This invention relates to heat exchangers, and more specifically, to improved side plates for heat exchangers; as well as methods of making a heat exchanger.
Many heat exchangers in use today, as, for example, vehicular radiators, oil coolers, and charge air coolers, are based on a construction that includes two spaced, generally parallel headers which are interconnected by a plurality of spaced, parallel, flattened tubes. Located between the tubes are thin, serpentine fins. In the usual case, the side most tubes are located just inwardly of side plates on the heat exchanger and serpentine fins are located between those side most tubes and the adjacent side plate.
The side plates are typically, but not always, connected to the headers to provide structural integrity. They also play an important role during the manufacturing process, particularly when the heat exchanger is made of aluminum and components are brazed together or when the heat exchanger is made of other materials and some sort of high temperature process is involved in the assembly process.
More particularly, conventional assembly techniques involve the use of a fixture which holds a sandwiched construction of alternating tubes and serpentine fins. The outside of the sandwich, that is the outer layers which eventually become the sides of the heat exchanger core, is typically provided with side plates whose ends are typically connected mechanically to the headers. Pressure is applied against the side plates to assure good contact between the serpentine fins and the tubes during a joining process such as brazing to assure that the fins are solidly bonded to the tubes to maximize heat transfer at their points of contact. If this is not done, air gaps may be located between some of the crests of the fins and the adjacent tube which adversely affect the rate of heat transfer and durability, such as the ability to resist pressure induced fatigue and to withstand elevated pressures.
At the same time, when the heat exchanger is in use, even though the side plates may be of the same material as the tubes, because a heat exchange fluid is not flowing through the side plates but is flowing through the tubes, the tubes will typically be at a higher temperature than the side plates, at least initially during the start up of a heat exchange operation.
This in turn results in high thermal stresses in the tubes and headers. Expansion of the tubes due to relatively high temperatures tends to push the headers apart while the side plates, at a lower temperature, tend to hold them together at the sides of the core. All too frequently, this severe thermal stress in the heat exchanger assembly results in fracture or the formation of leakage openings near the tube to header joints which either requires repair or the replacement of the heat exchanger.
It has been proposed to avoid this problem, after complete assembly of the heat exchanger, by sawing through the side plates at some location intermediate the ends thereof so that thermal expansion of the tubes is accommodated by the side plates, now in multiple sections, which may move relative to one another at the saw cut. However, this solution adds an additional operation to the fabrication process and consequently is economically undesirable.
Another approach is to construct the side plate so that it breaks when it is put in tension by positive stresses caused by a differential thermal expansion, such as shown in U.S. Pat. No. 6,412,547, issued Jul. 2, 2002 and naming Nicholas R. Siler as the inventor. This approach eliminates the need for an additional operation such as saw cutting. However, in addition to the above positive stresses caused by expansion, heat exchangers may also undergo negative stresses or compression. Negative stresses may be caused by thermal expansion and contraction of the heat exchanger itself as well as the thermal expansion and contraction of external components connected to the heat exchanger which may cause the heat exchanger to compress. The above solution shown in the U.S. Pat. No. 6,412,547 patent does not provide for compression of the side plate caused by negative stresses.
In accordance with one form a side plate for use in a heat exchanger is provided. The heat exchanger includes a core extending along a longitudinal axis between a pair of spaced, generally parallel headers. The side plate includes a first body piece having a first edge and a second body piece having a second edge. The first and second edges define at least one opening separating the first and second body pieces except for four or fewer point connections between the first and second edges. Each of the point connections defined by intersecting portions of the first and second edges that form a vertex aligned with the longitudinal axis of the side plate.
In one form, a heat exchanger is provided having a core extending between a pair of spaced, generally parallel headers and a pair of elongated side plates, one at each side of the heat exchanger. The heat exchanger includes an improvement wherein each side plate includes a first body piece having a first edge and a second body piece having a second edge. The first and second edges define at least one opening separating the first and second body pieces except for four or fewer point connections between the first and second edges. Each of the side plates has a first state wherein the point connections connect the first and second edges and have a second state wherein the point connections are sheared along a longitudinal line to permit the first and second body pieces to move closer and further away from each other.
According to one form a side plate for use in a heat exchanger is provided. The heat exchanger includes a core extending along a longitudinal axis between a pair of spaced, generally parallel headers. The side plate includes a first body piece having a first edge and a second body piece having a second edge. The first and second edges define at least one opening separating the first and second body pieces except for a plurality of point connections between the first and second edges. Each of the point connections defined by intersecting portions of the first and second edges that form a vertex aligned with the longitudinal axis of the side plate.
