1. Field of the Disclosure
The following relates to abrasive articles for use in machining and more particularly use of foamed abrasives in machining processes.
2. Description of the Related Art
Abrasives used in machining applications typically include bonded abrasive articles and coated abrasive articles. Coated abrasive articles generally include a layered article including a backing and an adhesive coat to fix abrasive grains to the backing, the most common example of which is sand paper. Bonded abrasive tools consist of rigid, and typically monolithic, three-dimensional, abrasive composites in the form of wheels, discs, segments, mounted points, hones and other tool shapes, which can be mounted onto a machining apparatus, such as a grinding or polishing apparatus. Such bonded abrasive tools usually have three phases including abrasive grains, bond material, and porosity.
It has been shown that certain amounts of porosity within bonded abrasive structures can improve machining efficiency and protect the quality of the workpiece being machined from thermal or mechanical damage. However, manufacturing limitations and mechanical property requirements (e.g., strength) restrict the percentage of porosity, which is further dependent on the size of the grit, the presence of agglomerated abrasive grains, and the type of bond material.
Manufacturing techniques include use of pore formers, such as glass bubbles, organics, and the like in the bonded abrasive formation, since the natural porosity resulting from regular packing of the abrasive grains is generally insufficient to achieve high porosity. However, such pore formers tend to form closed pores and not the open porosity suitable for improving machining efficiency. In fact, the creation of excessive closed porosity can increase the machining forces necessary for effective material removal and increase the thermal damage to the workpiece. Moreover, the use of certain pore formers can require a subtractive process in which the pore formers are “burned out” of the abrasive article during forming, which gives rise to other manufacturing obstacles.
In accordance with one embodiment, a method of machining includes providing a workpiece having a worksurface, and removing material from the worksurface by moving an abrasive relative to the worksurface, wherein the abrasive comprises a foamed abrasive body consisting of abrasive grains and a porosity of at least about 66 vol %. The porosity can be within a range between 75 vol % and 95 vol %, or more particularly within a range between about 77 vol % and about 90 vol %. In certain embodiments, the porosity is at least about 75 vol %, at least about 80 vol %, or at least 85 vol %. Additionally, the pores may have an average size of at least about 1 micron, and vary in size over a large range between about 10 microns and about 2000 microns. In certain instances, the self-bonded foamed abrasive body can be characterized in terms of large pore fractions, PFx, representing the fraction of pores within the foamed abrasive article having an average diameter greater than “x” microns. In particular examples, the self-bonded foamed abrasive article has a PF300 within a range between about 15% and about 50%. In one such case, the PF300 is at least about 20%, or at least about 25%, or even at least about 30%. In other exemplary articles, the self-bonded foamed abrasive body has a PF450 (i.e., fraction of pores having an average size greater than 450 microns) within a range between about 5% and about 30%. In more particular instances, PF450 is at least about 10%, such as at least about 12%, or even at least about 15%. In one particular configuration, the foamed abrasive article has a PF750 within a range between about 1% and about 10%. In certain other embodiments, PF750 is not greater than about 8%, not greater than about 5%, or even not greater than about 2%.
The abrasive grains can be selected from the group of materials consisting of oxides, borides, nitrides, carbides, and any combination thereof. In certain other instances, the abrasive grains are alumina and silicon carbide, and in some cases the foamed abrasive body can consist essentially of alumina or silicon carbide.
The self-bonded foamed abrasive body can have a thickness greater than about 60 mm. Additionally the self-bonded foamed abrasive body can have a density within a range between about 0.3 g/cm3 and 1.35 g/cm3, such that the density is not greater than about 1.2 g/cm3, or not greater than about 1.0 g/cm3. The abrasive body can also be strong for its volume of porosity, such that for example, the Modulus of Rupture (MOR) of the self-bonded foamed abrasive body is within a range between about 1 MPa and about 20 MPa. For example, in certain configurations the MOR is at least about 5 MPa, or at least about 8 MPa.
In accordance with another embodiment, a method of polishing a workpiece using a self-bonded abrasive foam material includes providing a workpiece having a worksurface, and removing material from the worksurface by moving a foamed abrasive relative to the worksurface. The foamed abrasive includes a self-bonded abrasive body containing abrasive grains bonded to each other to form a rigid structure and at least about 70 vol % porosity forming a network of interconnected channels through the structure, the porosity including pores having an average size within a range between 10 microns and about 2000 microns, and a pore fraction of pores having an average diameter greater than 300 microns (PF300) of at least about 15%.
The present disclosure may be better understood, and its numerous features and advantages made apparent to those skilled in the art by referencing the accompanying drawings.
The following disclosure is directed to an abrasive article suitable for machining applications. According to one embodiment, a foamed abrasive article is formed through a particular process such that the final abrasive article is a self-bonded foamed abrasive including abrasive grains bonded to each other without the use of a bond material (e.g., a vitreous bond material) commonly used in conventional bonded abrasives.
