This invention relates generally to ovens, and more particularly, to self-cleaning ovens over-the-range.
Generally, an oven is an appliance which cooks food using a heat source. Some conventional ovens operate as secondary ovens and are wall-mounted as an over-the-range microwave oven. The over-the-range ovens are typically installed above a cooking appliance, such as a gas oven range in a kitchen space. At least some known over-the range ovens include a radiant heat cooking source. The radiant heat cooking source operates to heat a cooking cavity of the over-the-range oven, thus heating and cooking the food contained therein. At least some other known over-the-range ovens also include a radio-frequency generation module, such as a magnetron, for supplying additional cooking capacity to the cooking cavity. During the cooking process, the magnetron generates high-frequency electromagnetic waves. The microwaves penetrate food so as to repeatedly change the molecular arrangement of moisture laden in the food, thus causing the molecules of moisture to vibrate and generate a frictional heat within the food to cook the food. These known over-the-range ovens, typically utilize the magnetron in a speed cooking or microwave assist mode of operation.
During the cooking process, substances cooked inside the microwave oven may generate materials, such as grease, which over time may become undesirably deposited on the walls of the cooking cavity, the cooking rack and/or the heat source itself. However, cleaning the cooking cavity after frequent usage can be problematic.
For example, within such known over-the-range ovens, the cooking cavity is typically cleaned by hand. Cleaning the cavity may be a time consuming task, and may result in damage to the coatings on the cooking cavity.
In one aspect, an over the range oven is provided including a main body defining a cooking cavity therein, wherein the cooking cavity includes a front edge surrounding an opening. An RF generation module is coupled to the cooking cavity and is configured to deliver microwave energy into the cooking cavity. At least one radiant heat source is coupled to the cooking cavity and is configured to supply heat energy to the cooking cavity. The oven is configured to operate in a radiant heat mode of operation, a microwave mode of operation, a dual mode of operation, and a self clean mode of operation.
In another aspect, a method of assembling an over the range oven is provided, wherein the method includes providing a main body defining a cooking cavity therein, and coupling an RF generation module to the cooking cavity, wherein the RF generation module is configured to deliver microwave energy into the cooking cavity. The method also includes coupling a radiant heat source within the cooking cavity, wherein the radiant heat source is configured to supply heat energy to the cooking cavity. The method also includes operatively coupling a controller to the RF generation module and the radiant heat source, wherein the controller is configured to operate the RF generation module and the radiant heat source in a radiant heat mode of operation, a microwave mode of operation, a dual mode of operation, and a self clean mode of operation.
Main body 14 includes a cooling air flow channel 20, also referred to herein as a cooling cavity, surrounding cooking cavity 15. Channel 20 includes a cooling air inlet 22 and a cooling air outlet 24 in flow communication with air flow channel 20. In an exemplary embodiment, inlet 22 is included within door 16. Air flow channel 20 extends through door 16, such that door 16 is cooled by the air flow. Additionally, cooling air flow is directed through channel 20 in main body 14 around cooking cavity 15. As such, the walls of main body 14 are cooled by the air flow. In one embodiment, the cooling airflow is directed across the heating sources of over-the range oven 10, as will be discussed in detail below. The cooling airflow is then exhausted through outlet 24. A cooling fan 26 is positioned in cooling air flow channel 20 for directing cooling air flow through channel 20. One exemplary cooling air flow path is designated by reference numeral 28. Alternatively, the air flow path is directed in a direction opposite the direction shown by flow path 28. A hood structure 30 is provided along an upper portion of the over-the-range oven 10, such as proximate the top wall of main body 14. Hood structure 30 includes fan 26 and outlet 22. Hood structure 30 is in flow communication with channel 20 such that air flow from channel 20 is directed into hood structure 30 and then exhausted from over-the-range oven 10.
Oven 10 includes a venting system 32 coupled in flow communication with cooking cavity 15. Venting system 32 includes a vent fan 34 coupled to an exhaust duct 36. Exhaust duct 36 includes an inlet 38 positioned along a top wall of main body 14. Alternatively, exhaust duct 36 is positioned along a side wall. Exhaust duct 36 also includes an outlet 40 positioned on an exterior of main body 14. Exhaust duct 36 extends through main body 14. In operation, venting system 32 channels air from within cooking cavity 15 to an exterior of oven 10, such as to an exterior portion of the home or building. Alternatively, venting system 32 exhausts air from a front portion of oven 10 into the kitchen.