According to one form, a heat exchanger is provided having a core extending between a pair of spaced, generally parallel headers and a pair of elongated side plates, one at each side of the heat exchanger. The heat exchanger includes an improvement wherein each side plate includes a first body piece having a first edge and a second body piece having a second edge. The first and second edges define at least one opening separating the first and second body pieces except for a plurality of point connections between the first and second edges. The side plate have a first state wherein the point connections connect the first and second edges and have a second state wherein the point connections are sheared along a longitudinal line to permit the first and second body pieces to move closer and further away from each other.
In one form, each of the point connections is defined by intersecting portions of the first and second edges that form two opposing vertices aligned with the longitudinal axis of the side plate.
According to one form, the heat exchanger further includes a third body piece including a third edge and wherein the second body piece further includes a fourth edge. The third and fourth edges define at least one opening separating the second and third body pieces except for four or fewer point connections between the third and fourth edges. Each of the point connections are defined by intersecting portions of the third and fourth edges that form a vertex aligned with the longitudinal axis of the side plate.
In accordance with one form, the first edge, second edge and the point connections define three openings.
In on form, each of the first and second body pieces includes a base and at least two legs, wherein the legs extend substantially 90 degrees from the base and at least a portion of one opening extends from the base onto one leg.
According to one form, the first edge, the second edge and one point connection define a void region on one of the legs.
In accordance with one form, at least one point connection is located on each leg and at least one point connection is located on the base.
In one form, a method for manufacturing a heat exchanger is provided. The method includes the steps of:
assembling the components of a heat exchanger core in a fixture extending between a pair of spaced headers, side plates extending between the headers wherein the side plates include a first body piece having a first edge and a second body piece having a second edge, the first and second edges defining at least one opening separating the first and second body pieces except for four or fewer point connections between the first and second edges, the assembly having a first length measured between the spaced headers,
brazing the assembly together; and
subjecting the brazed assembly to thermally induced stresses to allow the point connections to shear along a generally longitudinal line and the brazed assembly is permitted to expand and contract relative to the first length as the brazed assembly is subjected to positive and negative stresses.
Other objects, advantages, and features will become apparent from a complete review of the entire specification, including the appended claims and drawings.
The present invention will be described hereinafter as a vehicular radiator, as, for example, a radiator for a large truck. However, it should be understood that the invention is applicable to radiators used in other contexts, for example, a radiator for any vehicle or for stationary application as an internal combustion engine driven generator. The invention is also useful in any of the many other types of heat exchangers that utilize side plates to provide structural support, or hold serpentine fins against parallel tubes extending between spaced headers, for example, oil coolers and charge air coolers. Accordingly, no limitation to any particular use is intended except insofar as expressed in the appended claims.
Referring to
Between the spaced tubes 14, and between the endmost tube 14 and an adjacent one of the side plates 18, 20 are conventional serpentine fins 22. As is well known, the fins 22 maybe formed of a variety of materials. Typical examples are aluminum, copper and brass. However, other materials can be used as well depending upon the desired strength and heat exchange efficiency requirements of a particular application.
In a highly preferred embodiment of the invention, all of the just described components, with the possible exception of the tanks 16 which may be formed of plastic, are formed of aluminum or aluminum alloy and are braze clad at appropriate locations so that an entire assembly is illustrated in
Referring to
Each of the point connections 46 is preferably defined by intersecting portions of the first and second edges 32 and 36 that form a vertex 54 aligned with a longitudinal axis 56 of the side plate 18. Specifically, each of the vertex 54 is generally parallel with the longitudinal axis 56. As discussed above, the embodiment shown in
The embodiment illustrated in
Specifically, lines 60 depict locations where the side plate 18 may be bent or folded to create a channel shape having a base 62 and legs 64, as shown in
Referring to
The side plates 18,20 may be made by conventional methods such as stamping. For example, in one embodiment, metal is stamped into the configuration shown in
The heat exchanger made according to the invention is fabricated by an inventive method that includes, as a first step, the step of assembling the components of the heat exchanger, namely, the headers 10, 12, the tubes 14, the side plates 18, 20 and the serpentine fins 22 in a fixture so that the headers 10,12 are spaced with the tubes 14 spaced and extending between the headers 10,12 into slots therein and side plates 18,20 extending between the headers 10,12 at the sides of the core together with serpentine fins 22 located between adjacent tubes 14 and between the side plates 18,20 and the adjacent tube at each of the sides of the core. The side plates 18,20 are typically, but not always, mechanically fixed at each end to the adjacent header.
The resulting assembly is then subjected to brazing temperatures to both braze the components together and to allow the thermal stresses involved in the brazing process to shear each side plate at the point connections as a result of thermally induced stress. Whether shearing actually occurs will depend upon the rate the assembly cools following brazing. In some cases, the shearing may not occur or may not fully occur during the brazing process, but will occur when the heat exchanger is placed in use, after a few thermal cycles of operation. In any event, the point connections 46 will shear in use well before damage to the tube to header joints or elsewhere in the heat exchanger can occur.