEM15, Jul. 22-27, 2012, 14 pages.
Heiba et al., “Percolation theory of two-phase relative permeability,” Society of Petroleum Engineers (SPE), SPE Reservoir Engineering 7:01 (123-132), Feb. 1992, 11 pages.
Hua et al., “Comparison of Multiphase Pumping Techniques for Subsea and Downhole Applications,” SPE 146784, Society of Petroleum Engineers International (SPE), presented at the SPE Annual Technical Conference and Exhibition, Oct. 30-Nov. 2, 2011, Oil and Gas Facilities, Feb. 2012, 11 pages.
Hui and Blunt, “Effects of wettability on three-phase flow in porous media” American Chemical Society (ACS), J. Phys. Chem. 104 :16 (3833-3845), Feb. 2000, 13 pages.
Krag et al., “Preventing Scale Deposition Downhole Using High Frequency Electromagnetic AC Signals from Surface Enhance Production Offshore Denmark,” SPE-170898-MS, Society of Petroleum Engineers International (SPE), presented at the SPE Annual Technical Conference and Exhibition, Oct. 27-29, 2014, 10 pages.
laserfocusworld.com [online], “High-Power Lasers: Fiber lasers drill for oil,” Dec. 5, 2012, retrieved on May 31, 2018, retrieved from URL: <https://www.laserfocusworld.com/articles/print/volume-48/issue-12/world-news/high-power-lasers-fiber-lasers-drill-for-oil.html>, 4 pages.
Li et al., “In Situ Estimation of Relative Permeability from Resistivity Measurements,” EAGE/The Geological Society of London, Petroleum Geoscience 20: 143-151, 2014, 10 pages.
machinedesign.com [online], Frances Richards, “Motors for efficiency: Permanent-magnet, reluctance, and induction motors compared,” Apr. 2013, retrieved on Nov. 11, 2020, retrieved from URL <https://www.machinedesign.com/motors-drives/article/21832406/motors-for-efficiency-permanentmagnet-reluctance-and-induction-motors-compared>.
Mahmud et al., “Effect of network topology on two-phase imbibition relative permeability,” Transport in Porous Media 66:3 (481-493), Feb. 2007, 14 pages.
Mirza, “The Next Generation of Progressive Cavity Multiphase Pumps use a Novel Design Concept for Superior Performance and Wet Gas Compression,” Flow Loop Testing, BHR Group, 2007, 9 pages.
Mirza, “Three Generations of Multiphase Progressive Cavity Pumping,” Cahaba Media Group, Upstream Pumping Solutions, Winter 2012, 6 pages.
Muswar et al., “Physical Water Treatment in the Oil Field Results from Indonesia,” SPE 113526, Society of Petroleum Engineers International (SPE), presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, Oct. 18-20, 2010, 11 pages.
Nagy et al., “Comparison of permeability testing methods,” Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering 399-402, 2013, 4 pages.
Parker, “About Gerotors,” Parker Haffinfin Corp, 2008, 2 pages.
Purcell, “Capillary pressures—their measurement using mercury and the calculation of permeability therefrom,” Petroleum Transactions, AIME, presented at the Branch Fall Meeting, Oct. 4-6, 1948, Journal of Petroleum Technology 1:02 (39-48), Feb. 1949, 10 pages.
Rzeznik et al., “Two Year Results of a Breakthrough Physical Water Treating System for the Control of Scale in Oilfield Applications,” SPE114072, Society of Petroleum Engineers International (SPE), presented at the 2008 SPE International Oilfield Scale Conference, May 28-29, 2008, 11 pages.
Schöneberg, “Wet Gas Compression with Twin Screw Pumps,” Bornemann Pumps, Calgary Pump Symposium 2005, 50 pages.
Simpson et al., “A Touch, Truly Multiphase Downhole Pump for Unconventional Wells,” SPE-185152-MS, Society of Petroleum Engineers (SPE), presented at the SPE Electric Submersible Pump Symposium, the Woodlands, Texas, Apr. 24-28, 2017, 20 pages.
slb.com [online], “AGH: Advanced Gas-Handling Device,” Product Sheet, retrieved from URL: <http://www.slb.com/˜/media/Files/artificial_lift/product_sheets/ESPs/advanced_gas_handling_ps.pdf>. Jan. 2014, 2 pages.
Sulzer Technical Review, “Pushing the Boundaries of Centrifugal Pump Design,” Oil and Gas, Jan. 2014, 2 pages.
tm4.com [online], “Outer rotor for greater performance,” available on or before Dec. 5, 2017, via internet archive: Wayback Machine URL <https://web.archive.org/web/20171205163856/https://www.tm4.com/technology/electric-motors/external-rotor-motor-technology/>, retrieved on May 17, 2017, retrieved from URL <https://www.tm4.com/technology/electric-motors/external-rotor-motor-technology/>, 2 pages.
Wylde et al., “Deep Downhole Chemical Injection on BP-Operated Miller: Experience and Learning,” SPE 92832, Society of Petroleum Engineers (SPE), presented at the 2005 SPE International Symposium on Oilfield Chemistry, May 11-12, 2005, SPE Production & Operations, May 2006, 6 pages.
Xiao et al., “Induction Versus Permanent Magnet Motors for ESP Applications,” SPE-192177-MS, Society of Petroleum Engineers (SPE), presented at the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Apr. 23-26, 2018, 15 pages.
Zhan et al., “Characterization of Reservoir Heterogeneity Through Fluid Movement Monitoring with Deep Electromagnetic and Pressure Measurements,” SPE 116328, Society of Petroleum Engineers International (SPE), presented at the 2008 SPE Annual Technical Conference and Exhibition, Sep. 21-24, 2008, 16 pages.
Related Publications (1)
Number Date Country
20220056913 A1 Feb 2022 US