Needleless connectors connect to the end of a vascular catheter, urinary catheter, IO catheter, or the like and function as an access point for infusion, aspiration, etc. Accordingly, needleless connectors also function as a gate keeper for microbial intrusion into the vascular catheter and ultimately the bloodstream of a patient. The disinfection process for a needleless connector is a critical determiner of whether there is microbial intrusion, and the quantity thereof, into the vascular catheter, urinary catheter, or IO catheter.
Conventional needleless connectors require an active disinfection process by a clinician, for example through wiping the connection point with a disinfecting wipe for a predetermined length of time (e.g. about 30 seconds). This process is prone to human error, as clinicians may not properly disinfect the entire surface of the needleless connector. For example, a clinician may not disinfect the surface long enough or may forget to disinfect the surface at all. There exists a need in the art for a needleless connector that automatically disinfects the connection surface, minimizing the risk of human error, and ultimately for minimizing the risk of infection or death to the patient, the mortality rate for such infections ranging from 12%-25%.
The herein-described embodiments address these and other problems associated with the art in a first aspect by a self-cleaning needleless connector, including: a connector body that defines a fluid passageway with an inlet and an outlet; a cover disposed over at least the inlet of the connector body; an access point located at the end of the inlet of the cover and the access point is movable between a first position and an second position, where when in the first position the inlet is within the cover and when in the second position the inlet is extended beyond the cover and configured to receive a male luer; a reservoir containing a cleaning agent; and an abrasive surface located in the cover and in fluid communication with the cleaning agent, where the abrasive surface is configured to contact an exterior surface of the inlet.
In some embodiments, the cover is movable between an extended position and a retracted position. In some such embodiments, a spring mechanically biases the cover to the extended position and the access point is movable to the second position upon user-actuated compression of the spring. In other such embodiments, a piston moves laterally towards the outlet end of the connector as the cover moves from the extended position to the retracted position to accommodate fluidic movement of the cleaning agent.
In some embodiments, the cleaning agent is 70% isopropyl alcohol. In some embodiments, the abrasive surface is a plurality of bristles.
In some embodiments, the cover is rotatable about an axis of rotation that is generally aligned with the connector body. In some such embodiments, the cover is rotated about the axis of rotation simultaneous with the cover being moved to a retracted position by user-actuated compression of a spring, where the spring mechanically biases the cover to an extended position.
In some embodiments, the access point includes a first portion and a second portion, where the first and the second portion are configured to retract into the cover when the access point moves from the first position to the second position. In other embodiments, the cover further includes one or more sealants to minimize leakage of the cleaning agent. In still other embodiments, the exterior surface of the inlet includes a plurality of threads and the abrasive surface is configured to contact the plurality of threads as the cover moves from the extended position to the retracted position.
In another aspect, a self-cleaning needleless connector includes: a connector body defining a fluid passageway with an inlet and an outlet, where the inlet additionally includes a plurality of threads and is configured to receive a male luer; a cover located over at least the inlet of the connector body, where the cover is movable between an extended position and a retracted position, where when in the extended position the inlet is within the cover and in the retracted position the inlet is extended beyond the cover; a septum located proximate an inlet end of the cover; a reservoir containing a cleaning agent, where the reservoir fluidly connects the connector body and the cover; and an abrasive surface located inside of the cover and in fluid communication with the cleaning agent, where the abrasive surface is configured to contact the threads (to create friction) as the access point moves from the closed position to the open position.
In some embodiments, the cover is rotatable about an axis of rotation that is generally aligned with the connector body. In some such embodiments, the cover is rotated about the axis of rotation simultaneous with the cover being moved to the retracted position by user-actuated compression of a spring, where the spring mechanically biases the cover to the extended position.
In some embodiments, the septum is a split septum and is recessed into the inlet end of the cover. In other embodiments, the abrasive surface is a plurality of bristles.
In yet another aspect, a method of cleaning an inlet of a needless connector, where the needleless connector includes a connector body defining a fluid passageway including an inlet and an outlet, a cover located over at least the inlet, and an access point disposed at an inlet end of the cover, the access point being movable between a closed position and an open position, the method including: transferring a cleaning agent from a reservoir to an abrasive surface; directly contacting the abrasive surface with the cleaning agent; and moving the access point from the closed position, where the inlet is within the cover to the open position where the inlet is extended beyond the cover and configured to receive a male luer.
In some embodiments, a spring mechanically biases the access point to the closed position and moving the access point from the closed position further includes compressing, by a user, the spring. In other embodiments, the method may additionally include rotating the cover about an axis of rotation that is generally aligned with the connector body, generating friction between the abrasive surface and the inlet contact. In some such embodiments, the rotating of the cover is simultaneous with moving the access point from the closed portion to the open position.
