Hydrocarbon recovery tools employ a variety of seals and anchoring arrangements. Seals are arranged between tools and a wellbore as well as between various tool components. Different seals are used for various conditions encountered in a downhole environment.
A downhole seal assembly includes a body extending from an uphole end to a downhole end. The body includes a first sealing surface and an opposing, second sealing surface that is angled relative to the first sealing surface. A first void is formed in the second sealing surface adjacent the uphole end, and a seal is arranged in the first void. A second void is formed in the second sealing surface adjacent the downhole end. One or more passages is formed in the downhole end and fluidically coupled to the second void. The one or more passages is configured and disposed to guide downhole fluids into the second void forcing the first sealing surface against a wellbore.
A downhole seal system includes a tubular component, and a component having an outer surface arranged radially inwardly of the tubular component. At least a portion of the outer surface is a frusto-conical surface. A downhole seal assembly is arranged between the tubular component and the component. The downhole seal assembly includes a body extending from an uphole end to a downhole end. The body includes a first sealing surface and an opposing second sealing surface that is angled relative to the first sealing surface. A first void is formed in the second sealing surface adjacent the uphole end, and a seal is arranged in the first void. A second void is formed in the second sealing surface adjacent the downhole end. One or more passages is formed in the downhole end and fluidically coupled to the second void. The one or more passages is configured and disposed to guide downhole fluids into the second void forcing the first sealing surface against a wellbore.
A resource capture system includes an uphole system having at least one wellhead, and a downhole system including a tubular component, and a component having an outer surface arranged radially inwardly of the tubular component. At least a portion of the outer surface is a frusto-conical surface. A downhole seal assembly is arranged between the tubular component and the component. The downhole seal assembly includes a body extending from an uphole end to a downhole end. The body includes a first sealing surface and an opposing, second sealing surface that is angled relative to the first sealing surface. A first void is formed in the second sealing surface adjacent the uphole end, and a seal is arranged in the first void. A second void is formed in the second sealing surface adjacent the downhole end. One or more passages is formed in the downhole end and fluidically coupled to the second void. The one or more passages is configured and disposed to guide downhole fluids into the second void forcing the first sealing surface against a wellbore.
Referring now to the drawings wherein like elements are numbered alike in the several Figures:
A resource extraction system, in accordance with an exemplary embodiment, is indicated generally at 2, in
In accordance with an exemplary embodiment, downhole string 20 includes a seal assembly 40 that may be arranged between component 23 and casing 15. As shown in
Seal assembly 40 seals between casing 15 and component 23. A setting tool (not shown) may be employed to urge seal assembly 40 along component 23 forcing seal 84 against casing 15 and seal 68 against frusto-conical surface 27. Seal assembly 40 is initially in an un-expanded condition when run downhole. That is, seal assembly 40 may have an initial diameter that is smaller than a final, sealing diameter for conveyance downhole. As such, seal assembly 40 may be considered as an expandable component. Once in a desired position, a setting tool (not shown) causes seal assembly 40 to expand. In accordance with an aspect of an exemplary embodiment, the setting tool shifts seal assembly 40 along frusto-conical surface 27 causing an expansion from the initial diameter to a larger diameter. Expansion may continue until seal assembly 40 contacts casing 15. More specifically, the setting tool urges seal assembly 40 along frusto-conical surface 27 causing seal 68 and seal 84 to move against respective ones of component 23 and casing 15. When the setting tool is removed, pressure from uphole fluids (not shown) shifts seal assembly 40 along frusto-conical surface 27 to enhance sealing. In this manner, seal assembly 40 prevents downhole fluid from moving between component 23 and casing 15. Of course, it should be understood that seal assembly 40 may be arranged between any two or more components of downhole string 20 and need not be limited to sealing between component 23 and casing 15.
In further accordance with an exemplary embodiment, seal assembly 40 includes a plurality of passages 90 formed in downhole end 50. Passages 90 extend from downhole end 50 to second void 64. Passages 90 are shown in the form of conduits 94 having a circular cross-section and fluidically connect wellbore 17 downhole of seal assembly 40 and second void 64. In this manner, downhole fluids (not shown) pass through conduits 94 and enter second void 64. As the downhole fluids are under pressure, a force is exerted on cantilevered arm 60 urging seal 84 against casing 15 to further enhance sealing.
Reference will now follow to
In accordance with one aspect of an exemplary embodiment, first void 262 shown in the form of a thread or spiraling groove 264 is formed in second sealing surface 258. Spiraling groove 264 extends from a first, lead-in end 270 exposed to downhole pressure to a second end 272. Downhole pressure enters into lead-in end 270 and moves along spiraling groove 264 toward second end 272 urging cantilevered arm 260 against casing 15. In accordance with yet another aspect of an exemplary embodiment illustrated in
At this point it should be understood that the exemplary embodiment describe a self-boosting seal assembly that is urged into sealing engagement by uphole and downhole fluid pressure. Axial pressure from downhole fluids passes into a void formed in the seal generating a radial force. The radial force urges a cantilevered arm of the seal assembly against a tubular component to boost sealing efficacy.
While one or more embodiments have been shown and described, modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustrations and not limitation.