The invention relates to a self coiling apparatus and more particularly to a self coiling cord.
Generally cords, ropes or other types of articles and particularly power cords and cables must be wound or bundled for storage when not in use. Various reels and coiling mechanisms exist in the art for storing and maintaining a cord. A person must often spend time and effort to wind a cord around such structures or alternatively to wind the cord by itself There is therefore a need in the art for an improved self coiling apparatus for such articles that that self coils an article when actuated.
In one aspect, there is disclosed a self coiling apparatus that includes an article having a length and capable of being wound or coiled. At least one filament is formed of shape memory alloy and/or shape memory polymer and is wound about the article along its length. A power source is connected to the at least one filament. The at least one filament changes shape upon application of a voltage potential. The at least one filament applies a force to the article and self-coils the article to a desired pattern.
In another aspect, a self-coiling apparatus includes an article having a length and capable of being wound or coiled. Two filaments formed of shape memory alloy and/or shape memory polymer are wound helically about the article along its length. A power source is connected to the two filaments. The filaments change shape upon application of a voltage potential. The filaments apply an axial force to the article twisting the article to a desired shape.
In a further aspect, a self-coiling apparatus includes an article having a length and capable of being wound or coiled. A plurality of filaments formed of shape memory alloy and/or shape memory polymer are wound about the article along its length. A power source is connected to the plurality of filaments. The filaments change shape upon application of a voltage potential. The filaments apply a force to the article and self-coil the article to a desired pattern.
In another aspect, a self-coiling apparatus includes an article having a length and capable of being wound or coiled. At least one filament formed of shape memory polymer is wound about the article along its length. An actuation source is connected to the at least one filament. The filament changes shape upon actuation and self-coils the article to a desired pattern.
Referring to the various figures, there are shown embodiments of a self-coiling apparatus 10. The self-coiling apparatus 10 may include an article 15 having a length and capable of being wound or coiled. At least one filament 20 is formed of a shape changing material including a shape memory alloy and/or a shape memory polymer and is wound about the article 15 along its length. A power source 25 is connected to the at least one filament 20. The at least one filament 20 changes shape upon application of a voltage potential and applies a force to the article 15, self-coiling the article 15 to a desired pattern.
The self-coiling apparatus 10 may include various articles 15 that are capable of being coiled. For example, electrical cords, cords, ropes, hoses, chains, cables, or other elongated bodies capable of coiling may be utilized.
The at least one filament 20 may be wound about the article 15 in a predetermined orientation. Various numbers of filaments 20 may be wound about the article 15 based on the size of the article 15 or filament 20 and desired shape or coiling pattern. In one aspect, the at least one filament 20 may include a plurality of filaments 20 or may include two filaments 20 that are wound about the article 15 in a predetermined orientation. Referring to
Various numbers of filaments 20 may be wound in various orientations to generate a specific orientation of the self-coiling apparatus 10. Referring to
As stated above, the at least one filament 20 is formed of a shape memory alloy and/or a shape memory polymer. Various shape memory alloys may be utilized including shape memory alloys that are formed of copper zinc aluminum nickel or copper aluminum nickel or nickel and titanium. In one aspect, the shape memory alloy may change phases from a martensite phase to an austenite phase upon a change in temperature. The shape memory alloy may have a one-way memory effect or a two-way memory effect, depending upon a desired application. The one-way memory effect alloy when in its cold state can be bent or stretched and will hold a desired shape until it is heated above a transition temperature. Upon heating, the shape will change to its original state, generating a desired coiled pattern, and will remain in the shape until a person or force is applied to it. In a two-way memory alloy, the material may have two different shapes, one at a lower temperature and one at a higher temperature. Various shape memory alloy filaments 20 may be produced to apply a desired axial force when wound about an article 15.
Additionally, a shape memory polymer layer 35 may be utilized, as shown in
In addition to thermally activated shape memory polymers, other polymers may be activated by exposure to various wavelengths of light or by electric or magnetic fields. Examples of light induced polymers include polymers having a photo sensitive cross-linking that varies the cross-linking density within the material. Examples include materials having cinnamic acid and cinnamylidene acetic acid. Various electrical modified shape memory polymers may include carbon nanotubes, short carbon fibers, carbon black, and metallic Ni powder. The polymers may be produced by chemically surface-modifying multi-walled carbon nanotubes (MWNTs) in a mixed solvent of nitric acid and sulfuric acid. Various magnetic modified shape memory polymers may utilize surface-modified super-paramagnetic nanoparticles. An example includes oligo (e-capolactone)dimethacrylate/butyl acrylate composite with between 2 and 12% magnetite nanoparticles.
In one aspect, the filament 20 formed of the shape memory alloy and/or shape memory polymer may have a thickness of from 0.001-0.025 inches. The thickness of the filament 20 will have an effect on its ability to cool after being heated as well as have an effect on the size of the force applied to an article 15 when a voltage potential is applied. In one aspect, the at least one filament 20 may be wound about the article 15 in multiple passes such that a smaller gauge or size filament 20 may be utilized allowing it to cool more rapidly. Additionally, the filaments 20 may be nested with each other, again allowing multiple filaments 20 of a smaller gauge to be utilized, allowing a more rapid cooling in comparison to a larger gauge or thicker filament 20. In one aspect, the filaments 20 may be nested relative to each other to apply a twisting moment to the article 15 that facilitates self-coiling. The filament 20 wound about the article 15 may apply an axial force to the article 15 that twists the article 15 to a desired shape as described above.
Again referring to
As stated above, the self-coiling apparatus 10 may include a power source 25 connected to the at least one filament 20. Various transformers or other power devices may be utilized to generate a specific voltage requirement. Additionally, the voltage potential may be regulated from the power source to control a force applied to the article 15 that will affect the rate of coiling. In one aspect, the voltage potential range may be between 15 and 20 volts DC. It should be realized that various voltage requirements may be required for different length, size, and stiffness of articles 15. Various power source options include integrated AC/DC transformers that may pass a current directly to a device plugged into an outlet. Additionally, transformers may also be utilized with a battery or capacitor system in parallel or in sequence. Further, various batteries may be included as a power source. Additionally, various other sources of power including photovoltaic devices, fuel cells, or other such devices may be utilized as a power source and may be coupled to various circuitries to provide a desired voltage.
Referring to
Referring to
This application claims priority of U. S. Provisional Patent Application Ser. No. 61/355,320 filed Jun. 16, 2010, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61355320 | Jun 2010 | US |