This invention relates to the sorting of lump coal according to size so that coal above a certain size is directed to a crusher while coal below said certain size is directed to a conveyor, and more particularly to an assembly having a sizing grate and two or more independently actuable cleaning combs, each cleaning comb being effective to remove jammed coal from a respective portion of the overall area of the sizing grate.
U.S. Pat. No. 4,966,689 issued Oct. 30, 1992 issued to R. Wark et al. describes a self-cleaning grate assembly which is used as a size-based sorting device for lump coal. The device segregates coal according to size so that oversize coal lumps can be directed to a crusher for further size reduction. Devices of this type are used in systems for supplying pulverized coal to a combustion chamber in an electrical utility plant.
Because lump coal tends to get jammed between the bars of the sizing grate, it has been found desirable or necessary to clean the grate from time to time. This is accomplished by passing the bars of a pivotally displaceable cleaning comb upwardly through and between the spaced bars of the sizing grate so as to dislodge jammed lumps and send them in the direction of the crusher. The '689 patent, the disclosure of which is incorporated herein by reference, discloses such a cleaning comb, and an actuator for causing periodic operation of the cleaning comb.
The present invention eliminates a disadvantage of the prior art '689 patent which arises out of the fact that while the cleaning comb is passing through the sizing grate, the grate is momentarily blocked and directs all coal to the crusher regardless of size. To remedy this disadvantage, I provide a fixed sizing grate and a plurality of cleaning combs, each of which can be activated independently of the others. In this fashion, the fixed grate can be systematically cleaned without ever being completely blocked.
In the preferred embodiment of my invention, the fixed grate is divided up into three parallel areas of approximately equal size, each of which is equipped with its own, individually actuable cleaning comb. The fixed grate is mounted at an angle and the cleaning combs hand down behind it. I use hydraulic or pneumatic actuators to swing the cleaning combs upwardly through the bars of the fixed grate one or two at a time, but not all at once when coal is being directed onto and through the grate. Therefore, the grate is never completely closed when in normal operation.
In according with a still further aspect of my invention, I provide a control system which can be one of several types or can use a combination of the features hereinafter described. In the simplest form, the control system may involve the use of a clock or timer which activates the individual cleaning combs in a sequential fashion such as one, two, three, or one, three, two or one, three, one, three, two, where “one” and “three” designate the two outside grate areas and two represents the middle area. Of course, the use of three grate subareas is illustrative only and either a lesser number or a greater number of subareas with individual cleaning combs and actuators may be used.
In accordance with a still further aspect of my invention, the control system may have an adaptive quality; i.e., it may be structured in such a way as to respond to an indication of a clogged condition, to bring the cleaning combs into operation. One such adaptive system uses a current monitor associated with the crusher motor to actuate the cleaning combs when crusher motor current rises above a predetermined threshold level. I have found that such a rise in motor current is associated with a clogged grate which is causing excess coal to be directed to the crusher.
Another adaptive system uses load cell transducers mounted on or in the fixed grate bars to sense deflection due to a buildup of coal on the bars, which again is associated with a clogged condition. Combinations of these adaptive systems can also be used as well as combinations of one or more adaptive features with a simple clock-based timer.
Other applications of the present invention will become apparent to those skilled in the art when the following description of the best mode contemplated for practicing the invention is read in conjunction with the accompanying drawings.
The description herein makes reference to the accompanying drawings wherein like reference numerals refer to like parts throughout the several views and wherein:
Referring now to
Mounted within the housing 10 between the inlet 12 and the outlets 14, 16 is a fixed sizing grate 22 consisting of a plurality of spaced apart, hardened metal bars mounted in parallel and at an inclined angle to receive lump coal from the inlet 12. The spacing between the bars 24 is such as to provide a sizing function wherein oversize lumps of coal are deflected to the outlet 16 which leads to the crusher, whereas smaller sized lumps are allowed to pass through and between the bars 24 to the conveyor outlet 14.
In accordance with the invention, the overall area of the sizing grate 22 is divided into three relatively equal subareas A, B, C, as is best represented in
In accordance with the invention, three parallel cleaning combs 30A, 30B and 30C are provided. The cleaning combs 30 are pivotally mounted within the housing 10 on a common shaft 31 which is secured by plates 32. Each cleaning comb 30A, 30B and 30C comprises a set of spaced apart, parallel hardened metal bars which are sized so as to be capable of passing upwardly through and between the sizing bars 24 of the fixed grate 22 as they are rotated about the center axis of the shaft 31. In the inactive or home positions, the cleaning combs 30 simply hand straight down behind the sizing grate 22 where they do not interfere with any coal flow.
Selective rotation of the individuals cleaning combs 30A, 30B and 30C is provided by actuators 34A, 34B and 34C which are preferably hydraulic cylinders but may be, electric, pneumatic or combination air-oil devices as well. The actuator cylinders 34 are connected to crank arms 38A, 38B and 38C which in turn, are connected to manifold plates 36A, 36B and 36C to which the comb bars are secured in spaced apart, parallel groups. In essence, this arrangement provides three grate-type cleaning combs, each associated with an individual area A, B and C of the fixed sizing grate 22 and, as hereinafter described, each being capable of individual actuation such that the entirety of the effective surface area of the sizing grate 22 is never completely closed during an operation in which lump coal is directed through the inlet 12. Of course, the combs may be simultaneously actuated for exercise or testing purposes.
Referring now to
As shown in
As will be apparent from the foregoing, activation of one of the actuators 34 causes the cleaning comb bars to swing upwardly through and between the bars 24 of the grate 22, thus dislodging coal which has become stuck between the bars and which partially closes the grate and contributes to an eventual of coal thereon. Limit switches or the like, as explained in the '689 patent may be used to trigger a reversal of the actuators 34 to pull the comb bars back into the lowered out-of-service position shown in
In this fashion, the sizing grid 22 is always at least partially operative even if two of the cleaning combs is activated at or essentially the same time. The life of the crusher is prolonged and the quantity of electricity consumed by the crusher motor is reduced.
It is to be understood that the particular geometry of the sizing grate and the cleaning combs is not limited to the purely linear design shown in these drawings, but may take any of several other forms that are found by persons skilled in the art to be effective and/or to fit in any particular application.