The term “needleless connector” as used herein refers to a device with multiple connection points, including for example, one side that may connect the surface of the needleless connector to IV-tubing or the like, and a second side that may be a male luer end or the like. These types of apparatuses may also be referred to as “end caps,” “injection caps,” “luer-activated devices,” “injection ports,” or “mechanical valves.” However, as used herein, the term “needleless connector” encompasses all of these aforementioned apparatuses and includes all the various types and designs in this category of products.
These and other advantages and features, which characterize the invention, are set forth in the claims annexed hereto and forming a further part hereof. However, for a better understanding of the invention, and of the advantages and objectives attained through its use, reference should be made to the Drawings, and to the accompanying descriptive matter, in which there is described example embodiments of the invention. This summary is merely provided to introduce a selection of concepts that are further described below in the detailed description, and is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
In some embodiments discussed hereinafter, a self-cleaning needleless connector may generally include a reservoir containing a cleaning agent and an abrasive surface disposed within the connector housing, where the abrasive surface may be in fluid communication with the cleaning agent. The abrasive surface may contact an exterior surface of the inlet as an access point moves from a closed position to an open position.
Turning now to the drawings, wherein like numbers denote like parts throughout the several views,
A sleeve or cover 108 may be positioned to envelop at least a portion of the connector body 102, including at least the inlet 104. In some instances, the cover 108 may only be disposed over the inlet 104 of the connector body; while in other instances, the cover 108 may be disposed over a substantial portion of the connector body 102 (as illustrated in
As will also be described in detail herein, the cover 108 may also move from a first, expanded position, such as illustrated in
In some instances, there may be a spring 220 that mechanically biases the cover 108 to an extended position (
Referring now to
In addition to the fluid passageway 202, the interior of the connector body 102 and the cover 108 collectively form a plurality of internal voids 206. At least of portion of these internal voids 206 form a reservoir 208 for containing a liquid cleaning agent. It is to be understood that the specific placement of the reservoir is not limiting, and that such a reservoir may be place in any location suitable to allow fluid communication with the abrasive surface 210 (described in detail herein). Such a cleaning agent may include, but not be limited to, may be 70% isopropyl alcohol, chlorhexidine gluconate mixed with 70% isopropyl alcohol (also known as “CHG+alcohol”), and 10% povidone-iodinechlorohexidine, glutaraldehyde, etc. Generally, a cleaning agent may be any suitable biocidal substance capable of disinfecting a surface.
When the self-cleaning needleless connector 100 is in a storage position, such as illustrated in
In some instances, the abrasive substance 210 may completely circumscribe the exterior surface 212 of the inlet 104. In other instances, there may be more than one abrasive surface 210. In such instances, the abrasive surfaces 210 may be placed on two opposing sides of the exterior surface 212 of the inlet 104 (as illustrated in
Additionally, in some instances, the self-cleaning needleless connector 100 may also include a piston 222 that moves laterally along the axis 114 running along the connector body 102 between the inlet 104 and the outlet 106 as the cover 108 moves from the extended position to the retracted position upon user actuation. The movement of this piston 222 may increase the volume of the portion of the reservoir 208 contained within the connector body 102, in order to accommodate the cleaning agent as it is forced laterally when the cover 108 retracted. The cover 108 may, in some instances, contain internal seals 224 that may eliminate or reduce the leakage of the cleaning agent from the cover 108 when in a retracted position.
As previously mentioned, in some instances, the cover 108 may rotate about an axis of rotation 114 generally aligned with the connector body 102. This rotation may also facilitate contact of the abrasive surface(s) 210, and fluidly coupled cleaning agent, with the exterior surface 212 of the inlet 104. In some instances, a clinician may rotate the self-cleaning needleless connector 100 prior to connector to a syringe or the like as an additional precautionary measure for disinfecting the inlet 104. In other instances, the rotation of the cover 108 may be simultaneous with the cover 108 being moved from the extended position (
In some instances, the cover 108 and/or the connector body 102 may include one or more sealants 218 that may eliminate or reduce the leakage of the cleaning agent from the self-cleaning needleless connector 100 though the area where the cover 108 and the connector body 102 interface. In some instances, the sealant 218 may be a mechanical seal constructed of an acrylic resin, butyl rubber, epoxy, latex, polyurethane, rubber, silicone, urethane, and/or any other sealing material capable of providing a seal to eliminate or minimize leakage of the cleaning agent. Although illustrated in
Turning now to
Also similar to the embodiment described with reference to
Referring specifically to
The self-cleaning needleless connector 400 may also include an internal stop 422 that prevents the cover 408 from retracting too far when it moves laterally along the axis 414 running along the connector body 402 towards the outlet 406. This internal stop 422 may additionally include one or more openings 424 through which fluid (e.g. the cleaning agent) may flow. As a user-actuates the movement of the cover 408 laterally along the axis 414 running along the connector body 402 towards the outlet 406 the springs 420 compress and the cleaning agent is also forced laterally through the one or more openings 424 toward the outlet 406. An internal seal 426 contacts the internal stop 422 and seals the one or more openings 424 in order to eliminate or minimize leakage from the septum 410 when the cover 408 is in a retracted position and the inlet exposed to the external environment.
