The present invention relates to sliding-type closure mechanisms. More particularly, the present invention relates to self-closing sliding closure mechanisms having dampers for controlling the movement in at least one direction for use on sliding devices such as kitchen drawers, sliding racks, desk drawers, cabinets, and the like.
Assisted closure mechanisms are used in a wide variety of applications. For example, it may be desirable to use an assisted closure for moving a mechanism in one direction, typically in the closing direction. Such assisted closure may be highly desirable in drawers, such as desk drawers and the like. Typically, such closure mechanisms utilize spring assists.
With spring assists, the mechanism can be made self-closing, requiring only an initial start to unseat it from a secured, opened position. Such spring or other assists facilitate reducing the effort required to, for example, close the drawer and to assure that the drawer completely closes.
However, it has been found that an assist of sufficient strength to automatically and fully close a heavily loaded drawer or the like can result in abrupt movements and rapid closing. At times, the “strength” of the assist results in a significant impact upon reaching the fully closed position.
As such, it has been found to be advantageous to temper, or damp the action of the spring, so that the drawer or the like closes more gently. It may also be desirable to deactivate or circumvent the damping mechanism in the opposite direction, that is, when the drawer is being pulled open. In that the opposite (e.g., opening) motion may be done without mechanical assist, and in fact may itself be restrained by the expansion of an extension spring used to assist closing, further damping is not needed and may be undesirable.
In addition, due to the varying nature of these devices, it is not known to incorporate a spring assist device in a single, unitary device with a damping arrangement. In fact, when used in conjunction with one another, known configurations typically employ a spring return on one side of, for example a drawer (at one runner or slide), and a damping mechanism at the other side (along the other runner or slide) of the drawer.
Accordingly, there exists a need for a self-closing slide mechanism that has a damper operational in the closing direction. Desirably, such a self-closing slide mechanism is not operational in the opening direction of a drawer or the like to which the self-closing slide is connected.
A self-closing mechanism or slide is movable between an open position and a closed position. The mechanism or slide has a damper that is engaged or operational in the closing direction and disengaged or non-operational in the opening direction.
The slide includes a frame, a linear gear on the frame and a carriage configured for movement along the frame. A biasing element, such as a return spring operably connects the frame and the carriage. The spring biases the frame to the closed position.
A pinion gear is carried by the carriage and is positioned for movement along the linear gear with movement of the carriage along the frame. A damper is operably connected to the pinion gear and to the carriage. The damper selectively dampens movement or rotation of the pinion gear.
An engagement gear is operably mounted to the carriage and is operably connected to the damper. The engagement gear is movable between a first, engaged position in which the engagement gear engages the damper and a second, disengaged position in which the engagement gear disengages the damper.
When the carriage is moved from the closed position toward the open position, the engagement gear is in the second, disengaged position. In this position, the damper is disengaged so that the pinion gear rotates, moving along with the linear gear in an undampened state. Conversely, when the carriage is moved from the open position toward the closed position, the engagement gear is in the first, engaged position. In this position, the engagement gear engages the damper, damping rotation of the pinion gear along the linear gear.
In a preferred embodiment, the engagement gear is mounted to the carriage to move within the carriage between the first, engaged position and the second, disengaged position. In such an embodiment, the carriage can include a carriage projection so that the engagement gear engages the carriage projection when in the first, engaged position and so that the engagement gear is disengaged from the carriage projection when in the second, disengaged position.
To facilitate locking and unlocking the engagement gear, the carriage includes an elongated slot, and a shaft operably connects the engagement gear and the damper, extending through the elongated slot. The engagement gear/damper assembly moves within the elongated slot and for moving the engagement gear between the first, engaged position and the second, disengaged position.
In a present embodiment, the frame includes a plurality of slots and the carriage includes a guide portion for receipt in one or more of the slots for moving the carriage along the frame. The slots and guide assure that the carriage remains properly mounted to and aligned within the frame. On or more of the slots can include a detent in an end thereof for locking the carriage at the detent.
These and other features and advantages of the present invention will be apparent from the following detailed description, in conjunction with the appended claims.
