Self-cleaning window blinds with photocatalytic material

Information

  • Patent Grant
  • 10544619
  • Patent Number
    10,544,619
  • Date Filed
    Monday, February 13, 2017
    7 years ago
  • Date Issued
    Tuesday, January 28, 2020
    4 years ago
Abstract
A self-cleaning window blind includes a thin layer of photocatalytic material on at least one surface of the slats. The window blind includes an ultraviolet light source which directs ultraviolet light onto the photocatalytic material. Consequently, the window blind is not dependent on available sunlight. The ultraviolet light source is located in either the headrail or the bottom rail of the window blinds. Upon exposure to ultraviolet light, organic material on the slats which may include dust, grease, or microorganisms, is converted to carbon dioxide and water. One or both of the horizontal edges of the slats may include a lip which collects water formed by the photocatalytic reaction. In some embodiments, the slats are slightly convex. This shape may inhibit water from collecting in droplets on the slat and help direct the water towards the lip. Consequently, water spots are not created on the slats.
Description
BACKGROUND
Field of the Invention

This disclosure relates to window blinds, specifically self-cleaning window blinds.


Background of the Invention

Window blinds include slats which create an increased surface area relative to window shades. The slats are difficult to clean without taking the window blind out of the window, cleaning it, then remounting it. Consequently, the slats collect dust, grease, microorganisms, and other organic material on their surface. This is both unsightly and may also be insanitary. In some settings, for example, healthcare facilities, the slats may be a source of nosocomial infection.


Some self-cleaning window blinds are available which require sunlight to initiate a photocatalytic reaction which cleans the blinds. However, these window blinds do not clean themselves when used indoors or away from sunlight. A window blind with slats that are self-cleaning without the need for direct sunlight is needed.


BRIEF SUMMARY OF THE INVENTION

We disclose a window blind that may self-clean through the use of ultraviolet light on a photocatalytic surface. Since the window blind has a built-in light source, it does not require exposure to sunlight in order to self-clean. Consequently, the self-cleaning function of the disclosed window blinds may be used indoors and without the presence of sunlight. As such, the self-cleaning process may also occur at night or when the blinds are closed, and thus not exposed to sunlight. In one embodiment of the disclosed window blind, the ultraviolet light source may be contained within a headrail. In this embodiment, the ultraviolet light source directs the ultraviolet light downward toward the slats. In another embodiment, the ultraviolet light source may be contained in a bottom rail. In this embodiment, the ultraviolet light source may direct the ultraviolet light upward toward the slats. In some embodiments in which the ultraviolet light source is positioned within the bottom rail, each slat may be sequentially exposed to ultraviolet light as the window blind is raised. The slats stack up from the bottom up as the blind is raised with the lowest slat that is not stacked being positioned nearest the ultraviolet light source in the bottom rail. This lowest slat is exposed to the ultraviolet light before being stacked as the window blind raises slightly higher. The ultraviolet light is then directed towards the next highest slat. The process may be repeated until the top slat has been illuminated.


The slats of the window blinds may be composed of a substrate with a thin layer of photocatalytic material on at least one surface of each slat. The photocatalytic material may include, but is not limited to, titanium dioxide, stannous oxide, and/or zinc oxide. The photocatalytic surface may also be doped with a variety of metal oxides or other materials, including but not limited to silver, iron, cobalt, chromium, manganese, nitrogen, or tungsten trioxide. The surface may also be either hydrophilic or hydrophobic. The slats may also have one or two lips along the horizontal edges of the slats. In some embodiments of the invention, the slats may also be convex such that any water that may collect on the surface of the slats may be directed towards the one or two lips where it may collect.


The headrail of the window blind may also contain at least one gear, a motor, and a battery connected to the motor. In some embodiments of the invention, a controller may also be included, which may have a memory for storing program code. A user may control the self-cleaning function of the window blind through wired or wireless means using program code stored in the memory.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a window blind according to an embodiment of the disclosure with an ultraviolet light source in the headrail.



FIG. 2 illustrates an embodiment of a headrail within an embodiment of the disclosed window blind shown from below the headrail.



FIG. 3A illustrates an embodiment of a slat which may be included in a window blind according to the disclosure.



FIG. 3B illustrates a cross sectional view of the slat of FIG. 3A.



FIG. 4A illustrates an embodiment of a slat which may be included in a window blind according to the disclosure.



FIG. 4B illustrates a cross sectional view of the slat of FIG. 4A.