More specifically, the foamed abrasive article is formed by a particular process, without the use of pore formers or an underlying reticulated structure (e.g., sponge) upon which a ceramic slurry is formed. Formation of the article can be initiated by preparing a mixture containing abrasive particles in a slurry, at least one gelling agent, and at least one foaming agent. The mixture is mixed at a temperature greater than the gelling temperature of the gelling agent, such that gellation is avoided until a foam is obtained. Foaming introduces a large number of bubbles within the mixture, which will later form the porosity within the final foamed abrasive. After foaming, the mixture is shaped and cooled to form a partially solidified gelled foam body. After gellation, the mixture is dried and fired such that a foamed abrasive is obtained. Typically, the firing process includes sintering of the abrasive grains to bond them to each other at temperatures in excess of 1000° C. and within a range between about 1400° C. to about 2300° C. The thus formed, foamed abrasive can be formed into a variety of shapes, including those suitable for machining applications, such as a grinding or polishing wheel.
In accordance with a particular embodiment, a stabilizing agent is added to the mixture. The stabilizing agent is sensitive to particular shearing speeds, such that upon decreasing the mixing speed, the viscosity of the mixture can increase by an order of magnitude, to form a stable, foamed mixture, which then cools to form a gelled foam body. The gelled foam body is then heat treated to form the final foamed abrasive article. Such a process facilitates the formation of large, thick, foamed abrasive articles and is described in the publication WO 2006/018537, the disclosure of which is incorporated herein in its entirety.
In accordance with an embodiment, the foamed abrasive article can include abrasive grains having a suitable hardness to facilitate machining operations, such as grinding and polishing, and being capable of forming a self-bonded structure through heat treatment. In accordance with one particular embodiment, the abrasive grains can include ceramics such as oxides, borides, nitrides, carbides, and any combination thereof. In a more particular embodiment, the abrasive grains can include oxides and nitrides, and more particularly, alumina and silicon carbide. In certain embodiments, the abrasive grains of the foamed abrasive are entirely silicon carbide grains. Still, in other embodiments, the abrasive grains consist essentially of alumina grains.
The foamed abrasive articles described herein can be formed such that they are particularly robust, having a thickness suitable for use in machining and polishing applications. Accordingly, in one embodiment, the body of the foamed abrasive article has a thickness within a range between about 60 mm and about 200 mm. In certain other embodiments, the thickness of the foamed abrasive body is at least about 70 mm, such as at least about 80 mm, at least about 100 mm, or even at least about 125 mm.
According to an embodiment the foamed abrasive is a highly porous structure, and accordingly, has a particularly low density. In fact, the foamed abrasive articles described herein have a high degree of porosity, the majority of which is open porosity defining a network of interconnected channels through the structure. As such, in accordance with one embodiment, the foamed abrasive has a density within a range between about 0.3 g/cc3 and about 1.35 g/cc3. In certain other embodiments, the foamed abrasive has a density not greater than 1.2 g/cc3, not greater than about 1.0 g/cc3, or even not greater than about 0.75 g/cc3.
An example of a self-bonded foamed abrasive article is manufactured by forming a mixture of an alumina powder using 99% pure alumina particles having a particle size distribution within a range of 0. 1 microns to 200 microns, and present within the mixture at approximately 65 wt %. The mixture further includes 0.6 wt % of ammonium polyacrylate as a dispersant, 2.4 wt % gelatine as a gelling agent, and 0.1% of a stabilizing agent, such as xanthane provided as gum of xanthane or Satiaxane™ from SKW Biosystems. PVA sold as Rhodoviol 4/125 from Rhodia PMC is the foaming agent and is present in the mixture in an amount of 2.2 wt %. The mixture can also contain a plasticizer in a minor amount of 1.0 wt %, and the remainder of the mixture is water.
The formation of such a mixture is carried out by combining three separately formed mixtures, A, B, and C. Mixture A includes a slurry of the abrasive grains and water. Mixture B contains the gelling agent, stabilizer, and water, which is continuously mixed at a temperature above the gellation temperature of the gelling agent. Mixture C contains the foaming agent in water. The mixtures A and C are added to mixture B while mixture B is heated and agitated until a foamed mixture is obtained. The foamed mixture is shaped (e.g., by pouring into a mold) and cooled to form a gelled foam body, and subsequently dried and fired to form the thus formed product illustrated in the scanning electron microscopy images of
As further illustrated in
In further reference to the porosity of the foamed abrasive article, embodiments have been characterized in terms of large pore fractions, PFx, representing the fraction of pores within the foamed abrasive article having an average diameter greater than “x” microns. According to one embodiment, the foamed abrasive article has a PF300 within a range between about 15% and about 50%. In certain other embodiments, PF300 is at least about 20%, at least about 25%, or even at least about 30%.
According to another embodiment, the foamed abrasive article has a PF450 within a range between about 5% and about 30%. In certain other embodiments, PF450 is at least about 10%, such as at least about 12%, or even at least about 15%.
