This invention relates to improvements in balancing a machining tool. More particularly, the present tool holder or material removal machine includes a ring that contains a plurality of suspended balls, oil and weighted media and oil that dynamically balance the tool holder and a secured milling tool as well as the entire rotating assembly.
Description of Related Art including information disclosed under 37 CFR 1.97 and 1.98.
When a milling, or other metal machining tool with a spinning cutting tool is used, rotational balance of the cutting tool is critical for high precision removal of the material that is being machined. In addition to improved accuracy, rotational balance of the cutting tool will increase the bearing life of the machining apparatus, reduce tool wear, increase surface finish quality and accuracy. The first method is to balance the cutting tool and the tool holder. With the tool holder and the cutting tool balanced there is still some imbalance when the two parts are joined together to to remove material. The rotational position of the cutting tool within the tool holder changes the position of the balance every time a new tool is locked into the milling machine.
A number of patents and or publications have been made to address these issues. Exemplary examples of patents and or publication that try to address this /these problem(s) are identified and discussed below.
U.S. Pat. No. 9,822,477 issued on Nov. 21, 2017, to Donald E. Erickson and is titled Balance Ring Assembly. This patent discloses a balance ring assembly for balancing a liquid holding tub that is rotatable about an axis of rotation in a laundry treating appliance, includes an enclosed annular housing having a hollow annular raceway and a longitudinal axis, a magnetic mass disposed in the hollow annular raceway and movable therein, and a magnet mounted to the annular housing. While it discloses a balancing ring the ring is not configured or discloses for use with a milling machine.
U.S. Pat. No. 8,286,531 issued on Oct. 16, 2012, to David Michael Jones et al., and is titled Automatic Balancing Device. This patent discloses an automatic balancing device for counterbalancing an out-of-balance mass includes a plurality of counterbalancing masses, each of which is movable in a circular path about the axis so as to generate a balancing force. The balancing forces combine to produce a resultant balancing force which varies between minimum and maximum values. The device allows at least partial counterbalancing of the out-of-balance mass at speeds below the critical speed of the system in which it is used. While this patent discloses an automatic balancing device the device is not configured for use on a machining tool or holder.
U.S. Pat. No. 4,787,132 issued on Nov. 29, 1988, to Ronald B. Kilgore and is titled Method of Making dynamic Rotational Counterbalance Structure. This patent discloses a dynamic rotational counterbalance structure includes a discoid balance body having a groove or race formed in an outer circumferential surface of the body. A plurality of movable weights such as spherical weights are positioned in the groove along with a lubricating and noise damping fluid. The groove is closed by an outer circumferential band. At least two of the balance structures are affixed coaxially on a rotatably member to be balanced. While this patent discloses a rotational counterbalance structure the structure is not configured for use in a milling machine.
What is needed is a dynamic device that used multiple constrained balls or other weighted media to balance a combination of a machining tool and a cutting bit holder. The proposed self-balancing tool holder disclosed in this application provides the solution.
It is an object of the self-balancing tool holder or material removal machine to provide dynamic balancing to a tool holder that can dynamically balance the cutting tool and tool holder. Because the balancer is able to self-adjust, any changes in the assembly are automatically adjusted. The adjustment can account for tool wear, accumulation of debris on the tool and balancing at different speeds of rotation. Indexing and positioning of the tool holder in the chuck or collet can alter the balance and the tool holder is able to dynamically adjust to balance the tool holder and cutting tool to improve the accuracy.
It is an object of the self-balancing tool holder or material removal machine to be configured in a ring that can be installed on an existing tool holder or can be designed into a tool holder. The tool holder balancer can be a mechanical fastener, shrink fit or bonding. The ring configuration fits with the circular, cylindrical and conical shape of the tool holder. The size of the ring is designed based upon the size of balancing balls and tool holder.
It is another object of the self-balancing tool holder or material removal machine to reduce some of the tool balancing by addition of weights or the removal of some material from the tool holder. This procedure often requires expensive equipment and a procedure to ensure the tool holder is balanced prior to use in a milling or CNC (Computer Nematic Control) machine. It also requires significant time and skilled labor.
It is another object of the self-balancing tool holder or material removal machine to use a plurality of balls or any other weighted medial and oil in the ring to provide the balance. The plurality of balls or media can freely move around the inside of the ring to offset any imbalance. The balls, or other weighted media, roll, move or spin to unique positions to provide a dynamic balance. The number and size of balls is selected based upon the maximum amount of dynamic balancing that is required for the imbalance of the assembly of the tool holder and milling cutter along with any fasteners such as set screws.
It is still another object of the self-balancing tool holder or material removal machine to be able to design the position of the balancer for a location along the length of the tool holder to obtain optimal balancing of the tool holder and cutting tool. Balancers can also be placed on opposing ends of the tool holder to provide more even balancing of the tool holder and also account for some loading on the milling bit as it removes material. It is also possible to locate a balancer on the milling cutter to provide a further level of dynamic balancing.
It is still another object of the self-balancing tool holder or material removal machine to reduce vibration through oil contained alongside the weighted medial
It is still another object of the self-balancing ring to be an integral part of a spindle, headstock or other rotating part of a material removal machine. This allows the machine to dynamically balance the rotating or turning machine bit in a milling machine or part that is being machined as in a lathe.