FIGS. 5A and 5B illustrate a window blind according to an embodiment of the disclosure with an ultraviolet light source in the bottom rail. FIG. 5A shows the slats fully extended and FIG. 5B shows the window blind in the process of being raised.



FIG. 6 illustrates a cross-sectional view of an embodiment of a bottom rail including an ultraviolet light source and shield according to the disclosure.





DETAILED DESCRIPTION OF THE INVENTION
Definitions

Window blind, as used herein, means a blind that covers an opening in a building, including a window or door.


While this invention is susceptible of embodiment in many different forms, there are shown in the drawings, which will herein be described in detail, several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principals of the invention and is not intended to limit the invention to the illustrated embodiments.


We disclose a window blind that may self-clean through a reaction of ultraviolet light and a photocatalytic material on a substrate. The photocatalytic material may be applied to a substrate on at least one surface of the slats of the window blind. The photocatalytic material deposited on the substrate may include, but is not limited to, titanium dioxide, stannous oxide, and zinc oxide. When ultraviolet light shines on the photocatalytic material, an electron is excited from the valence band of the metal to a conduction band. This allows the photocatalytic material to either reduce an oxygen molecule to a superoxide molecule or oxidize a hydroxide anion to a hydroxyl radical. Both superoxide and hydroxyl radicals are very reactive, which allows them to break down pollutants or organic material into carbon dioxide and water. In reducing and oxidizing the hydroxide and the oxygen, the photocatalytic material is regenerated and can be reused for future reactions.


The efficiency of the photocatalytic reaction process can be improved by doping the surface with a metal cation or other materials. Consequently, in some embodiments, the photocatalytic material on the slats includes a material that has been doped with metal cations or other materials. In some embodiments of the invention, the photocatalytic film may be doped with other substances which may include, but are not limited to, silver, iron, cobalt, chromium, manganese, nitrogen, or tungsten trioxide. The film may also be either substantially hydrophilic or substantially hydrophobic.


In one embodiment of the invention, the window blind may consist of a plurality of window slats, each of which may include a lip along one of the horizontal edges of the slats. The lip may collect water that is formed from the photocatalytic reaction so that water marks and spots are not left on the slats after cleaning. The slats may also be slightly convex so that water may be directed toward the lip rather than collecting along the surface of the slats.


Some embodiments of the invention may also have a second lip along the second horizontal edge of the plurality of slats. Consequently, these slats have two lips, one on each horizontal edge of each slat. In this embodiment, the plurality of slats may also be convex such that any water produced from the reaction on the surface of the slats may collect in either one or both lips. The water may then evaporate from the lips thus avoiding water marks or spots on the blinds.


The slats may include a substrate, upon which a photocatalytic material may be deposited. The substrate may include a hydrocarbon polymer or copolymer, a thin layer of glass, or other material to which the photocatalytic material may be applied. The photocatalytic material may be applied to the substrate by printing, spraying, or other mechanisms known in the art.


In some embodiments, the window blind may have a headrail that may contain an ultraviolet light source, at least one gear, a motor, and a battery. The battery may be connected to the motor, which may be operably connected to and power the one or more gears. The battery may also be connected to and power the ultraviolet light source. The ultraviolet light source may direct ultraviolet light downward onto the plurality of slats in order to activate the photocatalytic reaction.


In another embodiment of the invention, the ultraviolet light source may be contained in a bottom rail. In embodiments in which the ultraviolet light source is positioned in the bottom rail, the ultraviolet light may be directed toward one slat at a time, from the bottom to the top slat, as the blind is raised. The gear mechanism may raise the blind slowly. In some embodiments, the gear mechanism may be powered by the battery. As each slat is stacked along the bottom rail, the slat above it may be illuminated with ultraviolet light. Then, the illuminated slat may be stacked along the bottom rail with the lower slats as the blind raises slightly higher. The next highest slat may then be illuminated with ultraviolet light until, eventually, the top slat has been illuminated. The photocatalytic reaction may convert organic material on the slats to carbon dioxide and water as each slat is illuminated.


Any embodiment of the disclosed window blinds may include a controller. The controller may have a memory for storing program code. The program code may enable a user to input specific times of day and/or dates that the user wishes the self-cleaning process to occur. For example, the user may choose a time when the occupants of the dwelling are asleep to initiate self-cleaning. This timing scenario reduces distraction which may be caused by the cleaning process and may reduce the chance of unwanted skin or eye exposure to ultraviolet light. Alternatively, the user may select a time for cleaning during which the dwelling is unoccupied, for example, during the work day.