Additionally, similar to the embodiments described with reference to
Referring now to
At block 615, an access point disposed at the inlet end of the cover of the needleless connector; this access point may be moved from a first, closed position to a second, open position exposing the inlet. Once exposed, the inlet may be configured to receive a male luer. In some instances, the access point be a single piece construction that retracts into the cover when in the open position; in other instances, the access point may be a septum that moves radially between the closed and the open position.
Optionally, at block 620, the needleless connector may include a spring that mechanically biases the access point to the closed position. In such instances, the moving that occurs at block 615 may additionally include user-actuated compression of the spring.
Optionally, at block 625, the method of cleaning the needleless connector may additionally include rotating the cover about an axis of rotation generally aligned with the connector body. Such rotation may generate friction between the abrasive surface and the inlet facilitating the application of the cleaning agent to the inlet and the disinfection process. In some instances, the rotation of the cover may be simultaneous with moving the access point from the closed portion to the open position.
It will be appreciated that various modifications may be made to the embodiments discussed herein, and that a number of the concepts disclosed herein may be used in combination with one another or may be used separately. Therefore, the invention lies in the claims hereinafter appended.
Number | Name | Date | Kind |
---|---|---|---|
7794675 | Lynn | Sep 2010 | B2 |
7857793 | Raulerson et al. | Dec 2010 | B2 |
8069523 | Vaillancourt et al. | Dec 2011 | B2 |
8137303 | Stout et al. | Mar 2012 | B2 |
8177761 | Howlett et al. | May 2012 | B2 |
8206514 | Rogers et al. | Jun 2012 | B2 |
8480968 | Lynn | Jul 2013 | B2 |
8628501 | Hadden | Jan 2014 | B2 |
9192449 | Kerr et al. | Nov 2015 | B2 |
9782507 | Ma et al. | Oct 2017 | B2 |
9844258 | Trebella et al. | Dec 2017 | B2 |
20070112333 | Hoang et al. | May 2007 | A1 |
20080132880 | Buchman | Jun 2008 | A1 |
20080147047 | Davis et al. | Jun 2008 | A1 |
20080235888 | Vaillancourt et al. | Oct 2008 | A1 |
20090028750 | Ryan | Jan 2009 | A1 |
20090041619 | Cady et al. | Feb 2009 | A1 |
20090137969 | Colantonio et al. | May 2009 | A1 |
20100100056 | Cawthon | Apr 2010 | A1 |
20100200017 | Kerr | Aug 2010 | A1 |
20100296968 | Cady | Nov 2010 | A1 |
20110054440 | Lewis et al. | Mar 2011 | A1 |
20110064512 | Shaw et al. | Mar 2011 | A1 |
20110295235 | Fangrow | Dec 2011 | A1 |
20120078203 | Gaube et al. | Mar 2012 | A1 |
20140155868 | Nelson et al. | Jun 2014 | A1 |
20140228773 | Burkholz | Aug 2014 | A1 |
20150000061 | Rogers et al. | Jan 2015 | A1 |
20150217104 | Biehl et al. | Aug 2015 | A1 |
20150273199 | Adams et al. | Oct 2015 | A1 |
20160000062 | Chen et al. | Jan 2016 | A1 |
20160015931 | Ryan et al. | Jan 2016 | A1 |
20160106968 | Solomon et al. | Apr 2016 | A1 |
20160271312 | Lance et al. | Sep 2016 | A1 |
20170050012 | Alpert | Feb 2017 | A1 |
20170157386 | Ferlic | Feb 2017 | A1 |
20170120028 | Burkholz et al. | May 2017 | A1 |
20170203087 | Ryan et al. | Jul 2017 | A1 |
20170274198 | Dupont et al. | Sep 2017 | A1 |
20170333156 | Ready et al. | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
3100550 | Dec 2019 | CA |
3806927 | Apr 2021 | EP |
2059268 | Apr 1981 | GB |
Entry |
---|
International Search Report and Written Opinion issued in Application No. PCT/US2019/036739 dated Jun. 12, 2019. |
Number | Date | Country | |
---|---|---|---|
20190381306 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
62684405 | Jun 2018 | US |