In accordance with yet another embodiment, the foamed abrasive article has a PF750 within a range between about 1% and about 10%. In other embodiments, PF7500 is not greater than about 8%, not greater than about 5%, or even not greater than about 2%.
As noted above, embodiments of the foamed abrasive article have a range of pore sizes that allows for a greater percentage of pores per unit volume while maintaining the structural integrity of the foamed abrasive, and thus a greater overall porosity within the final article. As such, in accordance with one embodiment, the foamed abrasive article has a porosity of at least about 66 vol %. More particularly, the porosity can be within a range between about 68 vol % and about 95 vol %, such as between about 75 vol % and about 95 vol %, or even within a range between about 77 vol % and about 90 vol %. In certain embodiments, the porosity is at least about 70 vol %, at least about 75 vol %, at least about 80 vol %, or even at least about 85 vol %.
While the foamed abrasive article has a significant pore volume, it is noteworthy that the article has sufficient mechanical performance for use in machining applications. For example, in one embodiment, the abrasive body has a Modulus of Rupture (MOR) within a range between about 1 MPa and about 20 MPa. In other embodiments, the MOR is at least about 3 MPa, at least about 5 MPa, or even at least about 8 MPa.
Referring now to
Accordingly, referring to
As further illustrated in the cross-sectional views of
In reference to actual dimensions, in certain embodiments, the length (l) of the abrasive body 1601 is not greater than about 25 cm, such as not greater than about 20 cm, and more particularly within a range between 6 cm and about 20 cm. In certain other embodiments, the width (w) of the abrasive body 1601 is not greater than about 10 cm, such as not greater than about 8 cm, and particularly within a range between about 2 cm and about 6 cm. With respect to the thickness (t) of such abrasive tools, in accordance with certain embodiments, the thickness is not greater than about 5 cm, such as not greater than about 4 cm, and particularly within a range between about 0.5 cm and about 3 cm.
As further illustrated in
Still, as illustrated in
It will further be appreciated that the abrasive tools described herein can include one or more features of one or more embodiments described herein. For example, an abrasive tool having the combined geometries of
Referring to
As further illustrated in
During operation, the motor 1803 can be operated to rotate the arm 1805. Given the connection of components illustrated and described above, rotation of the arm 1805 facilitates rotation of the abrasive tool 1809 which facilitates a grinding or polishing process when a workpiece is contacted with the rotating abrasive tool 1809. It will be appreciated that
Methods of machining a workpiece using a highly-porous, foamed abrasive article have been disclosed herein that represent a departure from the state-of-the-art. Traditionally, ceramics having such high porosity, especially self-bonded abrasives, were thought to be limited in their application to filters and catalyst support materials, given that such large volumes of porosity would not provide the mechanical durability necessary for abrasive applications. Moreover, while it has been suggested that self-bonded ceramics, and more particularly reticulated ceramics formed by casting a ceramic slurry, may be suitable for machining applications, the porosity of these articles has generally been limited to less than 65 vol %, (See for example, U.S. Pat. No. 5,221,294) since structures having greater porosity would lack the requisite durability to facilitate a machining process.
However, it has been discovered that the self-bonded foamed abrasive articles according to embodiments herein have porosity in excess of 65 vol % and is not only suitable for machining applications, but provides exceptional performance. Without wishing to be tied to any particular theory, the inventors note that the foamed abrasive article has a substantially different porosity than conventional structures. In particular, the size of the pores within the foamed abrasive article vary on an order of at least an order of magnitude, if not two orders of magnitude, between the smallest and largest pores. Moreover, the shape of the pores are well-defined, being substantially spherical (i.e., bubble-like) and having smooth, curved surfaces. The shape of the bubble-like pores, in combination with the variety of sizes allows for close packing of pores per unit volume, and therefore a higher porosity in the overall structure. Additionally, the close-packed nature of the pores allows for a greater percentage of interconnected porosity within the structure as compared to conventional materials. The combination of such features allows for the creation of a self-bonded foamed abrasive article that is unexpectedly strong and resistant to mechanical breakdown, which is particularly suitable for machining, and particularly polishing applications. While such self-bonded foamed abrasive materials have been developed and deployed for use in industrial applications, such as refractory applications, the state-of-the-art has not used such materials for abrasive applications. This is not surprising given the poor performance of conventional abrasive products with increasing porosity as reported in, for example, U.S. Pat. No. 5,221,294. Accordingly, it was unexpected to discover that highly-porous, self-bonded, foamed abrasives according to embodiments herein not only have effective abrasive properties, but have such notable performance.
The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments, which fall within the true scope of the present invention. Thus, to the maximum extent allowed by law, the scope of the present invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.
The present application claims priority from U.S. Provisional Patent Application No. 61/061,471, filed Jun. 13, 2008, entitled “SELF-BONDED FOAMED ABRASIVE ARTICLES AND MACHINING WITH SUCH ARTICLES,” naming inventors Muthu Jeevanantham and Xavier Orlhac, which application is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61061471 | Jun 2008 | US |