The program code may enable a user to input a wavelength range and intensity of the ultraviolet light emitted by the ultraviolet light source. In some embodiments, the program code may enable a user to input the length of time the self-cleaning process occurs. Consequently, light cleaning sessions may be performed periodically between more thorough cleaning sessions.


The input mechanism from the user to the controller may be wired or wireless. In some embodiments, the user may select input data using a mobile device. In other embodiments, the user may input data manually using a keypad that is connected through wires or wirelessly to the controller in the headrail.


Referring now to the drawings, FIG. 1 shows window blind 100 which is an embodiment of the disclosed window blind. Window blind 100 includes headrail 110, slats 120a-j, and bottom rail 130. Slats 120a-j include a substrate at least on the side of slats 120a-j which are nearest the adjacent room. The substrate is coated with a film of photocatalytic material as described in detail elsewhere herein. In this embodiment, headrail 110 includes ultraviolet light source 140 which is positioned inside headrail 110. Ultraviolet light source 140 directs ultraviolet light onto slats 120a-d to activate the photocatalytic reaction. The photocatalytic reaction may convert organic material, including dust, grease, and microorganisms, to carbon dioxide and water.



FIG. 2 shows an embodiment of the invention 200 in which a light source is included in the headrail. Headrail 210 includes ultraviolet light source 240 and gear box 230, both of which are connected to controller 220. Ultraviolet light source 240 may be direct ultraviolet light onto slats of a window blind during self-cleaning. Controller 220 may include a memory. Program code may be stored in the memory to control the timing and other features of the self-cleaning process.



FIG. 3A is a close-up view of slat 300 which has a film of photocatalytic material 310 applied on at least one side of slat 300. Slat 300 also includes lip 320 for collecting water that may form on the surface of slat 300 as a result of the photocatalytic reaction. In the embodiment of FIG. 3A, slat 300 is shown slightly convex so that the water that forms as a product of the photocatalytic reaction may be directed toward lip 320 rather than pool or bead up on slat 300 leaving water spots.



FIG. 3B shows a cross-sectional view of slat 300 which was originally presented in FIG. 3A. Photocatalytic material is shown as a thin film on the surface of slat 300. Lip 320 is shown on one horizontal edge of slat 300. Furthermore, slat 300 is shown slightly convex with an arc from one horizontal edge to the other.



FIG. 4A is a close-up view of slat 400 which is another embodiment of a slat which may be included in the disclosed window blind. Similar to slat 300 of FIG. 3A, slat 400 includes photocatalytic film 410 on at least the surface facing the viewer. Slat 400 includes two lips, lips 420 and 430, which are located on each of the two horizontal edges of slat 400. This embodiment provides two directions for water created by the photocatalytic reaction to flow away from the center of slat 400 and into a lip. Consequently, water may collect in either or both of lips 420 and 430 rather than collecting on the surface of slat 400. Similar to slat 300 of FIG. 3A, slat 400 is also shown with a slightly convex surface to encourage water to collect in lips 420 and 430.



FIG. 4B shows a cross sectional view of slat 400 as originally presented in FIG. 4A. FIG. 4B shows that photocatalytic material 410 is present on slat 400 as a thin film. The convex curvature of slat 400 is shown with an arc between lips 420 and 430.



FIG. 5A shows window blind 500, which is another embodiment of a window blind according to the present disclosure. Window blind 500 includes headrail 510 and slats 520a-j. FIG. 5A shows slats 520a-j fully extended. Similar to other embodiments disclosed herein, slats 520a-j include a photocatalytic material which is present as a thin layer on a substrate on each of slats 520a-j. Window blind 500 further includes bottom rail 530. In this embodiment, ultraviolet light source 540 is within bottom rail 530 rather than in headrail 510.



FIG. 5B shows window blind 500 as originally presented in FIG. 5A with slats 520f-j in a stacked position as window blind 500 is in the process of raising upward. As each of slats 520a-j are compiled into a stack adjacent to bottom rail 530, the slat that is above the stack is closest to ultraviolet light source 540. Consequently, as window blind 500 gradually raises, each of slats undergoes a photocatalytic reaction in response to ultraviolet light on the photocatalytic material on its surface. As shown in FIG. 5B, slat 520e is undergoing self-cleaning.



