This disclosure relates generally to cores upon which web material such as paper, film, and the like are wound, and more specifically to adapting larger diameter cores to be mounted on winding machines and other machines having smaller diameter spindles or chucks.
Long cylindrical cores made of plastic or spirally wound paperboard are commonly used to wind large quantities of web material such as, for example, paper or film into rolls for storage and transport. Some cores have inner diameters (ID) that are larger than those of other cores. For example, cores having IDs of 150 millimeter (mm) are common as are cores having 76 mm IDs. It is desirable to mount both large and small ID cores on winding machines such as double drum winders that have spindles or chucks configured to accept smaller ID cores only. In order to do this, core adapters may be installed in the ends of the larger ID cores and the adapters have central bores that can be mounted on the smaller ID spindles or core chucks of a winding or other machine. Traditional core adapters take many forms such as, for instance, leaf adapters with leafs that can expand to lock the adapter in the end of the core, rubber air or pneumatic adapters that are inserted in the core ends and inflated to lock them in place, and others. Core adapters made of wound paper in the form of one or multiple concentrically arranged components also are known. While somewhat successful, these traditional adapters can be expensive, do not always ensure a precisely centered smaller central opening, and can be unintentionally left off, which necessitates a time consuming rewinding of the web material. Traditional core adapters also may not ensure precise concentricity of the smaller opening of the adapter with the larger opening of the core. It is to a core adapter that addresses these and other shortcomings of traditional core adapters that the present invention is primarily directed.
U.S. provisional patent application Nos. 61/410,512 and 61/446,519; to which priority is claimed above, are hereby incorporated by reference in their entireties.
Briefly described, a core adapter preferably is made of wound paper plies and includes a generally cylindrical or annular body having walls that surround a central bore sized to receive a spindle or chuck. The body has an outer diameter (OD) sized to fit into the end of a core having a larger ID and the central bore is sized to receive a spindle or chuck having a smaller ID. An axially extending discontinuity in the form of a slit is formed and extends completely along the length of the body and also extends completely through the wall of the body from the central bore to the outer surface of the body. In one embodiment, a series of attachment holes may be drilled either at an angle through the end of the adapter or through the walls of the core at its ends. Attachment holes also need not be drilled. To install the core adapter of this embodiment in a larger ID core, the adapter is slid into the ends of a core and attached with screws or other fasteners. In the embodiment with attachment holes drilled through the end of the adapter, screws may be inserted through the attachment holes and treaded into the core. In the embodiment with attachment holes formed in the core, screws may be inserted through the attachment holes and threaded into the body of the adapter. When no attachment holes are present, screws may simply be threaded through the core and into the adapter or vice versa. In either case, the screws preferably are installed in a predetermined sequence that causes the adapter to expand progressively outwardly facilitated by a widening of the axially extending slit in the adapter. When all the screws are installed, the adapter is lodged tightly in the end of the core, the slit is widened from its normal or rest width, and the central bore of the core adapter is precisely centered within the core.
In another embodiment, adhesive may be applied to the outer surface of the adapter or the inner surface of the core. The adapter may then slid into the end of a core and a specially configured wedge can be driven into the slit of the adapter in one of several possible ways. As the wedge advances into the slit, it forces the slit to widen, which, in turn, expands the adapter radially until it engages the inner surface of the core. After the adhesive cures, the wedge may be removed or left in place and the adapter is securely and adhesively fixed within the end of the core with its central bore centered and aligned coaxially within the core. As an alternative to spreading the slit with a wedge, an expandable tool such as a core chuck can be inserted through the central bore of the core adapter and expanded to force the adapter against the inner wall of the core until the adhesive sets, whereupon the tool can be removed. The core can then be mounted on winding and other machines with smaller chucks or spindles.