The benefits and advantages of the present invention will become more readily apparent to those of ordinary skill in the relevant art after reviewing the following detailed description and accompanying drawings, wherein:
While the present invention is susceptible of embodiment in various forms, there is shown in the drawings and will hereinafter be described a presently preferred embodiment with the understanding that the present disclosure is to be considered an exemplification of the invention and is not intended to limit the invention to the specific embodiment illustrated.
It should be further understood that the title of this section of this specification, namely, “Detailed Description of the Invention”, relates to a requirement of the United States Patent Office, and does not imply, nor should be inferred to limit the subject matter disclosed herein.
Referring now to the figures and in particular, to
The self-closing slide 10 includes a frame 12 having a linear rack gear 14 thereon. As illustrated, the rack gear 14 can be formed integral with the frame 12. Alternately, although not shown, the rack gear can be mounted to the frame. A carriage 16 is movable adjacent the rack gear 14. In a preferred arrangement, the carriage 16 is mounted to the frame 12 for sliding engagement with the frame 12. More preferred, the carriage 16 is secured to the frame 12 for sliding therealong. In an exemplary slide 10, the frame 12 includes slots 18 formed therein that enclose guide or feet portions 20 of the carriage 16. In such an arrangement, the carriage 16 is prevented from inadvertently dislodging from, or jamming in, the frame 12. In the exemplary slide 10, the slots 18 are formed in a lower portion side portion of the frame 12. The frame 12 can also include a depending lip 22 that extends downwardly, toward the rack gear 14.
A pinion gear 24 is mounted to the carriage 16, and is positioned to traverse back and forth along the frame 12, engaging or meshing with the rack gear 14. The pinion gear 24 is mounted to a damper 26 that is positioned on the rotational axis A24 of the pinion gear 24. That is, the pinion gear 24 rotates about the damper 26. Alternatively, the pinion gear 24 can be molded as part of the damper housing. The damper 26, as will be discussed below, when engaged, dampens or provides resistance to movement of the pinion gear 24 along the rack gear 14 by resisting rotation of the pinion gear 24, similar to a braking function. For purposes of securing the carriage 16 (and pinion gear 24) to the frame 12, a pin or shaft portion (not shown) can extend through an opening 28 in a rear wall 30 of the frame 12. In addition, the pinion gear 24 can be captured between the rack gear 14 and the frame lip 22 to facilitate securing the gear 24 to the frame 12.
An extension spring 32 is attached at one end to the carriage 16 and at another end to the frame 12. The force exerted by the spring 32 pulls the carriage 16 toward the closed position (FIG. 2). This provides the closing assist, or self-closing feature of the slide 10.
The damper 26, to which the pinion gear 24 is mounted, is operably connected to the carriage 16 such that it rotates freely with the pinion gear 24 in one direction (moving from the closed position to the open position as indicated by the directional arrow 34 in FIG. 3), but is restrained from rotation in an opposite direction (moving from the open position to the closed position as indicated by the directional arrow 36 in FIG. 2). In this configuration, the damper 26 is non-operational or non-functional when the drawer (or the like) is pulled out to the open position, but provides a damping effect when the drawer is returned to the closed position.
In a present embodiment, this one-way damping action is provided by a moving gear mounting assembly. Referring to
A recess 46 is formed in the wall 42 of the carriage 16 (on that side of the carriage 16 onto which the engagement gear 44 is fitted). The recess 46 essentially provides a captive region for the engagement gear 44. It is within this captive region 46 that the engagement gear 44 moves to effect the one-way damping action. To this end, at least one tooth or cog 48 extends into the captive region 46 that is configured to engage the engagement gear 44. In that the engagement gear 44 moves along the slotted opening 40 in the carriage wall 42, the engagement gear 44 moves into and out of engagement with the tooth 48. When the engagement gear 44 is engaged with the tooth 48, as illustrated in
Conversely, when the pinion gear 24/damper 26/engagement gear 44 assembly shifts away from the tooth 48 (as illustrated in FIG. 3), the engagement gear 44 is disengaged from the tooth 48. This disengages the damper 26 and allows the assembly to rotate freely in the slot 40. Thus, there is no damping action on rotation of the pinion gear 24.