FIG. 6 is a cross-sectional view of bottom rail 600, which is an embodiment of a bottom rail which may be included in the disclosed window blind. In this embodiment, rail 630 includes ultraviolet light source 640 embedded within it. Shield 610 is included in this embodiment. Shield 610 is angled over ultraviolet light source 640 so that the ultraviolet light may reach the adjacent slat but not items or persons within the adjacent room. Thus, shield 610 is a safety feature that may be included in some embodiments. Shield 610 may be constructed from a variety of materials known in the art which are known to block ultraviolet light including, but not limited to, polycarbonate, acrylic, and/or polyethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PETE).


While specific embodiments have been illustrated and described above, it is to be understood that the disclosure provided is not limited to the precise configuration, steps, and components disclosed. Various modifications, changes, and variations apparent to those of skill in the art may be made in the arrangement, operation, and details of the methods and systems disclosed, with the aid of the present disclosure.


Without further elaboration, it is believed that one skilled in the art can use the preceding description to utilize the present disclosure to its fullest extent. The examples and embodiments disclosed herein are to be construed as merely illustrative and exemplary and not a limitation of the scope of the present disclosure in any way. It will be apparent to those having skill in the art that changes may be made to the details of the above-described embodiments without departing from the underlying principles of the disclosure herein.

