1. Field
The present disclosure relates to a self calibrating weapon shot counter. In particular, the present disclosure relates to a self calibrating weapon shot counter that has a module operated by a microcontroller for collecting, storing and transmitting data to a computer, PDA or other electronic device, preferably remotely located from the firearm. The data collected and transmitted by the self calibrating weapons shot counter of the present disclosure includes, shot profile data, including recoil in both directions, rotational axis sensor data and duration of shot, identifying type of weapon, round fired; i.e caliber and weight and barrel length. The time, date and profile of the shot fired is also recorded and transmitted to the remote computer. The present disclosure provides for an active RFID tag communication port that listens for, records the data and sends it to a remote location. The weapon shot counter of the present disclosure is capable of being interchanged from one weapon to another. The weapon shot counter can also be used as an ancillary munitions recognition system i.e. hand grenades, high explosive, fragmentary, incendiary, chemical and smoke as well as, claymore mines utilized by same user as weapon counting device. In this type of use the weapon shot counter of the present disclosure acts as a repeater gathering the data from the thrown hand grenades, upon spoon release the chip in the hand grenade is charged by an onboard generator that sends out the serial number to the Weapon shot counter that in turn sends it on to the PDA, identifying the grenade or other munitions has been used. In this way, the present disclosure provides for real time information as to munitions usage, which can be transmitted to support personnel allowing for timely resupply of munitions. This was previously unheard of. As it is understood that no previous weapon shot counter discussed this feature or capability and is unique to the self-calibrating weapons shot counter of the present disclosure.
2. The Prior Art
U.S. Pat. No. 5,566,486 to Brinkley discloses a firearm monitor device for counting a number of rounds discharged.
The present disclosure relates to a microcontroller operated module affixed to a fire arm. The module includes a MEMS accelerometer for measuring the G force of each round fired by the firearm. The G force is measured simultaneously in two axes, in line with the recoil and in cross-rotational axis in both directions. The weapons shot counter of the present disclosure includes a flash memory (non-volatile memory) for storing the shot profile data that includes shot count and recoil data. The flash memory transmits the shot profile data to a remote location such as a remote computer via a serial communication device such as but not limited to an RFID device pursuant to RS232 standard, Bluetooth, awave or other low power RF transmitter.
Referring now to the drawings of
The module 5 can be battery powered by way on non-limiting exemplary illustration, a lithium battery 3—such as a 3.6 V lithium battery. The circuitry of module 5 can be mounted on a printed circuit (PC) board 6. The circuitry of the module 5 includes a microcontroller 7 programmed to operate the module 5, a MEMS accelerometer 8, an RF 2 module or any other preferred serial communications link that can transmit by RS 232 standard, Bluetooth, or awave and a flash memory or other suitable non-volatile memory such as an EE Prom 10.
The microcontroller 7 controls the operation of the module 5. The accelerometer 8 is in the plane of firing of the firearm and provides and measures the actual G force of each round fired by the firearm. The microcontroller 7 converts the analog output of the accelerometer 8 to a digital recorder. The microcontroller 7 interrogates or periodically samples the accelerometer 8 at its output, preferably every 10 milliseconds. If the samples taken by the microcontroller 7 exceed a predetermined threshold a shot is counted by the microcontroller 7. The microcontroller then continues sampling until the accelerometer output falls below the threshold level at which point the time and profile of the shot is recorded.
The data for the shot profile is stored in the EEPROM 10 or other flash memory. It is then transmitted remotely to a remote location such as a remote computer terminal via a serial communications device such as the RFID device 2, which converts the flash memory data into a serial format conforming to RS 232 standard, Bluetooth or awave for transmission to the remote computer station. The flash memory 10 includes instructions at every command back to start to prevent the firearm unit to which the module 5 is attached from being lost
The accelerometer 8 is a two axis MEMS accelerometer and is in the plane of firing and it provides and measures the active G force of the shot fired by the firearm. The shot profile information collected will include the recoil and rotation of the barrel due to the shot. The data will continue be collected until the acceleration level falls below the threshold programmed. At this point, the number of shots fired is tallied up and recorded for this round. In addition to recoil sensor data, duration and shots counted, the type of round fired is identified, and the time and profile of the shot fired is recorded and transmitted.
One type of MEMS accelerometer that can be used is ANALOG DEVICES AD22283-B-R2. The microcontroller can be a MSP430F12321DW(SOWB) or an MSP430F12321PW(TSSOP). The Flash memory can be ATMEL AMT25F2048N-10FU-2.7. It is understood that the present disclosure is not limited to any particular cards and the above are listed as non-limiting illustrative examples
The present disclosure further includes a charge pump (not shown) for raising the battery voltage to the necessary power to operate the MEMS accelerometer 8 The remote computer terminal will have computer software package that resembles the data from the module 5 and logs it into a file to be input to an EXCEL spread sheet where it can be displayed as a bar graph or raw data. By way of non-limiting illustrative example, commercially available RF transmitter chip sets can be used with firmware to permit the RF chips to communicate with a remote location such as but not limited to a wireless PDA.
While presently preferred embodiments have been described for purposes of the disclosure, numerous changes in the arrangement of method steps and apparatus parts can be made by those skilled in the art. Such changes are encompassed within the spirit of the invention as defined by the appended claims.
This is a non-provisional application of a provisional application Ser. No. 61/067,294 filed Feb. 27, 2008.
Number | Date | Country | |
---|---|---|---|
61067294 | Feb 2008 | US |