In an exemplary application, the self-closing slide mechanism 10 is attached to a drawer slide. A pin or the like (such as the exemplary pin 50) can be fitted into a retainer 52 in the carriage and can be used to selectively engage the carriage 16 with the drawer runner slide (not shown). Detents 54 can be formed in the frame slots 18 into which the carriage feet 20 are positioned. In addition, capture pins, extensions or the like 56, can engage the frame slot detents 54 to hold the carriage 16 in the open position.
In operation, from an open position, as a drawer or the like is pushed closed, the pin 50 on the drawer runner slide engages the carriage 16. The momentum of the closing drawer forces the capture pin 56 from the carriage slot detent 54, thus unlocking the carriage 16 from the detents 54 in the slot 18. Once unlocked, the extension spring 32 pulls the carriage 16 toward the closed position. As the carriage 16 is pulled toward the closed position, the pinion gear 24/damper 26/engagement gear 44 assembly slides in the slot 40 in the carriage wall 42, toward the tooth 48 in the captive region 46. This engages the engagement gear 44 (and thus the damper 26) to dampen rotation of the pinion gear 24 and thus movement along the frame rack gear 14.
When the drawer is pulled toward the open position from a closed position, the carriage 16 moves within the slotted opening 40 causing the engagement gear 44 to disengage from the tooth 48 on the carriage 16 (in the captive region 46). In this position, the damper 26 is free to rotate in the slot 40 with the pinion gear 24, without resistance. As such, there is no damping of the rotation of the pinion gear 24. This provides for freely opening the drawer without damping effect. Incorporating the slot detents 54 and capture pins 56 permits configuring the slide 10 so that the carriage 16 rotates slightly at the end of the opening stroke to lock the carriage 16 to the frame 12. In this manner, the carriage 16 remains locked until the drawer is urged (slightly) to the closed position, which unlocks the capture pins 56 from the detents 54.
Although one-way damping has been achieved with other devices, typically additional gears are required with multiple assemblies. Commonly, a damper assembly is attached to one of the drawer slides or runner, and a separate spring-loaded mechanism is assembled to the mating rail.
The present self-closing slide 10, on the other hand, provides an integral, compact and efficient unit in which a number of advantageous and desirable characteristics are afforded all in a relatively cost effective design. Moreover, because of the integral design, such a slide 10 substantially simplifies the structure required for one-way damping of a self-closing slide mechanism.
All patents referred to herein, are hereby incorporated herein by reference, whether or not specifically do so within the text of this disclosure.
In the present disclosure, the words “a” or “an” are to be taken to include both the singular and the plural. Conversely, any reference to plural items shall, where appropriate, include the singular.
From the foregoing it will be observed that numerous modifications and variations can be effectuated without departing from the true spirit and scope of the novel concepts of the present invention. It is to be understood that no limitation with respect to the specific embodiments illustrated is intended or should be inferred. The disclosure is intended to cover by the appended claims all such modifications as fall within the scope of the claims.
The present application claims priority of U.S. Provisional Application Ser. No. 60/369,508, filed Apr. 3, 2002.
Number | Name | Date | Kind |
---|---|---|---|
4494806 | Williams et al. | Jan 1985 | A |
4828344 | Omata | May 1989 | A |
4872239 | Ferguson et al. | Oct 1989 | A |
5207781 | Rock | May 1993 | A |
5474375 | Hollenstein et al. | Dec 1995 | A |
6473936 | Orita | Nov 2002 | B2 |
6499818 | Brustle | Dec 2002 | B2 |
6629738 | Salice | Oct 2003 | B2 |
6666306 | Gasser | Dec 2003 | B2 |
20010008037 | Brustle | Jul 2001 | A1 |
20010008358 | Brustle | Jul 2001 | A1 |
20020096405 | Grasser | Jul 2002 | A1 |
Number | Date | Country |
---|---|---|
199 09 734 A 1 | Sep 2000 | DE |
200 06 068 U 1 | Sep 2000 | DE |
WO 0150916 | Jul 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20030189395 A1 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
60369508 | Apr 2002 | US |