Over-the-range oven 10 includes a plurality of cooking or heating sources 42. In the exemplary embodiment, over-the-range oven 10 includes a RF generation system 44 (e.g., a magnetron), an upper heater module 46, and a lower heater module 48. Upper and/or lower heater modules 46 and/or 48 include radiant heating elements, such as, for example, a ceramic heater or a halogen cooking lamp. Upper and/or lower heater modules 46 and/or 48 includes at least one of a sheath heater, a conventional bake element, a broil element, or a convection heating element. A convection fan (not shown) may be provided for blowing air over heating elements and into cooking cavity 15. RF generation system 44 may be referred to hereinafter as a microwave element, and heater modules 46 and 48 may be referred to hereinafter as bake elements or broil elements.
Specific heating modules 46 and 48 and RF generation system 44 can vary from embodiment to embodiment, and the elements and system described above are exemplary only. For example, upper heater module 46 can include any combination of heaters including combinations of halogen lamps, ceramic lamps, and/or sheath heaters. Similarly, lower heater module 48 can include any combination of heaters including combinations of halogen lamps, ceramic lamps, and/or sheath heaters. In addition, the heaters can all be one type of heater. The specific ratings and number of lamps and/or heaters utilized in upper heater module and lower heater module can vary from embodiment to embodiment. Generally, the combinations of lamps, heaters, and RF generation system is selected to provide the desired cooking characteristics for speedcooking, microwave only, microwave assist, convection/bake and self clean modes of operation. Additionally, the combinations of lamps, heaters, and RF generation system are configured to operate together at a predetermined power level. For example, in one embodiment, combinations of lamps, heaters, and RF generation system are configured to operate on a 15 Amp, 120 Volt circuit.
In the exemplary embodiment, oven 10 includes a waveguide member 50 surrounding RF generation system 44. Waveguide member 50 is fabricated from a material that is electrically conductive such that waveguide member 50 facilitates favorable transport of microwaves into cooking cavity 15. Additionally, waveguide member 50 is fabricated from a material that is non-thermally conductive, or that has a thermal conductivity such that magnetron 44 is not heated beyond its thermal limit during use and/or during self-clean. As such, while the material selected for waveguide member 50 may be less electrically conductive and may have microwave power loss as compared to other materials that are more thermally conductive, waveguide member 50 protects magnetron 44 in a self clean cycle. In one embodiment, waveguide member 50 is fabricated from a stainless steel material that is approximately thirty percent as conductive as a mild steel material to facilitate protecting magnetron 44. In one embodiment, wave guide member 50 includes a plurality of thermal breaks, such as openings along the outer surface of wave guide member 50 to facilitate reducing the thermal conductivity of wave guide member 50.
A cooking rack 60 is positioned in cooking cavity 15 for supporting food thereon, and is positioned between upper and lower heater modules 46 and 48. Cooking rack 60 is configured to withstand a self clean oven temperature, and is described in more detail with reference to
In the exemplary embodiment, oven 10 includes a plurality of thermal break slots 70 in front frame 12 and a plurality of thermal break slots 72 through an inner face 73 of door 16. Slots 70 and 72 provide a barrier to heat transfer in frame 12 and door 16, respectively. As such, slots 70 and 72 facilitate providing an energy savings for heating sources 42. In the exemplary embodiment, slots 72 in door 16 are substantially aligned with slots 70 in front edge 18.
Thermal break slots 70 extend through front frame 12 and reduce thermal transfer through front frame 12. In the exemplary embodiment, slots 70 surround front frame opening 21 and are positioned a distance from opening 21. Slots 70 are spaced apart from one another by a distance 76 which is selected to provide structural integrity to front frame 12 while reducing thermal transfer through front frame 12. For example, when oven 10 is operated, heat is transferred from cooking cavity 15 (shown in
Air flow channel openings 74 extend through front frame 12 adjacent a lower edge of front frame 12. Openings 74 are sized to allow a predetermined amount of airflow into air flow channels 20. In the exemplary embodiment, a plurality of openings 74 allow airflow into a single channel 20. Alternatively, each opening 74 extends into a separate and discrete air flow channel 20 for cooling a predetermined portion or component of oven 10.