Thus, a core adapter is now provided that is inexpensive, simple and reliable in operation, consistently results in a precisely centered smaller central bore for mounting on a spindle, and can be installed easily and quickly without specialized equipment. Since the adapter is made, in a preferred embodiment, of densely wound paper plies, the core can support exceedingly heavy loads such as, for instance, over 500 kg up to about 5 metric tons. Surprisingly, it has been found that the slit extending completely through the wall of the core adapter has no detrimental effect on the adapter's ability to bear such high weights, even when the adapter is made of wound paper. This result is somewhat contrary to what a skilled artisan might believe since it might be assumed that the presence of the slit would degrade the structural integrity of the core adapter. Significantly, when the core adapter is inserted into the end of a core and expanded against the inner wall of the core, the central bore of the core adapter is very precisely centered and aligned axially with the axis of the core itself. This prevents uneven rotation of the core during winding or unwinding. These and other features, aspects, and advantages of the core adapter will become more apparent upon review of the detailed description set forth below taken in conjunction with the accompanying drawing figures, which are briefly described as follows.
a-14f illustrate various techniques of expanding a core adapter within a core using wedges and expandable tools.
Reference will now be made to the drawing figures, wherein like reference numerals identify like parts throughout related views of each embodiment. The core adapter will be described herein in terms of adapting a 150 mm ID core for mounting on a spindle configured for receiving 76 mm cores. It should be understood, however, that the invention is not so limited and applies to cores of any combination of larger and smaller ID. The description below is of preferred embodiments of the core adapter and methods of fixing it in the ends of a core. The embodiments are presented only as examples. Many variations are possible, and some are mentioned throughout the following description.
Referring to
A series of attachment holes 17 may be formed through the ends of the adapter body 13 and, as best illustrated in
The outer diameter of the core adapter when the adapter is at rest (i.e. unexpanded) may be slightly less than the ID of a core, or it may be the same or slightly greater. To install the core adapter, it is slid into the end of a 150 mm ID core to the position shown in
The adapter is configured such that when it is fully secured within and expanded against the inner surface of the core, its central bore 14 is precisely centered and aligned axially with the axis of the core. Further, the central bore of the installed expanded adapter is precisely sized to receive the 76 mm spindle or chuck of a winding machine. A second core adapter can be installed in the opposite end of the core in the same way. The 150 mm ID core can then be mounted on a winding machine such as a double drum winder designed to accept 76 mm ID cores. The complete discontinuity in the wall of the adapter formed by the axially extending slit 16 ensures that the expansion and fixing of the core adapter as described is reliable, complete, and repeatable.
The embodiment of the core adapter shown in
As discussed above, the sequenced tightening of the screws causes the core adapter to expand progressively and uniformly and also centers the central bore of the adapter within the core. Significantly, because of the smaller shanks of the screws as shown in
Test Results
Tests were conducted to determine the optimum or at least the preferred method and configuration for mounting or fixing core adapters in the ends of cores according to the embodiments described above. In the test, core adapters were installed in the ends of corresponding cores in a variety of ways, including with 8 screws and glue as described above and shown in
It should be noted that while testing shows that the 8 screws and adhesive installation configuration performs best and thus is considered optimum, there may be situations where maximum axial displacement performance is not required or desired. In such cases, other configurations might well be satisfactory. Accordingly, the optimum installation configuration described herein is not and should not be construed to be a limitation of the invention, but only a preferred embodiment thereof.
The core adapter may be constructed in a variety of ways using a variety of materials. For instance, it may be made of extruded plastic, molded plastic, wood, paper, or flexible metal and it may be solid, hollow, or hollow with internal support structures such as ribs formed therein, or combinations of the above. In the preferred embodiment, however, the core adapter is fabricated of convolute parallel paperboard plies that are densely wound and glued together to form the relatively thick wall of the adapter body. The axial slit is then formed by a circular saw for example completely along the length of this wall and completely through the wall from the central bore to the outside surface of the adapter. This forms a complete discontinuity in the wall to facilitate radial expansion of the core adapter. The slit also may need to facilitate a radial contraction of the core where, for instance, the core is a bit smaller than spec or out of round. The width of the slit therefore needs to be sufficient to allow for these radial contractions. The inventors have found that a slit that is from about 0 mm to about 10 mm in width, and more preferably from about 3 mm to about 4 mm in width is sufficient in this regard. These and any other materials, combinations of materials, and structure may be selected by skilled artisans and all such combinations, materials, and structure are intended to be included in the terms “core adapter” and “body” used herein.
