Current household and industrial water filtration systems generally produce two water streams for two types of uses. A first water stream of filtered water is used for drinking and cooking, whereas a second stream of unfiltered water is used for general purposes, such as washing hands and cleaning dishes. In some current systems, in order to produce filtered water, water is diverted from an unfiltered source and sent to a filter housing to create a filtered water stream. Unfiltered water bypasses the filter and continues directly to a faucet to deliver an unfiltered water stream.
Current filter housings include a filter element or cartridge designed to remove contaminants in the unfiltered water and deliver filtered water. After a faucet (or other valve) associated with the second stream is shut off, removed contaminants from the second stream remain embedded in the filter element. When the filtered stream is not utilized, water stagnates within the housing. Additionally, contaminants remain embedded in the filter element, creating further stagnation.
Current Reverse Osmosis (RO) systems include one or more filter elements and a membrane downstream from the filter elements. Downstream from the membrane is a filtered line leading to a tank and a waste line that leads to a drain. Due to the high amount of pressure and slow speed of water production in RO systems, water is stored in the tank at room temperature, causing it to stagnate prior to use.
A filter unit includes an inlet for receiving unfiltered water. A first fluid path directs water through a membrane and a filter element to a first outlet. Additionally, a second fluid path directs water across the membrane and to a second outlet. In one aspect, a method includes directing water through the first fluid path to produce a filtered water stream when a first valve is open and directing water through the second fluid path to produce a flushed water stream when a second valve is open.
During operation, unfiltered water is directed through inlet 11 and into a filter housing, formed of a lower or bottom case 2 and an upper or top case 6. The filter unit 10 can be mounted to a structure such as a cabinet through use of a mounting bracket 5. An inner sleeve 3 coupled with an inner tube 8 are positioned within the filter housing that together establish an initial flow path within the housing from the inlet 11. Nested within the sleeve 3 and tube 8 are a filter element 7 surrounded by a sheet or membrane 9 and a top sleeve 4 connected with the filter element 7. In one embodiment, the filter unit 7 and/or membrane 9 are replaceable. In particular, the lower case 2 and upper case 6 can be separated (e.g., through a threaded connection), where a used filter element 7 and membrane 9 can be removed and replaced by a new filter element 7 and membrane 9.
With reference to
In one embodiment, filter element 7 is a carbon filter designed to adsorb chemical contaminants within water forced through the filter element 7. In other embodiments, the filter element 7 can be formed of a solid porous carbon block, loose granulated activated carbon or other materials as desired. The membrane 9 surrounding the filter element 7 can be formed of a suitable membrane material such as polyester or polyether sulfone. In another embodiment, the membrane can be formed of hollow fibers. To filter contaminants, the filter unit 10 in one embodiment includes two stages of filtration, a first stage including membrane 9 and a second stage including filter element 7. In one embodiment, the membrane 9 forms an exclusion surface that excludes particle of a particular size (e.g., 1 micron, 5 microns, 10 microns) from passing through the membrane 9. As a result, particulate matter excluded by the membrane 9 remains along an outer surface of the membrane 9. When outlet 12 is closed and outlet 13 is open, water is directed across the surface of the membrane 9. As it is passes across the surface of the membrane 9 (i.e., along path D), particles remaining on the surface 9 are flushed out of the housing through outlet 13. The flushing mode of filter unit 10 serves to continuously flush, rinse and clean out the filter housing and reduce exposure of filter element 7 to large particles. Accordingly, particle contaminants are prevented from building up in the filter element 7.
Another optional feature for the filter units described herein includes a visual indicator that indicates water flowing across the membrane of the filter unit. For example, a window or transparent or partially transparent housing can indicate that water is flowing within the filter unit. Alternatively, or in addition thereto, strings, vanes, wheels or other elements can be positioned on an exterior of the housing to indicate water flow within the filter unit.
Various embodiments of the invention have been described above for purposes of illustrating the details thereof and to enable one of ordinary skill in the art to make and use the invention. The details and features of the disclosed embodiment[s] are not intended to be limiting, as many variations and modifications will be readily apparent to those of skill in the art. Accordingly, the scope of the present disclosure is intended to be interpreted broadly and to include all variations and modifications coming within the scope and spirit of the appended claims and their legal equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4218317 | Kirschmann | Aug 1980 | A |
4711723 | Bray | Dec 1987 | A |
5037547 | Burrows | Aug 1991 | A |
5164085 | Spokoiny et al. | Nov 1992 | A |
6325929 | Bassett | Dec 2001 | B1 |
6800200 | Bassett et al. | Oct 2004 | B2 |
7081201 | Bassett | Jul 2006 | B2 |
7422690 | Scharstuhl | Sep 2008 | B2 |
20050040097 | Bassett et al. | Feb 2005 | A1 |
20060175270 | Greene | Aug 2006 | A1 |
20060213821 | Choi | Sep 2006 | A1 |
20140110331 | Baird | Apr 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20180326327 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
62504950 | May 2017 | US |