In the exemplary embodiment, front frame 12 includes airflow slots 78 proximate an upper edge of front frame 12. Air from channels 20 flow through airflow slots 78 toward door 16 (shown in
Thermal break slots 72 extend through a portion of door 16 and reduce thermal transfer through door 16. In the exemplary embodiment, slots 72 are positioned within a gasket trough 80 recessed from the surface of door 16. Slots 72 are spaced apart from one another by a distance 82. Distance 82 is selected to provide structural integrity to door 16 while reducing thermal transfer through door 16. For example, when oven 10 is operated, heat is transferred from cooking cavity 15 (shown in
An inner door assembly 106 is provided between door 16 and front edge 18 of main body 14. Inner door assembly 106 includes a door liner 107 along an inner portion of door 16, a gasket 108 attached to door liner 107, and a microwave choke 110 attached to door liner 107 along an inner surface 111 thereof. Inner surface 111 of door frame 102 has a porcelain coating, which facilitates door 16 withstanding the high temperature in the self-cleaning process. Choke 110 extends along door frame 102 and a portion of choke 110 supports window pack 100. Gasket 108 surrounds choke 110. When door 16 closes opening 19, gasket 108 is sandwiched between inner surface 111 of door frame 102 and front frame 12, along front edge 18 of cooking cavity 15. Choke 110 is positioned adjacent to front edge 18 to prevent microwave leakage. In the exemplary embodiment, slots 72 (shown in
As illustrated in
With reference to
In the exemplary embodiment, controller 152 is operatively coupled to RF generation system 44, upper heater module 46 and lower heater module 48. Controller 152 operates the various heating sources 42 based on the inputs. For example, heating sources 42 are operated based on the cooking mode selected by the user, such as speedcooking, microwave only, microwave assist, convection/bake and self clean modes of operation. Alternatively, or in addition thereto, controller 152 may operate the various heating sources 42 based on other inputs from control input selector 154, such as a cooking temperature or a cooking time, and the temperature or humidity level in cooking cavity 15.
Controller 152 controls fan 26 (shown in
Controller 152 is also operatively coupled to venting system 32 and vent fan 34. Controller 152 operates venting system 32 based on the inputs. In the exemplary embodiment, venting system 32 is operated based on the cooking mode selected by the user, such as speedcooking, microwave only, microwave assist, convection/bake and self clean modes of operation. In the exemplary embodiment, venting system 32 operates when RF generation module 44 is operated, but is inactive when RF generation module 44 is inactive. Alternatively, or in addition thereto, controller 152 operates venting system 32 based on other inputs from control input selector 154, such as a cooking temperature or a cooking time and the temperature or humidity level in cooking cavity 15. During the cooking process, vent fan 34 is operated to draw air from cooking cavity 15 and exhaust the air outside of oven 10. In the exemplary embodiment, venting system 32 is operated to draw air from cooling channel 20 through choke 110 and across inner surface 111 of window pack 100 door 16 (shown in
In the exemplary embodiment, bake or broil elements 46 and/or 48 are operated during a preheat mode of operation. Bake or broil elements 46 and/or 48 operate at below 15 Amps, and in the exemplary embodiment, operate at approximately 12.5 Amps. Bake or broil elements 46 and/or 48 operate to increase the overall temperature in oven 10 to a temperature at or near a set-point or cooking temperature. The cooking temperature may be selected by a user depending on the particular type of food being cooked. To limit or reduce the overall power demand of oven 10, microwave element 44 is not operated while bake or broil elements 46 and/or 48 are operated. As such, oven 10 is operated at a power output below a power limit, such as, for example, 15 Amps.
During a cooking operation, microwave 44 and bake or broil elements 46 and/or 48 are operated according to a load sharing process. The load sharing process allows for speed cooking or microwave assist cooking with oven 10 rated at a power output below the power limit, such as, for example, 15 Amps. When oven 10 is at or near the temperature set-point, bake or broil elements 46 and/or 48 are turned off. During the time when bake or broil elements 46 and/or 48 are turned off, microwave 44 may operate depending on the mode of operation of oven 10. However, when the temperature of oven 10 falls to a minimum operating temperature or threshold, bake or broil elements 46 and/or 48 are operated to raise the temperature of oven 10. When bake or broil elements 46 and/or 48 are operated, microwave 44 is turned off. As such, the power output of oven 10 remains below the power limit, such as, for example, 15 Amps. Moreover, when the cooking operation is finished, both microwave 44 and bake or broil elements 46 and/or 48 are turned off, and oven is in a cool down cycle.
In the exemplary embodiment, bake or broil elements 46 and/or 48 define a first element 186 and a second element 188. First element 186 includes bake or broil elements from one of upper heater module 46 or lower heater module 48. Additionally, second element 188 includes bake or broil elements from one of upper heater module 46 or lower heater module 48. In an alternative embodiment, first element 186 includes bake or broil elements from both upper heater module 46 and lower heater module 48. Additionally, second element 188 includes bake or broil elements from both upper heater module 46 and lower heater module 48. In another embodiment, first element 186 and second element 188 share heating elements selected from upper heater module 46 or lower heater module 48. In the exemplary embodiment, first element 186 and second element 188 are operated at different power outputs. For example, first element 186 operates at a power output of approximately 4.0 Amps and second element 188 operates at a power output of approximately 8.5 Amps. However, the power output of first and second elements 186 and 188 may be more or less than 4.0 and 8.5 Amps, respectively, depending on the particular application. In addition, the power output is selected to operate simultaneously below a predetermined power limit, such as, for example, 15 Amps.