While a core adapter with a single slit or discontinuity represents a preferred embodiment, another embodiment might include a core adapter that has more than one slit. For example, the core adapter may have two radially opposed slits that split the adapter into two halves. In such an embodiment, the halves are inserted in facing relationship into a core and affixed in place. These and other embodiments are possible and should be considered to be encompassed by the scope of the invention of which they are examples.
In addition to inserting the core adapter of this invention in a core before winding, it also may be inserted after the core is wound with material. Further, the core adapter need not necessarily be installed at the ends of a core but may in appropriate instances be installed at positions between the ends of the core. Additionally, while the length of the core adapter in the preferred embodiment is short compared to the length of the core, this is not a limitation of the invention. It may just as well be much longer and, in fact, may have a length that corresponds to the entire length of the core if desired. Thus, the core adapter may have any length desired and appropriate to a particular application within the scope of the invention.
Screws are disclosed as fasteners in the embodiments discussed above. Other fasteners may be used, however, and should be considered equivalent to the illustrated screws. For example, the core adapter may be fastened with nails, staples, wooden plugs, plastic plugs, or any other appropriate fastener, all or any of which should be considered to be included in the word “screws.” Further, in some cases, fasteners may not be needed at all. For example, when using the core adapter with a winding machine having expanding core chucks, the expansion of the chucks within the adapter alone may be sufficient to expand the core adapter against the inner wall of the core and fix it in place through frictional contact or an adhesive bond.
When fasteners are used, the number and placement of the fasteners need not be as shown in the preferred embodiments, but may be any number and placement deemed appropriate for the situation. Also, the screws or other fasteners may be attached from the inside in some cases, which may be difficult but appropriate for a particular situation. Finally, in most situations, the core adapter is intended to be permanently installed, in which case adhesive may be applied and the adapter inserted into the core and expanded against the core wall until the adhesive sets. The core adapter then becomes a permanent feature of the core.
In the preferred embodiments discussed herein, the core adapter is formed as a single unit for adapting a particular core ID to another smaller ID. As an alternative, the core adapter may be provided as a system of individual nested core adapters each or at least some of which have their own axial slit so that they can be expanded radially together. The individual core adapters may then be mixed and matched to suit a particular adaptation need involving a particular core ID and needed mounting ID.
An aspect of the core adapter disclosed herein is that it adapts and adjusts automatically to cores with IDs that are slightly larger or smaller than nominal and/or that are out-of-round, which may not be true for mechanical or pneumatic core adapters.
Referring more specifically to the drawings,
a-14d illustrate a variety of embodiments of tools in the form of wedges and methods of driving them into the slit of the core adapter to widen the slit and expand the adapter radially.
c illustrates another embodiment of a tool in the form of a wedge and method of expanding the core adapter within the core. In this embodiment, the wedge 68 is elongated and generally blade-shaped and has a bottom edge that is relatively narrow or sharpened relative to the top edge of the wedge. The wedge of this embodiment preferably extends the entire length of the slit 56 and is inserted onto the end of the core adapter with the narrow or sharpened edge aligned with the slit. A pneumatic, hydraulic, or mechanical tool is then inserted into the central bore of the core adapter and activated to drive the wedge 68 into the slit 56 as indicated by arrows 71. This forces the slit to spread apart along its entire length so that the core adapter expands radially and uniformly along its length against the inner surface of the core. Expansion of the core adapter along its entire length is an advantage over the wedge embodiments described above, which can result in more expansion at one end of the adapter than at the other. The wedge of this embodiment can be left in place or removed after setting of the adhesive to fix the core adapter in place. If left in place, the wedge preferably is made of a relatively inexpensive material such as plastic or wood.