Claims
  • 1. A window blind comprising: a plurality of slats, each of the plurality of slats comprising: a first horizontal edge and a second horizontal edge, wherein the first and second horizontal edges are substantially parallel with a horizontal axis of each of the plurality of slats;a lip, along the first horizontal edge of each of the plurality of slats;a substrate;a film of photocatalytic material, wherein the film is disposed on the substrate;a headrail, the headrail comprising: an ultraviolet light source, wherein the ultraviolet light source directs ultraviolet light downward toward the plurality of slats to activate the photocatalytic material;at least one gear;a motor, wherein the motor is operably connected to the at least one gear; anda battery, wherein the battery is operably connected to the motor.
  • 2. The window blind of claim 1, further comprising a controller, the controller comprising a memory for storing program code.
  • 3. The window blind of claim 1, wherein the photocatalytic material comprises one or more of the following: titanium dioxide, stannous oxide, and zinc oxide.
  • 4. The window blind of claim 3, wherein the photocatalytic material is doped with tungsten trioxide.
  • 5. The window blind of claim 3, wherein the photocatalytic material is doped with a metal cation.
  • 6. The window blind of claim 5, wherein the metal cation is selected from one or more of the following: sliver, iron, cobalt, chromium, and manganese.
  • 7. The window blind of claim 1, further comprising a second lip, wherein the second lip defines an indentation substantially along the second horizontal edge of each of the plurality of slats.
  • 8. The window blind of claim 7, wherein each of the plurality of slats further comprises a convex surface such that water collecting on the convex surface moves towards the first and second lips.
  • 9. A window blind comprising: a plurality of slats, each of the plurality of slats comprising: a first horizontal edge and a second horizontal edge, wherein the first and second horizontal edges are substantially parallel with a horizontal axis of each of the plurality of slats;a lip, along the first horizontal edge of each of the plurality of slats;a substrate;a film of photocatalytic material, wherein the film is disposed on the substrate;a bottom rail, the bottom rail comprising an ultraviolet light source, wherein the ultraviolet light source directs ultraviolet light upward toward the plurality of slats to activate the photocatalytic material;a headrail, the headrail comprising: at least one gear;motor, wherein the motor is operably connected to the at least one gear; anda battery, wherein the battery is operably connected to the motor.
  • 10. The window blind of claim 9, further comprising a controller, the controller comprising a memory for storing program code.
  • 11. The window blind of claim 9, wherein the photocatalytic material comprises one or more of the following: titanium dioxide, stannous oxide, and zinc oxide.
  • 12. The window blind of claim 11, wherein the photocatalytic material is doped with tungsten trioxide.
  • 13. The window blind of claim 11, wherein the photocatalytic material is doped with a metal cation.
  • 14. The window blind of claim 13, wherein the metal cation is selected from one or more of the following: sliver, iron, cobalt, chromium, and manganese.
  • 15. The window blind of claim 9, further comprising a second lip, wherein the second lip defines an indentation substantially along the second horizontal edge of each of the plurality of slats.
  • 16. The window blind of claim 15, wherein each of the plurality of slats further comprises a convex surface such that water collecting on the convex surface moves towards the first and second lips.
  • 17. The window blind of claim 9, wherein each slat is sequentially exposed to the ultraviolet light as the window blind is raised.
  • 18. The window blind of claim 17, wherein the slats stack up from the bottom as the blind is raised with the lowest slat that is not stacked being positioned nearest the ultraviolet light source in the bottom rail.
  • 19. The window blind of claim 9 further comprising a shield.
  • 20. The window blind of claim 19, wherein the shield is angled over the ultraviolet light source.
US Referenced Citations (87)
Number Name Date Kind
2068977 Dodge Jan 1937 A
2091579 Balthasar Aug 1937 A
2165292 Morse Jul 1939 A
4064670 Lichtenwald Dec 1977 A
4096903 Ringle, III Jun 1978 A
4434834 Ennes Mar 1984 A
4452024 Sterriker Jun 1984 A
4877077 Ebert Oct 1989 A
5102598 Chen Apr 1992 A
5119871 Schwaegerle Jun 1992 A
5194209 Schwaegerle Mar 1993 A
5194310 Lenderink Mar 1993 A
5496630 Hawrylko Mar 1996 A
5573054 Swopes Nov 1996 A
5714855 Domel Feb 1998 A
5718273 Best Feb 1998 A
5760558 Popat Jun 1998 A
5883480 Domel Mar 1999 A
5919422 Yamanaka Jul 1999 A
6015002 Biro Jan 2000 A
6156211 Gonzalez-Martin Dec 2000 A
6228480 Kimura May 2001 B1
6466298 Fix Oct 2002 B1
6497266 Palmer Dec 2002 B1
6528782 Zhang Mar 2003 B1
6743749 Morikawa Jun 2004 B2
6812662 Walker Nov 2004 B1
6835688 Morikawa Dec 2004 B2
6877548 Chartier Apr 2005 B1
7714335 Beckers May 2010 B2
7743815 Clauss Jun 2010 B2
8273425 Eldering Sep 2012 B2
8471464 Yamada Jun 2013 B2
8586215 Hartig Nov 2013 B2
9063287 Nagahama Jun 2015 B2
9080376 Pellini Jul 2015 B2
9122055 Aizenberg Sep 2015 B2
9169690 Blair Oct 2015 B2
9192267 Tsibulevskiy Nov 2015 B2
9210784 Antoniazzi Dec 2015 B2
9376853 Hartig Jun 2016 B2
9470040 Hall Oct 2016 B2
9510711 Tsibulevskiy Dec 2016 B2
9588267 Nagahama Mar 2017 B2
9719644 Sekido Aug 2017 B2
9778534 Tran Oct 2017 B2
9809003 Gower Nov 2017 B2
9891357 Boman Feb 2018 B2
9955825 Tsibulevskiy May 2018 B2
9964676 Nagahama May 2018 B2
10006598 Sekido Jun 2018 B2
10184623 Vasylyev Jan 2019 B2
10287818 Nishida May 2019 B2
20020091178 Amin-Javaheri Jul 2002 A1
20030006015 Lin Jan 2003 A1
20030162035 Talpaert Aug 2003 A1
20030168183 Franco Sep 2003 A1
20040129167 Sprague Jul 2004 A1
20040149307 Hartig Aug 2004 A1
20040163774 Nien Aug 2004 A1
20040261957 Chen Dec 2004 A1
20060152137 Beteille Jul 2006 A1
20070264494 Krisko Nov 2007 A1
20080230187 Caron Sep 2008 A1
20080236764 Cheng Oct 2008 A1
20080271856 Paulussen Nov 2008 A1
20120300306 Nagahama Nov 2012 A1
20130240161 Huang Sep 2013 A1
20130250403 Maeda Sep 2013 A1
20140020852 Thielemann Jan 2014 A1
20140111851 Lin Apr 2014 A1
20140340729 Tajima Nov 2014 A1
20150013920 Mullet Jan 2015 A1
20150082702 Walter Mar 2015 A1
20150204127 Kashani Jul 2015 A1
20160025288 Vasylyev Jan 2016 A1
20160060954 Nishida Mar 2016 A1
20160158738 Ozaki Jun 2016 A1
20160158739 Noel Jun 2016 A1
20160178164 Nishida Jun 2016 A1
20170097555 Lattes Apr 2017 A1
20170146207 Nishinaka May 2017 A1
20170165947 Murakami Jun 2017 A1
20170176656 Nagahama Jun 2017 A1
20170183256 Myli Jun 2017 A1
20180095209 Hakuta Apr 2018 A1
20180186217 Lemmer Jul 2018 A1
Related Publications (1)
Number Date Country
20180230740 A1 Aug 2018 US