Various objects, features, aspects, and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the invention, along with the accompanying drawings in which like numerals represent like components.
It will be readily understood that the components of the present invention, as generally described and illustrated in the drawings herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the embodiments of the system and method of the present invention, as represented in the drawings, is not intended to limit the scope of the invention but is merely representative of various embodiments of the invention. The illustrated embodiments of the invention will be best understood by reference to the drawings, wherein like parts are designated by like numerals throughout.
10 prior art endmill in holder
15 divot
14 set screw
16 divots
17 key
18 end mill
19 tool holder
20 dynamically balanced tool holder
21 bit hole
22 tapered contact surface
23 trapezium notch
24 grip orientation notch
25 drive slot
26 shank
27 bore for retention knob
28 flat
29 traverse shank
30 tool holder
40 tool holder
41 tapered transverse shank
42 fluid cooling holes
43 step
50 head stock
51 tailstock
52 part
60 balancing ring
61 balls
62 outer race / ring
69 second ring
70 spindle
71 inner /outer race separation
72 half-ring separation
73 upper / lower ring separation
This figure shows divots 15 and 16 where material is removed. After removal of the material, the endmill and tool holder is re-spun to verify the balance or if additional material must be removed to provide an acceptable spin balance for the assembly of the tool holder 19 and the endmill 18. While this provides a balanced assembly at a spinning rate of 25,000 RPM, it is time consuming, and some factors can cause an imbalance as well as spinning the assembly at other speeds may not be balanced. While a spin rate of 25,000 RPM is a standard, material removal can be made at a different speed based upon the material that is being machined and the desired surface finish.
Above the trapezium notch 23 is a flat 28 with a traverse shank 29 where the cutting tool is secured therein a bit hole 21. In this embodiment, the transverse shank 29 has the balancing ring 60. Within the balancing ring 60 is a plurality of balls 61 that freely move around within the ring 60 to dynamically balance the turning tool holder 20. The minimum number of balls is three and the maximum number of balls is a quantity that fills less than 180 degrees of the ring 60. The ring 60 can be constructed as a left and a right half with the balls 61 suspended within the left and right half, or the ring 60 can be constructed as an inner ring and an outer ring with the balls 61 suspended therein between. It is further contemplated that the ring could be constructed as a left and a right half where the balls 61 are placed in one-half, placed in a recess in the traverse shank 29 and an empty second half is installed in the other side of the recess in the traverse shank 29.
The size and quantity of the balls 60 or weighted media can also be selected based upon the greatest amount of dynamic out-of-balance that is expected from the assembly of the tool holder with an installed tool. This embodiment places the balancing ring 60 in proximity to the milling bit to obtain an improved balance, as opposed to the removing material at or near the trapezium notch 23. While balls are shown and described in this document the balls can be other weighted media that roll, move or spin to unique positions to provide a dynamic balance. In addition to balls the weighted media can be roller bearings, carbide dust, steel dust, organic dust, weighted gel, magnetic powder, rotating magnet, liquids including oil or any other media that can move within the tool holder to offset the imbalance of the tool or machine.
Removal of material is a destructive method to balance the tool holder because the removed material can’t be re-applied to balance the tool holder. Future balancing can only be obtained by additional material removal.
The ring 60 can be constructed as a left and a right half-ring separation 72 split with the balls 61 suspended within the left and right half. This embodiment allows the dynamic balancing ring to fit within a groove in the tool holder body or the transverse shank. The ring 60 can be constructed as an inner ring and an outer ring race separation 71 with the balls 61 suspended therein between. This embodiment is the most common construction for a bearing. In a third method of construction shows an upper / lower ring separation 73 which can be used in a shrink fit installation. While shrink fit is used in this embodiment, other methods of securing the balancer are contemplated including, but not limited to shrink fit steel, shrink fit plastic screws, bolts, adhesive, welding, brazing, friction welding and threading onto the tool holder or machine.
While some embodiments are shown in a tool holder 19, the balancing ring can also be integral to a mill spindle 70, lath, CNC machine or other material removal machine.
Various locations of the balancer are shown on the machine and / or the tool holder. While some specific locations are shown and described, it should be understood that the balancer can be placed inside, outside, at the end in a screw, in the retention knob, in the ER collet, in the Collet nut, inside the bladder as well as anywhere in the machine tool spindle as well. It is further contemplated that the balancer could be fabricated in the cutting or milling bit or endmill.
Thus, specific embodiments of a tool holder balancer have been disclosed. It should be apparent, however, to those skilled in the art that many more modifications besides those described are possible without departing from the inventive concepts herein. The inventive subject matter, therefore, is not to be restricted except in the spirit of the appended claims.
Not Applicable.
This application claims the benefit of Provisional Application Serial Number 63/252,502 filed Oct. 5, 2021, and Provisional Application Serial Number 63/289,514 filed Dec. 14, 2021, the entire contents of which is hereby expressly incorporated by reference herein.
Not Applicable Not Applicable Not Applicable
Number | Date | Country | |
---|---|---|---|
63252502 | Oct 2021 | US | |
63289514 | Dec 2021 | US |