d represents another possible embodiment of a tool in the form of a wedge and a method of expanding the core adapter. This embodiment takes advantage of the fact that when the slit widens, its outer edge expands slightly more than its inner edge due to the different radii at these locations. Here, a wedge 69 has an outer edge 73, an inner edge 74, and a sharpened or chisel-shaped end 76. As illustrated on the left in
As the wedge progressively moves along the length of the slit, the slit is progressively spread apart and widened from one end to the other. This, in turn, progressively expands the core adapter radially, again from one end to the other, against the inner surface of the core. This may have the advantage of spreading the adhesive more evenly. Further, due to the slightly tapered shape of the wedge, which corresponds to the naturally tapered shape of the slit when widened, the wedge is urged toward the inner wall of the core as it progresses through the slit. As a result, the wedge remains in the proper position within the slit during insertion. In addition, widening the slit more at its outer extent than its inner extent as it naturally wants to widen may provide more uniform pressure between the core adapter and the inner surface of the core, particularly where the slit meets the inner wall of the core, which has been found to be an issue with other wedge configurations. In this embodiment, the wedge preferably is left in place after setting of the adhesive. Further, it cannot become dislodged and move into the central bore of the core adapter due to its wider outer edge and narrower inner edge. Finally, a wedge insertion tool that imparts vibrations to the wedge during insertion may ease the movement of the wedge through the slit and insure a more uniform radial expansion of the adapter body within the core. The vibrations can be between about 60 Hz and about 500 Hz.
e and 14f illustrate yet another technique for expanding the core adapter against the inner surface of a core until an adhesive between the two sets. The inventors have discovered that this technique is particularly successful in insuring a good bond between a core adapter and its core and good alignment of the central bore of the adapter with the axis of the core. In
In
The expandable tool, a core chuck in the illustration, is left in place until the adhesive sets and bonds the core adapter to the inner wall of the core. It has been found that the use of such an expandable tool results in consistent contact between the core adapter and the inner wall of the core, which insures a consistent and complete adhesive bond. The core chuck can then be deflated and contracted so that it can be removed from the central bore of the core adapter. The adapter is then securely and permanently secured within the end of its core providing a precisely centered central opening for mounting the core onto a smaller spindle.
Another option for holding the core adapter in place involves the use of an annular metal plate at the end of a core that covers most of a core adapter inserted therein and most of or the entire wall of the core. The metal plate may have screw holes that align both with the core and the core adapter so that the plate can be secured to the core and the adapter with screws. The annular metal plate may be inset or “machined” into the core wall if desired so that it does not protrude from the end of the core. In such an embodiment, no adhesive or screws are required to fix the core adapter directly to the core. Instead, the metal plate holds the two together and the core adapter can be removed from the core easily for re-use.
The invention has been described herein and illustrated in the drawings in terms of preferred embodiments and methodologies considered by the inventors to represent the best modes of carrying out the invention. As discussed, many modifications may be made to these example embodiments and the result will still incorporate the invention. It will thus be understood that a wide variety of additions, deletions, and modifications both subtle and gross, including those above and others, might be made to the illustrated embodiments without departing from the spirit and scope of the invention as set forth in the claims.
Priority is hereby claimed to the filing date of U.S. provisional patent application No. 61/410,512 entitled Self Centering Core Adapter filed on Nov. 5, 2010 and to the filing date of U.S. provisional patent application No. 61/446,519 filed on Feb. 25, 2011.
| Number | Date | Country | |
|---|---|---|---|
| 61410512 | Nov 2010 | US | |
| 61446519 | Feb 2011 | US |