In the exemplary embodiment, first and second elements 186 and 188 are operated during a preheat mode of operation. First and second elements 186 and 188 operate at below 15 Amps, and in the exemplary embodiment, operate at approximately 8.5 Amps. First and second elements 186 and 188 operate to increase the overall temperature in oven 10 to a temperature at or near a set-point or cooking temperature. The cooking temperature may be selected by a user depending on the particular type of food being cooked. To limit or reduce the overall power demand of oven 10, microwave element 44 is not operated while first and second elements 186 and 188 are operated. As such, oven 10 is operated at a power output below the power limit, such as, for example, 15 Amps.
During a cooking operation, microwave 44 and bake or broil elements 46 and/or 48 are operated according to a load sharing process. The load sharing process allows for speed cooking or microwave assist cooking with oven 10 rated at a power output below the power limit, such as, for example, 15 Amps. In one load sharing mode, second element 188 is turned off, first element 186 is operated, and microwave 44 is operated. As such, microwave 44 is used to assist in cooking the food, and the temperature of oven 10 is reduced more slowly as compared to a microwave 44 only mode of operation. However, when the temperature of oven 10 falls to a minimum operating temperature or threshold, second element 188 may be required to raise the temperature of oven 10. As such, oven 10 may be operated in another load sharing mode of the cooking cycle wherein both first and second elements 186 and 188 are operated, and microwave 44 is turned off. As such, the power output of oven 10 remains below the power limit, such as, for example, 15 Amps. In another mode of operation, both first and second elements 186 and 188 are turned off and microwave 44 is operated. In yet another mode of operation, first element 186 is turned off, second element 188 is turned on, and microwave 44 is turned off. This mode of operation may be used to increase the temperature within oven at a slower rate and at a reduced power as compared to other modes of operation. In a further mode of operation, first element 186 is operated, second element 188 is turned off, and microwave 44 is turned off. This mode of operation may be used to reduce the speed that the temperature decreases within oven, and may be used to operate oven 10 at a reduced power as compared to other modes of operation. Moreover, when the cooking operation is finished, both microwave 44 and bake or broil elements 46 and/or 48 are turned off, and oven is in a cool down cycle.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
3550580 | Wong | Dec 1970 | A |
3736916 | White | Jun 1973 | A |
3783219 | Tateda | Jan 1974 | A |
3812316 | Milburn | May 1974 | A |
3893442 | Nuss | Jul 1975 | A |
4013861 | Westfall | Mar 1977 | A |
4114013 | Simon et al. | Sep 1978 | A |
4191875 | Cunningham | Mar 1980 | A |
4206338 | Kato | Jun 1980 | A |
4303818 | Smith | Dec 1981 | A |
4320275 | Reiss | Mar 1982 | A |
4358653 | Weiss | Nov 1982 | A |
4369347 | Shin | Jan 1983 | A |
4390767 | Bucksbaum et al. | Jun 1983 | A |
4410779 | Weiss | Oct 1983 | A |
4547642 | Smith | Oct 1985 | A |
4555606 | Thomas et al. | Nov 1985 | A |
4556771 | Thomas | Dec 1985 | A |
4601279 | Guerin | Jul 1986 | A |
4623781 | Thomas | Nov 1986 | A |
4640265 | Romo | Feb 1987 | A |
4752664 | Yose | Jun 1988 | A |
4857685 | Vigano et al. | Aug 1989 | A |
4886046 | Welch | Dec 1989 | A |
5042458 | Spencer et al. | Aug 1991 | A |
5085204 | Moyer | Feb 1992 | A |
5140120 | Kasai et al. | Aug 1992 | A |
5204503 | Maiellano et al. | Apr 1993 | A |
5365833 | Chen | Nov 1994 | A |
5441036 | Mikalauskas, II et al. | Aug 1995 | A |
5588421 | Busch et al. | Dec 1996 | A |
5674425 | Hong | Oct 1997 | A |
5814794 | Lim | Sep 1998 | A |
5918589 | Valle et al. | Jul 1999 | A |
5928540 | Antoine et al. | Jul 1999 | A |
6376817 | McFadden et al. | Apr 2002 | B1 |
6670761 | Lee et al. | Dec 2003 | B1 |
6723961 | Choat et al. | Apr 2004 | B2 |
6730879 | Muegge et al. | May 2004 | B1 |
6730881 | Arntz et al. | May 2004 | B1 |
6815644 | Muegge et al. | Nov 2004 | B1 |
20030146201 | Smith et al. | Aug 2003 | A1 |
20040178192 | Muegge et al. | Sep 2004 | A1 |
20040245246 | Bakanowski et al. | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
2003031314 | Apr 2003 | KR |
Number | Date | Country | |
---|---|---|---|
20070095822 A1 | May 2007 | US |